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1 Introduction

The notion of defining intuitionistic fuzzy sets (IFSs) for fuzzy set generalizations, introduced by
Atanassov [1], has proven interesting and useful in various application areas. Since this fuzzy
set generalization can present the degrees of membership and non-membership with a degree of
hesitancy, the knowledge and semantic representation becomes more meaningful and applicable.
Many authors [35, 6, 9] have introduced and discussed several notions of intuitionistic fuzzy metric
space from different points of view. Here, we introduce and discuss a suitable notion for the L,,
intuitionistic fuzzy metric of a given intuitionistic fuzzy metric space on the set of its non-empty
compact subsets. In particular, we explore several properties of the L, intuitionistic fuzzy metric,
as completeness and completion, and separability.

In this way, we provide a new contribution to the development of the theory of intuitionistic
fuzzy metrics in a potentially interesting direction due to the undoubted importance of the Haus-
dorff distance not only in general topology but also in other areas of Mathematics and Computer
Science.

The structure of the paper is as follows. In Section 2 we give the background and auxiliary
results which will be needed. Sections 3 and 4 are devoted to construct our L, intuitionistic fuzzy
metric and discuss its properties.
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2 Intuitionistic fuzzy metric spaces
Let X be an arbitrary non-empty set and IF(.X') be the intuitionistic fuzzy subsets of X
IF(X) = {(u,v) € ¥ xI* : 0<u(z)+ov(z) <1 zeX}

A mapping d : IF(X) x IF(X) — R is said to be an intuitionistic fuzzy metric on IF(X) if it
satisfies the following conditions.

1. d( uy, V1) UQ,U2>> >0,V (ug,v1), (ug,ve) € IF(X)
2. d(
(¢

3.d

Uy, V1) U2,02>> = 0iff (uy, v1) = (ug, va)
u1>vl u27U2>> = d( <u27/02> ) <ulavl>> V<U1,'U1>, <UQ,’U2> € IF(X>

4. d( (ur,v1), (us,v3) ) < df (ur,v1), (ug,v2) ) + d{ (u2,va), (us, v3)
vgum}l), (us, va), <213,v3><e IF(X) ) ( )

The pair (IF(X), d) is called an intuitionistic fuzzy metric space.
Let X = R, we denote by

IF' = IFR) = {(u,v) : R—[0,1]*, 0 < u(z) +v(z) <1}

An element (u,v) of IF' is said an intuitionistic fuzzy number if it satisfies the following condi-
tions

(i) (u,v) is normal i.e there exists xg, 1 € R such that u(xg) = 1 and v(z;) = 1.
(i1) w is fuzzy convex and v is fuzzy concave.
(i11) w is upper semi-continuous and v is lower semi-continuous
(iv) supp (u,v) = cl{x € R :v(x) < 1} is bounded.

so we denote the collection of all intuitionistic fuzzy number by IF,
For a € [0, 1] and (u, v) € IF', the upper and lower a-cuts of (u, v) are defined by

(u,v)]* ={x eR:v(x) <1-—a}
and
(u,v)], ={zr € R:u(z) > o}

Remark 1. If (u, v) if a fuzzy number, so we can see [(u,v)]" as [u]* and [(u,v)],, as [1 — v]"
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Example. A Triangular Intuitionistic Fuzzy Number (TIFN) (u, v) is an intuitionistic fuzzy set
in R with the following membership function v and non-membership function v :

( T — ay .
if ay <z < as
Gy — ay
_ a3 — T .
u(z) = ifay < x < as,
a3 — ao
(0 otherwise
( Q2 — T ..
- ifa;, <z <ay
_ T — Qg . ’
v(r) = - ifay <z <as,
L1 otherwise.

— |:a1 +a(as — a1), a3 — afaz — az)}

(w0} | = [ah +alas — ), ah — a(ah — as)]
We define 0o ) € 1F7 as
(1,0) t=0
(0,1) t#0

Let (u,v) ,(u’,v") € IF; and A € R, we define the following operations by :

0(0,1) (t) =

((u,v) @ (u', ') )(2) = ( sup min (u(z),'(y)), inf max (v(x),v’(y)))

2=aty z=w+y

(Au, vy if A #0

Au,v) = ,
0(0’1) ifA=0

For (u, v), (z,w) € IF; and A € R, the addition and scale-multiplication are defined as follows

[(u,v>@<z,w>]a:[(u,v)]a—i—[(z,w)], [A(z,w)]a:)\[@,w}r
[(u,v)@(z,w>] :[(u,v)] +[<z,w>], [A(z,w}] :)\[<z,w>}

Definition 1. Let (u,v) an element of IF; and « € [0, 1], we define the following sets :

o

« o [0} [0}

[ (u.0) ]j(a) — inf{z € R | u(z) > a}, [<u,u>}:(a) — sup{z € R |u(z) > a}

[(u,v) ]l (o) =inf{z € R|u(x) < a}, [(u,v)} (o) =sup{z € R|u(x) < a}

r

Remark 2.
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Proposition 1. Forall o, § € [0,1] and (u,v) € IF;

i) [wo)] @]

«

(ii) [ (u,v) } and [ (u,v) ] are nonempty compact convex sets in R

(iii) if a < [3 then [(u,v}]ﬂ C [(u,v)} and [(u,v}}g - [(u,v)r

«

(iv) If o, / o then [<“7U>L:ﬂn [(u,v}} and [(u,v>r=ﬂn [<U,v>}%

Let M any set and a € [0, 1] we denote by
M,={z€eR :ulx)>a} and M*={zxeR :vx)<1l-—a}

Lemma 1. /et {Ma, a € [0,1] } and {M‘l, a € [0, 1]} two families of subsets of R satisfies
(i)—(iv) in proposition 1, if u and v define by

0 if v ¢ Mo
u(z) =

sup{a €[0,1] : z € M,} ifz € M

1 ifv ¢ M°

1—sup{a€(0,1] : z€ M*} ifze M°
Then (u,v) € IF,

Proof. From the construction of u and 1 — v, it suffices to show that 0 < u(z) + v(z) < 1
Vr € R.

o Ifz ¢ MY, then u(z) +v(x) =1

o Ifz € MY\ My, then u(z) =0and v(z) =1 —sup{a € [0,1] : z € M},
we have 0 < u(z) + v(x) < 1.

o If x € My, then exist o € [0, 1] such that x € M, C M.
In this case {av € [0,1] : v € M,} C{a € [0,1] : z € M*}, we deduce
u(z) = sup{a €[0,1] : z € M,} and v(z) = 1 —sup{a € [0,1] : = € M*}, which
implies 0 < u(z) + v(z) <1

This completes the proof. U

Lemma 2. Let [ a dense subset of [0, 1], if [ (u,vﬁ = [(u/, v’>} and

«

[(u,wr = [(u’,v’>r,f0ralla € I then (u,v) = (u',v')
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Proof. Let oy ¢ I and (a,),, a sequence which converges to oy, from the proposition , we have

i), -], ~N[w], - [0

ap am, (o7

[wa]” -] ~ALn]” - [w]”

@Q

On the space IF; we will consider the following L,-metric,

(o) ) =(3 [ ]

and
doo<(u,v),<27w>> — ioiggl [(u,vﬁj(a) - [<Z,w>}j(&))
+%0221 :(u,v):j(a)— (z,w)j(a)
e CRIRCR CRING
[N T DR LS S b
tse L] @) - el )

Proposition 2. <IF 1, dp> is a metric space.

Proof. dp< (u,v),(z, w)) < 00, indeed supp(u, v) and supp(z, w) are bounded.
The functions

o= du([w0)] ] Jadasdn([wa]” [wn]) @

are measurable where dy is the Hausdorff metric : if oy < ap < -+ < @, With «,, — «, We
have

[(u,v>r :fjl [(u,v)]an, and [(u/,v/>r :fjl [(u’,v’)]an

which means that

47



dH([<u,v>Ln, [w,wh) 0, anddH([(u’,v’)Ln, [@/,WD =0

dH<[(u,v)rn, [<u,v>]a> 0, and dH<[<u',v’>]an, [(u’,v’)r) 0.

This implies that (1) are left continuous and therefore measurable. It is easy to verify the
triangle inequality and symmetry of d,.

It remains to show that dp< (u,v), (u',v") > = 0 implies (u,v) = (u/,v').
So, if dp( (u,v), (U, ) ) = 0, implies
[(u, v)} = [(u’,v’)}

« «

almost everywhere, therefore, by Lemma 2 (u, v) = (u/,v').
It is the same for d. O

3 Topology induced by an intuitionistic fuzzy metric

Let (IFl7 dp) be an intuitionistic fuzzy metric space and » > 0. For an element (u,v) of IF;
andr > 0

Definition 2.

(i) The set B((u,v> ,7“) = { (u',v') € IFl,dp<<u,v> , (u’,v’>) < T} is called fuzzy open

ball with center (u,v) and radius r.

(ii) The set B[(u,v) ,7“] = {(u’,v’) € IFl,dp<<u,v>,<u’,v’>) < 7’} is called fuzzy open

ball with center (u,v) and radius r.

Definition 3. A subset G of IF, is called an open set in IF; if for all {(u,v) € G, there exist a
number r > 0 such that B( (u,v) ,7‘) C G.
Thus G is an open set, iff each point of G is the center of some fuzzy open ball contained in G.

Definition 4. A subset N of IF, is called a neighborhood of (u,v), if there exists an open set G
such that ¥ (u,v) C G C N. Also N is called a neighborhood of subset A of IF; if there exists
an open set G such that A C G C N. The collection of all neighborhoods of ¥ (u,v) is termed
neighborhood system of (u,v).

Definition 5. Let (IF4, d,,) be a fuzzy metric space. A subset F' of IF, is called a closed set in IF;
if and only if its compliments an open set.

Remark 3. The collection of all open subsets of any intuitionistic fuzzy metric space (IFy,d,)
satisfies the conditions of topology.
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Definition 6. Let A subset IF; is called bounded if there exist (u,v) € IFy and v > 0 such that
AcC B((u,v} ,r).

Definition 7. A sequence ( (U, Uy) ) in IF, converges to (u,v), if and only if

n

lim ((un,vn>> = (u,v)

n—oo

in the sense of the topology induced by the metric d,.

Definition 8. A sequence ((u,,v,)), is called a Cauchy sequence if

lim dp( (U, Un) 5 (U, vm>> =0 Vn,m e N

n,Mm—00

Definition 9. An intuitionistic fuzzy space (IF,,d) is called complete if and only if every Cauchy

sequence in (IFy,d) converges.

4 The completeness of intuitionistic fuzzy metric spaces
Theorem 1. (IF 1, dp> is a complete space, for p € [0, +0o0|.

Proof. Let < (Up, Vp) > a Cauchy sequence, for € > 0 there exist an integer ny such that for n,
m > ng we have "

(i) Case p = oc.
o[ ] (@) = [l )] ()| &
o[ ](@) = [l )] (00| ¢

According to the Cauchy criterion, we obtain the uniform convergence

J’_

[(un,vn)}j(a) — ¢(«) and [(un,vnﬁ (@) = ¢p()

r

By Lemma 1, the family and appendix 7 in [7] ([gbl(a),gm(a)]) o defined a fuzzy
ac(0,1
number u. In the same manner,

[(un,vn>}l(a)—>d}l(a) and [(un,vn>] (@) = ¥, ()

T

(@), (@] = [w0)]”

Thus doo<(un, Un) s (u,v)) —0,asn — o0.

a€e(0,1]

1
By Lemma 1 and appendix 7 in [7], ([wl(a), wT(a)]> defined a fuzzy number 1 — v.

Further the families checking (i) — (7i¢) of proposition (3.1). But [(un, Un>} C [(un, vn>]a,
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Vo € [0, 1], by passing to the limit we have (vi) of the proposition (3.1), we deduce (u, v) € IF;.

(ii) Case p € [1, 00).

[ | @) = [ im0} ] ()

|
|

By theorem of Freschet-Riesz, see [4],

)

+

[ (a0 | (@) = 60(0) and {<un,vn>}j(a) < aifa) inL7((0,1])

T
so there exists a sub-sequence ( (Uny, s Uny, ) ) such that
k

+

[t o) | (@) = 60(@), Wnk,vnkﬁj(a) = di(a) ae.

r

and

[(unk,vnk)} (@) = (), [(unk,vnkﬁl (@) = () ace.

almost everywhere.

r

Again by Lemma 1, there exist (u,v) € IF; such that

(@),6,(0)] = [(wv) ] and [iata),vn(@)] = [@wo) ]

This completes the proof. O]

Corollary 1. let (X,,), be a sequence of closed subsets in I F\. Assume that

IntX, =0 foreveryn >1

Then
Int <U Xn> =0
n=1
Proof. (I1F}y,d,) is a complete metric space, it suffices to applying Baire theorem. ]

Theorem 2. (IF 1, dp> is separable for p € [1,00).

Proof. The proof follows in several steps. Assume that (u, v) € IF;.
(a) Construction of (¢y, ¢o) € IF;.
Since suppq (u,v) p is compact, there exist .S; = [ai, bl}, i =1,...,r such that a;,b; € Q

with 0 < b; — a; = O(e) and supp{ (u,v) } C LTJ Si.
i=1
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Consider the corner point 7; = a; of S; and define the fuzzy intuitionistic set (qﬁl, (bg) e IF,

61(2) sup,cg u(z) ifrx=T, i=1,...r
1) =
0 otherwise
() inf,cgv(r) ife=T, i=1,...r
2\T) =
0 otherwise

Obviously we have (¢1, o) € IF;. Putting o; = ¢1(T;) and 5; = 1 — ¢o(T;), we reliable
Si, ..., S and Ty, ..., T, (if necessary) such that

O=ap<ay<---<a,=1 and 0=3,<<--- <3, =1

We claim that d, ( (u,v), (@1, da) > =0(e).
Choose 0 < a < 1.
Since o, 1 < a < «, for some 0 < ig < 1 we get [(u,vﬁ C [(u, v>}

(o] [tenon]  ={Tu... .1} and [(61,62)]" ={TT}

Asx € [(u, v)] N [(u, v>} implies z € S;, for some i; > iy it is follows that

«

, [(u,v)]aio C

et
Qs
=1

min
1<i<r

S‘x_ﬂl

= 0O(e)
On the other hand, for any 7 > i,

&1(T;) = supu(z) > aand ¢o(T;) = inf v(z) <1 -«

z€eS; TES;

since u is upper semi-continuous, it attains its supremum at some point 2o € .S; N [ (u,v) ] . Also
[e%

J— «
v is lower semi-continuous, it attains its lower bound at some point yy € S; N [ (u,v) } .
We have

inf Ti—x‘ < ﬂ—x0’ — 0(e)
z€ |:(u,v)
and
inf Ti—x’ < ’(1—7}) — 0| = O(e)
x€ [(u,v)]
Therefore

dm(<u,v>,<¢1,¢2>)ssgdeQW?vﬁ [<¢1’¢2>L)

Y
(0%

rswds( [@0)]" [on.09]") =06
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(b)  Construction of (11, 1) € IF;.
If necessary wereliable 0 < oy < --- < ay = 1, with s < 7.
If . ¢ Q, we choose o, € Q such that max (ak,l,ak — e/M> < ap < oy, with

M > 2(r — 1)diam(supp (u,v) ), while if a;, € Q, we set aj, = . Defining (¢4, 1) € IF by
af,  ifp1(x) = oy

¢1: )

0 otherwise

by [ i) =1

0  otherwise

yields
dp( (@1, d2) , (W1, 12) ) < 2diam{supp (u,v) } {( Z (i — C“Q)) p] :

It follows that

4 ((61,62), (1, 0) ) = O(=7)

By the triangle inequality, we have

({0 (1, 02) ) < doc () (01, 02) ) + o (91, 02)  (0,08) ) = O(e)

O
Theorem 3. (IF 1, doo> is not separable.
Proof. For a € |0, 1], consider the function
1 if z=1
a1 =1qa if x€0,1],
0 otherwise
0 if z=1
Pap=4q1—a if x€]0,1].
1 otherwise
It is easy to cheek that for o # 3, doo< (Do, Pas2) s (Pp1, Dp2) ) =1. ]
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