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Abstract

In this paper we address the problem of constructing the Hausdorf distance be-
tween A-IFSs based on the Hamming metric. We pay particular attention to the
consistency of the metric used and the essence of the Hausdorff distances.
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1 Introduction

Distances are indispensable tool used both in theoretical considerations and for practical
purposes in many areas. It is not possible to overestimate their importance also in the
context of fuzzy sets (Zadeh [32]) or their generalizations. Distances are necessary while
concluding about similarity, when making group decisions, assessing soft consensus, in
pattern recognition, classifications, etc.

Among different sort of distances the Hausdorff distances (cf. Grinbaum [9]) play an
important role in practical applications, especially in many visual tasks, such as image
matching, image analysis, motion tracking, visual navigation of robots, computer-assisted
surgery and so on (cf. e.g., Huttenlocher et al. [10], Huttenlocher and Rucklidge [11],
Olson [13], Peitgen et al. [14], Rucklidge [16]-[20]).

Though the definition of the Hausdorff distances is simple, the calculations needed to
solve the real problems are complex. In effect the efficiency of the algorithms for comput-
ing the Hausdorff distances is decisive and computing approximations are of most interest
(e.g, Aichholzer [1], Atallah [2], Huttenlocher et al. [10], Preparata and Shamos [15],
Rucklidge [20], Veltkamp [31]).

In the light of the practical importance of the Haudorff distances (resulting from their
properties), the formulas proposed for calculating the distances should be reliable. It is the
motivation of this paper. Namely, we consider the results of using the Hamming distances
between A-IFSs calculated in two possible ways - taking into account two parameter
representation (membership and non-membership values) of A-IFSs, and next - taking
into account three parameter representation (membership, non-membership values, and
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the hesitation margins) of A-IFSs. We will verify if the resulting distances fulfill the
properties of the Hausdorff distances.

2 Brief introduction to A-IFSs

As opposed to a fuzzy set in X (Zadeh [32]) , given by
A = {< o pyp(@) > v € X} 1)

where 1 4 (x) € [0,1] is the membership function of the fuzzy set A', an A-IFS (Atanassov
3], [4]) A is given by
A={<z,ua(x),va(z) > | € X} (2)

where: 4 : X — [0,1] and v4 : X — [0, 1] such that

0<pa(z) +va(z)<1 (3)

and pa(x), va(x) € [0,1] denote a degree of membership and a degree of non-membership
of x € A, respectively. (Two approaches to the assigning memberships and non-memberships
for A-IFSs are proposed by Szmidt and Baldwin [23]).

Obviously, each fuzzy set may be represented by the following A-IFS

A= {< 21y @), 1 — jp(a) > |z € X) (4)

An additional concept for each A-IFS in X, that is not only an obvious result of (2) and
(3) but which is also relevant for applications, we will call (Atanasov [4])

ma() =1 = pa(z) — va(z) ()

a hesitation margin of x € A which expresses a lack of knowledge of whether x belongs to
A or not (cf. Atanassov [4]). It is obvious that 0<m4(z)<1, for each z € X

Hesitation margins turn out to be relevant for applications - in image processing (cf.
Bustince et al. [6], [7]) and classification of imbalanced and overlapping classes (cf. Szmidt
and Kukier [26], [27], [28]).

2.1 Distances Between the A-IFSs

Distances between A-IFSs are calculated in the literature in two ways, using two param-
eters only (e.g., Atanassov [4]) or all three parameters (Szmidt and Kacprzyk [24], [25],
Tasseva et al. [30], Atanassov et al. [5], Szmidt and Baldwin [21], [22], Deng-Feng [8],
Tan and Zhang [29], Narukawa and Torra [12])) describing elements belonging to the sets.
Both ways are proper from the point of view of pure mathematical conditions concerning
distances (all properties are fulfilled in both cases). Unfortunately one cannot say that
both ways are equal when assessing the results obtained by the two approaches.
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In Szmidt and Kacprzyk [24], [25], Szmidt and Baldwin [21], [22], it is shown why in
the calculation of distances between A-IFSs one should use all three parameters describing
A-TFSs.

Examples of the distances between any two A-IFSs A and B in X = {z;x9,...,2,}
while using three parameter representation (Szmidt and Kacprzyk [24], Szmidt and Bald-
win [21], [22]):

e the normalized Hamming distance:

lirs(A,B) = %i\m (i) — pp ()| +
+  |va(wi) — vp(w:)| + |ra(®:) — 7p(2:)]) (6)

e the normalized Euclidean distance:

1
eIFS A B %Z ,uA xz MB(xZ>>2+
=1

=

+ (vals) —vp(2:))® + (ma(z:) — 75 (2:))°) (7)
Both distances are from the interval [0,1].

The counterparts of the above distances while using two parameter representation of

A-TF'Ss are:

e the normalized Hamming distance:
[(A,B) = Z [nal@i) — pp ()| + [valz;) — va(w:)]) (8)

e the normalized Euclidean distance:

n

q/(A, B) = (% Z(MA(%) - MB(H%‘))2 + (va(z;) — VB(%‘))Q)

=1

SIS
—~
=
~—

3 The Hausdorff distance

The Hausdorff distance is the maximum distance of a set to the nearest point in the other
set. More formal description is given by the following

Definition 1 Given two finite sets A = {a4,...,a,} and B = {by,...,b,}, the Hausdorff
distance H(A, B) is defined as:

H(A, B) = max{h(A, B), h(B, A)} (10)
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where
h(A, B) = maxmind(a, b) (11)

a€A beB
—a and b are elements of sets A and B respectively,
—d(a,b) is any metric between these elements,
— the two distances h(A, B) and h(B, A) (11) are called directed Hausdorff distances.

The function h(A, B) (the directed Hausdorff distance from A to B) ranks each element
of A based on its distance to the nearest element of B, and then the largest ranked
such element (the most mismatched element of A) specifies the value of the distance.
Intuitively, if h(A, B) = ¢, then each element of A must be within distance ¢ of some
element of B, and there also is some element of A that is exactly distance ¢ from the
nearest element of B (the most mismatched element). In general h(A, B) and h(B, A)
can attain very different values (the directed distances are not symmetric).

Brute force algorithm of calculating the directed Hausdorff distances (11):

1. h=0
2. for every element a; of A,
2.1 shortest = oc;
2.2 for every point b; of B
dij = d(a;, by)
if d;; < shortest then
shortest = d;;
2.3 if shortest > h then
h = shortest
It follows from Definition 1 and the above algorithm that if A and B contain one
element each (a; and by, respectively), the Hausdorff distance is just equal to d(a;,b;). In
other words, if a formula which is expected to express the Hausdorff distance gives for the
separate elements the results not consistent with the used metric d (e.g., the Hamming

distance, the Euclidean distance etc.), the considered formula is not a proper definition
of the Hausdorff distance.

3.1 Results for the Hausdorff distance while using the two pa-
rameter Hamming distance

Due to the algorithm of calculating the directed Hausdorff distances, when aplying two
parameter distances (8)-(9) for A-IFSs, we obtain:

A B) = S ma{lua(r) = po(w)] ates) = vi(e)) (12)

n

(A, B) = (%Emax{(uA(%)—uB(xi))Q, (val@i) — vp(2:))*})

=

(13)
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If the above distances are properly calculated Hausdorff distances, in the case of degen-
erated, i.e., one-element sets A = {< z, pa(x),va(z) >} and B = {< z, pp(z),vp(r) >},
they should give the same results as the two parameter Hamming distance, and the Eu-
clidean distance. It means that in the case of the two prameter Hamming distance, for
one element IFSs, the following equations should give just the same results:

d(A, B) = %(WA@) — pp(@)| + va(z) — vp(2)]) (14)

d(A, B) = max{|pa(x) — pp(2)], [va(z) —vs(2)[} (15)

where (14) is the normalized two parameter Hamming distance, and (15) should be its
counterpart Hausdorff metric.

We will verify on the simple examples if (14) and (15) gives the same results as it
should be following the essence of of the Hausdorff measures.

Example 1
Let consider the following one-element A-IFSs: A, B, D, G, E € X = {z}

A = {<z,1,0>}, B={<z01>}, D={<z/0,0>},

11 11
G = {<w5.35>h {<z4.7>} (16)

The results obtained from (15) are:

dn(A,B) = max{|]1-0[]0-1|} =1

dn(A,D) = max{|]1-0],|0-0]} =1

dn(B,D) = max{|0—0[,|]1-0]}=1

dn(A,G) = max{|1-1/2[,]0—-1/2|} =0.5
dp(A,E) = max{|l—1/4],]0—1/4]|} =0.75
dn(B,G) = max{]0—1/2],]1—1/2[} = 0.5
dn(B,E) = max{|0—1/4|,]1 —1/4]|} =0.75
dp(D,G) = max{|0—1/2],]0—1/2|} = 0.5
dy(D,E) = max{|0—1/4],]1—1/4|} =0.25
dy(G,E) = max{|1/2—1/4],|1/2 —1/4]} = 0.25

Their counterpart Hamming distances calculated from (14) are:

/

I'(A,B) = 05(1—-0/+0—1])=1
I'(A,D) = 0.5(1—0/+]0-0])=05
I'(B,D) = 0.5(]0—-0]+|1—0]])=0.5
I(A,G) = 05(10—-1/2[+[0—1/2) =05
I'(AE) = 0.5(]11—1/4]+1]0—1/4]|)=0.5
I'(B,G) = 05(]1—1/4]+1]0—1/4])=05
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I'(B,E) = 05(]1—1/4]+1]0—1/4])=0.5
I'(D,G) = 0.5(]0—1/2]+|0—1/2]) =0.5
I'(D,E) = 05(]0—1/4]+1]0—1/4]) = 0.25
I'(G,E) = 05(]1/2—1/4|+[1/2—1/4]) =0.25

i.e. the values of the Hamming distances (14) used to propose the Hausdorff measures
(15), and the values of the resulting Hausdorff distances (15) calculated for the separate
elements are not consistent (as they should be). The differences:

dn(A, D) # 1 (A, D) (17)
H,(B,D) # 1 (B, D) (18)
Hy(A,E) #1(A, E) (19)
Hy(B, E) # 1 (B, E) (20)

Now we will show that the inconsistencies as showed above occur not only for (17) —
(20) but for infinite number of other cases.

Let us verify the conditions under which the equation (14) and (15) give the consistent
results, i.e., when for the separate elements we have

S (bal) = ()] + wa(a) — () =

= max{|pa(z) — pp(2)], [valz) — vp(x)[} (21)

Having in mind that
pa(z) +va(x) +ma(z) =1 (22)
pp(x) +vp(r) +mp(r) =1 (23)

from (22) and (23) we obtain
(na(r) = pp(x)) + (valr) = va(2)) + (Ta(2) — TB(7)) = 0 (24)

It is easy to verify that (24) is not fulfilled for all elements belonging to an A-IFSs but
for some elements only. The following conditions guarantee that (21) is fulfilled

o for ma(x) — mp(z) =0, from (24) we have
(@) = pp(2)] = valr) — vp(z)| (25)
and taking into account (25), we can express (21) in the following way:

0.5(lpa(z) = pp(e)l +  [palz) — pp(2)]) =
= max{|pa(z) = pp(2)], [palr) = pp@)l}  (26)



o if m4(x) — mp(z) # 0 but the same time

1

pa(r) = pp(@) = va(z) —vp(z) = —5(ra(2) — 75(2)) (27)

quarantee that (21) boils down again to (26).

In other words, (21) is fulfilled (what means that the Hausdorff measure given by (15)
is a natural counterpart of (14) ) only for such elements belonging to an A-IFS, for which
some additional conditions are given like: m4(z) — mp(x) = 0 or (27). But in general, for
infinite numbers of elements, (21) is not valid.

In the above context it seems unfortunate trying to construct the Hausdorff distance
using two parameter Hamming distance between A-IFSs.

We have made similar calculations considering the normalized two parameter Eu-
clidean distance (13) which is not the counterpart (in the sense of the commonly used
definition of Hausdorff distance (11)) of the normalized Euclidean distance

n

¢(AB) = (% > (na(i) — pp(:))* + (val@:) — va(2:))?)

i=1

=

(28)

3.2 A straightforward generalizations of the Hamming distance
based on the Hausdorff metric (11)

Now we will show that applying the three parameter Hamming distance for A-IFSs, we
obtain its correct (in the sense of Definition 1) counterpart in terms of max function, i.e.
obtain a generalization of the Hamming distance based on the Hausdorff metric.

Namely, if we calculate the three parameter Hamming distance between two degen-
erated, i.e. one-element IFSs, A and B in the spirit of Szmidt and Kacprzyk [24], [25],
Szmidt and Baldwin [21], [22], i.e., in the following way:

1
lrs(A,B) = 5(lpa(@) = pp()] + |valz) —va(2)| +
+ |ma(z) —7p(2))) (29)
we can give a counterpart of the above distance in terms of max function:

Hy(A, B) = max{|pa(z) — pp(2)], [va(z) —vp(2)],
» |ma(z) = mp ()|} (30)

If H3(A, B) (30) is properly calculated Hausdorff distance, the following condition should
be fulfilled:

%(WA@) — 1p(@)| + [va(e) — vp(@)]) + [1a(2) — m5(2)]) =
= max{lpa(z) — pp(2)], [va(z) —vp(2)], |ra(z) — 7p(2)[} (31)
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Let us verify if (31) is valid. Without loss of generality we can assume

max {|pa(x) = pp(2)], [va(z) —vp(2)l, [malr) — mp(2)[} =
= |pa(e) — pp(@)| (32)
For |pa(x) — pp(z)| fulfilling (32), and because of (22) and (23), we conclude that both
)

va(z) —vp(x), and ma(z) — mp(z) are of the same sign (both values are either positive or
negative). Therefore

a(@) = pp(@)] = |vale) —vp(e)| + |ma(z) — wp(2)| (33)

Applyng (33) we can verify that (31) always is valid as

0.5{|ua(x) — pp(x)| + |pa(z) — pp(x)|} =
= max{|pa(x) — pp(@)], [va(z) —vp(2)], |Ta(2) — 7H(2)|} =
= |pa(z) — pp(@)] (34)

Now we will use the above formulas (29) and (30) for the data used in Example 1.
But now, as we also take into account the hesitation margins 7(z) (5), instead of (16) we
use the “full description” of the data {< z, u(x),v(z), 7(x) >}, i.e. employing all three
functions (membership, non-membership and hesitation margin) describing the considered

A-TFSs:
A = {<z,1,0,0>}, B={<z010>}, D={<0,01>}

11 111
G = {<l‘, ,O>}, EI{<$,—,Z,§ >} (35)

22 4
and obtain from (30):

H3(A, B) max(|1 —0[,[0—1[,]/0—-0|) =1

H3(A,D) = max(|]1-0[,[0—0,]0—-1])=1

H3(B,D) = max(|0—0[,|]1-0[,]0-1])=1

H3(A,G) = max(]0—1/2[,]0—-1/2|,]0—-0]) =0.5
H3(A,E) = max(|1—1/4[,]0—1/4|,|0—1/2]) =0.75
H3(B,G) = max(|1—1/4|,]0—1/4],]10—1/2]) =0.75
H3(B,E) = max(|1—1/4],]0—1/4],]0—1/2]) =0.75
H3(D,G) = max(|0—1/2[,|0—1/2|,]1-0])=1
Hy(D,E) = max(|0—1/4,]0 — 1/4],]1 —1/2]) = 0.5
H3(G,E) = max(|1/2—1/4],]1/2—1/4|,]0 —1/2]) =0.5

Now we calculate the counterpart Hamming distances using (29) (with all three functions).
The results are

lirs(A,B) = 05(]1—-0/+]0—-1|+]0—-0]) =1
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Lrs(A,D) = 05(]1—0+|0—0]+|0—1))=1
Lrs(B,D) = 05(]0—0[+[1—0/+[0—1])=1
Lrs(A,G) = 05(0—1/2|+[0—1/2[+]0—0]) = 0.5
Lrs(A,E) = 05(1—1/4]+]0—1/4]+]0—1/2|) = 0.75
Lrs(B,G) = 05(]1—1/4|+[0—1/4|+|0—1/2]) =0.75
Lirs(B,E) = 0.5(]1 —1/4|+ 10 —1/4|+ 10 —1/2]) = 0.75
Lrs(D,G) = 05(]0—1/2|+|0—1/2[+]1—0]) =1
Lrs(D,E) = 0.5(0—1/4|+[0—1/4]+[1—1/2]) = 0.5
(G,E) = 0.5(

lirs [1/2 = 1/4] + [1/2 = 1/4] + 10— 1/2]) = 0.5

As we can see, the Hausdorff distance (30) proposed in this paper (using memberships,
non-memberships and hesitation margins) and the Hamming distance (29) give for one-
element IFS sets fully consistent results.

In other words, for the normalized Hamming distance expressed in the spirit of (Szmidt
and Kacprzyk [24], [25]) given by (6) we can give the following equivalent representation
in terms of max function:

Hy(A4.B) = 13 max {ua(es) = pun(e)] o) = v
[ma(wi) — mp ()|} (36)

Unfortunately, it can be easily verified that it is impossible to give the counterpart
pairs of the formulas as (6)—(36) for » > 1 in the Minkowski r—metrics (r = 1 is the
Hamming distances, r = 2 is the Euclidean distances, etc.)

For the details on other distances between A-IFSs we refer the interested reader to
Szmidt and Kacprzyk [24] and especially [25]. More details are given in [5] and [30]. The
counterpart results, but in respect to mass assignment theory, are given by Szmidt and
Baldwin [21], [22].

4 Conclusions
A correct method of the calculating distances between A-IFSs based on the Hausdorff
metric (being a counterpart of the Hamming distance) was proposed. The method employs

all three functions describing A-IFSs. The proposed method is both mathematically valid
and intuitively appealing (cf. [25]).
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