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Abstract: In this paper we present the approach for multicriteria decision 

making – InterCriteria Analysis (ICA). ICA is based on the apparatus of the 

index matrices and the intuitionistic fuzzy sets. We apply its idea to establish 

the basic kinetic relations (the model structure) based on different criteria 

involved in the L-lysine production process. The L-lysine amino acid 

produces an important substance – carnitine found in the human heart, 

skeletal musculature, liver and brain. Based on the ICA we confirm a 

mathematical model of real lysine production process. The metaheuristic 

technique Genetic Algorithms is used for model parameters identification. 
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1 Introduction 

The general carnitine function is to act as “shuttle” transferring the fatty 

acids with a long chain through the cell membrane and the amino acids 

delivered to the mitochondria are used as a “fuel” for energy necessary for 

the human body. 

The carnitine takes a part in the oxidation of the amino acids with a 

branched chain, prevents of forming of lactic acid in human muscles, and 

restrains the substances disturbing the cell wall. Also its roles in human body 

are: it helps the transformation of the fat in energy and reduces the bodily 
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weight; it increases the mental and physical working capacity; it improves 

the energetic security of the heart muscle; it contributes for improvement of 

the metabolism and it is advisable in diabetes and obesity; it overcomes the 

man sterility; it increases the sexual activity; it increases the steadiness to 

stress and it is a powerful antioxidant [9]. 

The amino acid carnitine is produced in the human body by the amino 

acid L-lysine. Sometimes the concentration of L-lysine is insufficient in the 

human organisms. Because of this, sometimes it has to be taken as an 

additional food supplement.  

In this paper we examine a fermentation process for L-lysine production 

and we construct the mathematical model of the process by establishing the 

general relations between the basic kinetic variable of the process by using 

InterCriteria Analysis (ICA). 

Atanassov et al. [2] introduced the ICA as an approach for multicriteria 

decision making. It is based on the apparatus of the Index Matrices (IMs) 

[4–6] and the Intuitionistic Fuzzy Sets (IFS) [7] and can be applied for 

decision making in different areas of science and practice. The ICA permits 

the comparison of some criteria or the objects estimated by them. Up to now 

ICA has found some successful applications in bioprocess modelling. ICA is 

used in the field of parameter identification of cultivation processes models. 

Analysis of Ant Colony Optimization (ACO) and Genetic Algorithms (GA) 

applications in modelling of S. serevisiae [1, 12, 13] and E. coli [14, 15] fed-

batch cultivation processes have been presented. 

In this paper we apply the ideas of ICA to determine a mathematical 

model of a fermentation process of Brevibacterium flavum 22LD for L-lysine 

production. For the purpose of structural and parametric identification we 

use GA [8]. 

2 InterCriteria Analysis 

ICA is a method for decision making, based on IMs [4, 5, 6] and IFS [7]. 

The IMs are essentially new and not widely known mathematical objects that 

are extensions of the ordinary matrices. 

 

Remarks on IFPs [3]. The Intuitionistic Fuzzy Pairs (IFPs) is an object in 

the form of an ordered pair 〈a, b〉, where a, b ∈ [0, 1] and a + b ≤ 1, that is 

used as an evaluation of an object or a process, and whose components  

(a and b) are interpreted respectively as degrees of membership and non-
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membership to a given set, degrees of validity and non validity, degrees of 

correctness and non-correctness, etc. 

Let us have two IFPs x = 〈a, b〉 and y = 〈c, d〉. 
Atanassov et al. [3] defined the following relations: 

� � �	iff � � �    and    � � �, 

� 	 �	iff	� 	 �    and    � 
 �, 

� � � iff � � �    and    � � �, 

� 
 � iff � 
 �    and    � 	 �, 

� � �	iff	� � �    and    � � �. 

 
Remarks on IMs. Atanassov [4, 5, 6] has presented the concept of IMs and 

has given the basic definitions and properties. 

Let I be a fixed set of indices and 
 be the set of all real numbers. By IM 

with index sets K and L��, � ⊂ ��, we mean the following object: 
 l1 �� … �� 

 �� ���,��  ���,��  … ���,��  

 K, L, !aki,  lj"# ≡ �� ���,��  ���,��  … ���,��  

 ⋮ ⋮ ⋮ ⋮ 
 �& ��' ,��  ��',��  … ��',�� 

where � � (��, ��, … , �&), � � (��, ��, … , ��), and for 1 	 + 	 ,, and 1 	
- 	 . ∶ 	 ��0,�1 ∈ 
. 

On the basis of the above definition, Atanassov [6] has introduced the 

new object – the Intuitionistic Fuzzy IM (IFIM) in the form: 

3�, �, (〈5�0,�1 , 6�0,�1〉)8 ≡ 

 �� �� … �� 

�� 〈5��,�� , 6��,��〉 〈5��,�� , 6��,��〉 … 〈5��,�� , 69:�,;�
〉 

 �� 〈5��,�� , 6��,��〉 〈5��,�� , 6��,��〉 … 〈5��,�� , 6��,��〉 
⋮ ⋮ ⋮ ⋮ 

�& 〈5�',�� , 6�',��〉 〈5�',�� , 6�',��〉 … 〈5�',�� , 6�',��〉 
 

where for every 1 	 + 	 ,, 1 	 - 	 . ∶ 5�0,�1 , 6�0,�1 , 5�0,�1 <	6�0,�1 	 1, 
+. >.		 〈5�0,�1 , 6�0,�1〉  is an IFP. 
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ICA – decision making method. Let us have an IM: 

?� ⋯ ?� … ?� … ?� 
A� �B�,C�  ⋯ �B�,C: … �B�,C; … �B�,C�  

⋮ ⋮ ⋮ ⋮ ⋮  ⋮ ⋮ 

A≡ 

AD �B0,C�  ⋯ �B0,C: … �B0,C;  … �B0,C� 

⋮ ⋮ ⋮ ⋮ ⋮  ⋮ ⋮ 
AE �B1,C�  ⋯ �B1,C:  … �B1,C;  … �B1,C�  

⋮ ⋮ ⋮ ⋮ ⋮  ⋮ ⋮ 
A& �B',C�  ⋯ �B',C:  ⋯ �B',C;  … �B',C�  

 

where for every F, G	�1 	 F 	 ,, 1 	 G 	 .�:	 
• AI	is a criterion, taking part in the evaluation; 

• ?J is an object, being evaluated; 

• �BK,CL		is a real number or another object, that is comparable about 

relation R with other a – object, so that for each +, -, � ∶ M N�B:,C0 , �B:,C1O is 

defined. Let MP be the inverse relation of R. For example, if “R” is the relation 

“<”, then MP is the relation “>”, and vice versa. 

Let Q�,�
9

 be the number of cases in which M��B:,C0 , �B:,C1� and 

M��B;,C0 , �B;,C1�	are simultaneously satisfied. Let Q�,�
R  be the number of cases 

in which M��B:,C0 , �B:,C1� and MP��B;,C0 , �B;,C1� are simultaneously satisfied. 

Obviously, 

Q�,�
9 < Q�,�

R 	 .�. S 1�
2  

Now, for every �, � such that 1 	 � � � 	 ,, and for . 
 2, it can be 

defined: 

5B:,B; �
2Q�,�

9

.�. S 1� , 6B:,B; � 2Q�,�
R

.�. S 1� 

Therefore, 〈5B:,B; , 6B:,B;〉	 is an IFP. The following IM can be 

constructed: 

 
A� ⋯ A& 

A� 〈5B�,B� , 6B�,B�〉 ⋯ 〈5B�,B' , 6B�,B'〉 
⋮ ⋮ ⋮ ⋮ 

A& 〈5B',B� , 6B' ,B�〉 ⋯ 〈5B',B' , 6B',B'〉 
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It determines the degrees of correspondence between criteria A�,	 …, A&. 

Here 5B:,B; and  6B:,B; are the degree of agreement and of disagreement, 

respectively.  

3 Materials and Methods 

The transformation of lysine to carnitine in all cells of the human body is 

dependent on vitamin C levels. It has been assessed that about 0.1 % of the 

dietary lysine is transformed to carnitine in the human organism. Carnitine is 

missing in a vegetable-based diet; it is only found in animal food. Because of 

this vegetarians who consume a lysine-deprived diet could have insufficient 

quantity of carnitine. The carnitine biosynthesis is shown in Fig. 1 [9]. 

 

 

 

Figure 1: Carnitine biosynthesis and metabolism 

Experimental investigations 

Two fermentation of the strain Brevibacterium flavum 22LD are carried out 

in a 15 liter bioreactor [11, 16]. The experimental investigations are done in 

a bioreactor that is included in an Automatic Control System (ACS). The 

ACS is flexible and includes control of the following parameters of the 
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process: rotation speed, oxygen partial pressure, temperature, pH, foam 

level, gas flow rate, flow rates of the main substance. 

The processes conditions are as follows: temperature – 30°C, pH = 6.8-

7.6, pO2 = 20-30%, gas flow rate – QG = 60 L/h; rotation speed – n = 450 

min-1; maximum bioreactor volume – V = 15 L. 

The L-lysine production is a typical two-phase process for the most 

strains-producers. The first phase is characterized by intense accumulation of 

biomass and absence of the lysine biosynthetic pathway. The second phase is 

characterized by stunted growth and accumulation of lysine in the culture 

liquid. The excess threonine concentration affects negatively the activity of 

the dehydrogenase of β-semialdehyde of the aspartic acid and thus reduces 

the lysine synthesis. The addition in the culture medium of the various 

components at a high concentration of threonine can deflect the producers to 

synthesize homoserine, isoleucine, methionine, or lactic acid [16]. 

In this paper we will search dependence between the kinetic variables of 

the process: X – biomass concentration, g/L; S – substrate concentration, g/L; 

Tr – threonine concentration, g/L; O – oxygen concentration, g/L; L – 

product (lysine) concentration, g/L. We will search dependencies between 

these variables with the aim to find the structure of the process model. 

Available experimental data for dynamics of the main process variables 

[11, 16] are used in the application of ICA. 

4 Results and Discussion 

Following [13, 15] we apply the ICA and compute the degree of agreement 

and the degree of disagreement (5B0B1 and 6B0B1 	) for the biomass concen-

tration, substrate concentration, oxygen concentration, threonine concentra-

tion and lysine concentration. The obtained results are shown in Table 1.  

In addition, the parameter kLa (volumetric oxygen mass-transfer coefficient, 

h-1) is included in this investigation. 

Also we investigate another basic characteristics for growth and 

biosynthesis of the strain Brevibacterium flavum 22LD – substrate 

consumption rate (X-1(dS/dt)) and product accumulation rate (X-1(dL/dt)). 

The results for 5B0B1 and 6B0B1 are shown in Table 2. 
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Table 1. Тhe calculated values of pair 〈5B0B1 , 6B0B1
〉  

for the X, S, O, Tr and L concentrations  

X S L Tr O kLa 

X 〈0.02, 0.78〉 〈0.89, 0.05〉 〈0.79, 0.15〉 〈0.25, 0.50〉 〈0.33, 0.28〉 
S 〈0.02, 0.78〉 〈0.94, 0.01〉 〈0.94, 0.00〉 〈0.56, 0.36〉 〈0.35, 0.30〉 
L 〈0.89, 0.05〉 〈0.94, 0.01〉 〈0.02, 0.71〉 〈0.79, 0.19〉 〈0.28, 0.37〉 
Tr 〈0.79, 0.15〉 〈0.94, 0.00〉 〈0.02, 0.71〉 〈0.51, 0.20〉 〈0.35, 0.21〉 
O 〈0.25, 0.50〉 〈0.56, 0.36〉 〈0.79, 0.19〉 〈0.51, 0.20〉 〈0.55, 0.08〉 

kLa 〈0.33, 0.28〉 〈0.35, 0.30〉 〈0.28, 0.37〉 〈0.35, 0.21〉 〈0.55, 0.08〉   

Table 2. Тhe calculated values of pair 〈5B0B1
, 6B0B1

〉  

for the X, O, X-1(dS/dt) and X-1(dL/dt) concentrations 

X O X-1(dS/dt) X-1(dL/dt) 

X 〈0.88, 16〉 〈0.18, 0.64〉 〈0.83, 0.14〉 
O 〈0.88, 0.16〉 〈0.79, 0.07〉 〈0.88, 0.22〉 

X-1(dS/dt) 〈0.18, 0.64〉 〈0.79, 0.07〉 〈0.89, 0.11〉 
X-1(dL/dt) 〈0.83, 0.14〉 〈0.88, 0.22〉 〈0.89, 0.11〉 

 

With the help of the results presented in Table 1 and Table 2 we will 

search the dependencies between the basic kinetic variable of the process. At 

first we will discuss the relation between the biomass, substrate and product 

(lysine).  

4.1. Structural Identification of the Model 

Dependencies for the biomass 

The results show that the relations between biomass and threonine, i.e. pair 

〈µ, ν〉 is 〈0.79, 0.15〉 (Table 1), with a small uncertainty π = 0.06. There is 

dependence between X and Tr. It is known that Breviberium are auxotrophy 

mutants. Absence of threonine and methionine in the culture lead to the 

cessation of their growth [11, 16]. In accordance to this and to achieve 

results the threonine is included to the Monod kinetics (Monod’s equation) 

as a growth limiting factor: 
�U

�V
= W U 

where W is the specific growth rate: 

 W =
��XY

��ZXY
 (1) 

where here and further ki are kinetic coefficients. 
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Dependencies for the substrate 

The obtained relation between substrate and biomass – the pair 〈µ, ν〉 is 

〈0.02, 0.78〉, with too large uncertainty π = 0.245. In this case we do not 

conclude, based on ICA, that there is a relation between the substrate and 

biomass.  

Let us look at the relation X-1(dS/dt) to X-1(dL/dt). The pair 〈µ, ν〉 is 〈0.89, 

0.11〉 (Table 2), and uncertainty is π = 0. In this case, based on ICA results, 

we include dL/dt in the equation for the dynamics of S. Following [16] the 

carbon source consumption could be defined by biomass growth, 

maintaining the biomass in active form and lysine accumulation: 

�Q

�V
= −�[W U − �\U − �]

��

�V
 

In case of extracellular product accumulation, the substrate limitation for 

the product synthesis is considerable. Here the carbon is almost 50% of the 

lysine molecular mass C5H14O2N2 and the 30-40 g/L concentration of lysine 

at the end of the batch process is needed to achieve high sugar utilization. 

 

Dependencies for the biomass to oxygen 

It is known [16] that for all fermentation cycle around 30 g oxygen are spent 

for 1 L cultural broad. The saturation concentration of the dissolved oxygen 

is 6.1 mg/L. The low solubility, on the one hand, and high requirements of 

the medium of oxygen, on the other hand, require high aeration of the 

medium during cultivation. Taking into account the role of carbon sources 

and oxygen concentrations [16] in the kinetic model (1) additional parts are 

added – a part accounting activation of oxygen increase and decrease, 

proportional to the consumption of sugars  

 W� =  
�� XY C

���ZXY���^Z_`a_���bZC�
  (2) 

where S0 denotes concentration of substrate in the feeding solution, g/L. 
 

Dependencies for the lysine and threonine 
The lysine accumulation is function of the biomass. The ICA results confirm 

the dependence between biomass and lysine – the pair 〈µ, ν〉 is 〈0.89, 0.05〉, 
with an insignificant uncertainty of π = 0.06. Let us look at the relation of 

the lysine to the substrate from Table 1. The pair 〈µ, ν〉 is 〈0.94, 0.01〉 again 

with an insignificant uncertainty of π = 0.05. Also from Table 2 the relation 

of the lysine to the substrate is evident – the pair 〈µ, ν〉 is 〈0.89, 0.11〉, with 

uncertainty π = 0. The obtained results show the dependence between lysine 
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and substrate and biomass. The dependence between the lysine and oxygen 

is also established: 〈0.79, 0.19〉. Following the ICA results and [16] the 

dynamics of the lysine concentration has the form: 

��

�V
= c U 

where c is the specific consumption rate of substrate, h-1: 

c =
�d Q ?

��e + Q����f + Q����� + ?����� + ?�
 

The threonine consumption is available only in case of biomass growth. 

The ICA results show the dependence between threonine and biomass (see 

Dependencies for the biomass) and between threonine and substrate (〈µ, ν〉 
〈0.94, 0.00〉). Based on the obtained results the equation for the threonine has 

the following form: 

�gh

�V
= ��[

�U

�V
= ��[ W� U 

Finally the oxygen dynamics should be defined. For ICA results (see 

Table 1) the relation between X and O shows that they do not have a strong 

positive relation – 〈0.25, 0.50〉, with a large uncertainty of π = 0.25. 

Following Table 2 the relation between them is the pair 〈µ, ν〉 〈0.88, 0.11〉 
with small uncertainty. This second experiment (Table 2) gives better results 

and we can confide the oxygen consumption depends on the biomass 

concentration.   

The oxygen consumption is dependent also on the lysine accumulation 

(already explained). The relation between oxygen and lysine (Table 1) is 

〈0.79, 0.19〉, with small uncertainty of π = 0.02. From Table 2 the relation 

between oxygen and X-1(dL/dt) is the pair 〈µ, ν〉:  〈0.88, 0.22〉, with π = 0.  

Based on the analysis of the results, the dynamics of the oxygen 

concentration has the form: 

�?

�V
= −��\ W� U − ��]U − ��ic U + ��j�?∗ − ?� 

where rate k17 (also the volumetric oxygen mass-transfer coefficient (kLa)) is 

oxygen feed up during the fermentation and ?∗ is saturation oxygen 

concentration. 

In Brevibacterium flavum 22LD fermentation process the dynamics of the 

main process variables based on mass balance [16] and ICA results are 

presented as follows: 
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�U

�V
= W� U 

�Q

�V
= −�]W� U − �iU − �jc U 

��

�V
= c U 

�gh

�V
= ��[ W� U 

�?

�V
= −��\ W� U − ��]U − ��ic U + ��j�?∗ − ?� 

4.2. Parameter Identification of the Model 

Based on the available experimental data for the main process variables – X, 

S, O, Tr and L model parameter identification is fulfilled using GA. 

The GA have already proved effective in solving complex, non-linear 

optimization tasks. GA operators and parameters, applied for the considered 

here parameter identification procedures, are as follows:  

• encoding – binary 

• crossover – double point 

• mutation – bit inversion 

• selection – roulette wheel selection 

• fitness function – linear ranking 

and 

• generation gap – 0.97 

• crossover rate – 0.70 

• mutation rate – 0.1 

• number of individuals – 100 

• number of generations – 100 

The optimization criterion is presented as a minimization of a distance 

measure J between experimental and model predicted values of process 

variables (X, S, O, Tr and L), represented by the vector y: 

( ) ( ){ }
2

1 1

n m

exp mod j
i j

J y i y i min
= =

 = − → ∑∑  
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where J is the optimization criterion, n – number of measurements for each 

process variable,  m – number of process variables, yexp – experimental data 

vector, ymod – model predicted data vector. 

Matlab environment is used of parameter identification procedures and a 

script contained the necessary instructions for Genetic Algorithm Toolbox [8] 

has been also developed. 

The initial conditions of the process are:  

X(0) =3.0 g/L; S(0) = 100.0 g/L;  

Tr(0) = 80.0 g/L; O(0) = 6.1 mg/L. 

The obtained model parameters estimates are as follows: 

k1 = 20.80, k2 = 42.00, k3 = 28.00, k4 = 1.1, k5 = 1.01, k6 = 0.07,  

k7 = 0.51, k8 = 62.0, k9 = 28.0, k10 = 37.0, k11 = 4.0, k12 = 0.12,  

k13 = 6.1, k14 = 448.0, k15 = 22.0, k16 = 209.0, kLa = k17 = 120.0. 

The results show (Fig. 2) that the model fit very well with the experim-

ental data.  
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Fig. 2 Comparison between a model simulated and a real Brevibacterium 

flavum 22LD fermentation process 
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5 Conclusion 

Carnitine is studied extensively in part because of the important role it plays 

in fatty acid oxidation and energy production. Amino acid L-lysine promotes 

cell division and is necessary for carnitine production. Brevibacterium 

flavum is considered the most suitable organism for the lysine production. In 

this paper we examine a Brevibacterium flavum 22LD fermentation process 

for L-lysine production. 

We have used ICA as a method for decision making in the modeling of 

the Brevibacterium flavum 22LD fermentation process. The aim of the paper 

was to establish the basic dependencies between the different kinetic 

variable of the process. Based on ICA results and known kinetic relations we 

have confirmed mathematical structure of the considered fermentation 

process. After that we have made a parametric identification of this 

bioprocess. Applying Genetic Algorithms we have done model parameter 

identification. The results have shown that the model fits very well with the 

experimental data. 
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