$4^{\text {th }}$ IFSCOM, 3-7 May 2017, Mersin, Turkey

Notes on Intuitionistic Fuzzy Sets
Print ISSN 1310-4926, Online ISSN 2367-8283
Vol. 23, 2017, No. 1, 14-20

Intuitionistic fuzzy implication \rightarrow_{189}

Lilija Atanassova

Institute of Information and Communication Technologies
Bulgarian Academy of Sciences
Acad. G. Bonchev Str., Bl. 2, Sofia 1113, Bulgaria
e-mail: l.c.atanassova@gmail.com

Abstract

In [4], some new intuitionistic fuzzy operations are defined and their properties are studied. On the basis of the third of them, a new intuitionistic fuzzy implication is introduced here, numbered as \rightarrow_{189} and some of its properties will be studied.

Keywords: Implication, Intuitionistic fuzzy implication, Intuitionistic fuzzy logic.
AMS Classification: 03E72.

1 Introduction

In the present paper, we continue our research, related to some new intuitionistic fuzzy implications. Now, we use results from [4], where five new intuitionistic fuzzy operations, including multiplication, were introduced.

As it is discussed in [1], each proposition, variable or formula is evaluated with two degrees "truth degree" or "degree of validity", and "falsity degree" or "degree of non-validity". Thus, to each of these objects, e.g., p, two real numbers, $\mu(p)$ and $\nu(p)$, are assigned with the following constraint:

$$
\mu(p), \nu(p) \in[0,1] \text { and } \mu(p)+\nu(p) \leq 1 .
$$

In [2], the object $\langle\mu(p), \nu(p)\rangle$ is introduced under the name Intuitionistic Fuzzy Pair (IFP). Formula A is an Intuitionistic Fuzzy Tautology (IFT) if and only if (iff) for every evaluation function V, if $V(A)=\langle a, b\rangle$, then, $a \geq b$, while it is a (classical) tautology iff for every evaluation function V, if $V(A)=\langle a, b\rangle$, then, $a=1, b=0$.

Following [2], we will mention that, if an IFP is an IFT, we call it Intuitionistic Fuzzy Tautological Pair (IFTP) and if it is a tautology - Tautological Pair (TP).

In [1], different intuitionistic fuzzy operations are introduced, e.g., intuitionistic fuzzy disjunction, conjunction and (classical) negation, by

$$
\begin{aligned}
V(p \vee q)= & \langle\max (\mu(p), \mu(q)), \min (\nu(p), \nu(q))\rangle, \\
V(p \wedge q)= & \langle\min (\mu(p), \mu(q)), \max (\nu(p), \nu(q))\rangle, \\
& V(\neg p)=\langle\nu(p), \mu(p)\rangle .
\end{aligned}
$$

Below, when it is clear, we will omit notation " $V(A)$ ", using directly " A " of the intuitionistic fuzzy evaluation of A. Also, for brevity, in a lot of places, instead of the $\operatorname{IFP}\langle\mu(A), \nu(A)\rangle$ we use the $\operatorname{IFP}\langle a, b\rangle$, where $a, b \in[0,1]$ and $a+b \leq 1$.

In [4], for two IFPs $x=\langle a, b\rangle$ and $y=\langle c, d\rangle$ are introduced five novel operations from multiplicative type. Here, we use only one of them:

$$
x \times_{3} y=\langle a c, b d\rangle
$$

and on its basis we introduce a new intuitionistic fuzzy implication. In some sense, it is analogous of implication $\rightarrow_{@}$, that in [1] was denoted by \rightarrow_{139}.

For operation \times_{3}, in [4] it was checked that it was defined correctly and for the above x and y and for $z=\langle e, f\rangle$:

$$
\begin{aligned}
x \times_{3} y & =y \times_{3} x, \\
\left(x \times_{3} y\right) \times_{3} z & =x \times_{3}\left(y \times_{3} z\right) .
\end{aligned}
$$

We can see that

$$
\begin{aligned}
& \langle 0,1\rangle \times{ }_{3}\langle 0,1\rangle=\langle 0,1\rangle, \\
& \langle 0,1\rangle \times{ }_{3}\langle 0,0\rangle=\langle 0,0\rangle, \\
& \langle 0,1\rangle \times{ }_{3}\langle 1,0\rangle=\langle 0,0\rangle, \\
& \langle 0,0\rangle \times{ }_{3}\langle 0,1\rangle=\langle 0,0\rangle, \\
& \langle 0,0\rangle \times_{3}\langle 0,0\rangle=\langle 0,0\rangle, \\
& \langle 0,0\rangle \times{ }_{3}\langle 1,0\rangle=\langle 0,0\rangle, \\
& \langle 1,0\rangle \times_{3}\langle 1,0\rangle=\langle 1,0\rangle, \\
& \langle 1,0\rangle \times{ }_{3}\langle 0,0\rangle=\langle 0,0\rangle, \\
& \langle 1,0\rangle \times{ }_{3}\langle 0,1\rangle=\langle 0,0\rangle,
\end{aligned}
$$

and for each IFP x :

$$
\begin{aligned}
& \langle 0,1\rangle \times_{3} x=\langle 0, b\rangle=x \times_{3}\langle 0,1\rangle, \\
& \langle 0,0\rangle \times_{3} x=\langle 0,0\rangle=x \times_{3}\langle 0,0\rangle, \\
& \langle 1,0\rangle \times_{3} x=\langle a, 0\rangle=x \times_{3}\langle 1,0\rangle .
\end{aligned}
$$

In [4] it is proved that if

$$
\mathcal{L}=\{\langle a, b\rangle \mid a, b \in[0,1] \& a+b \leq 1\}
$$

is the set of all IFPs, then $\left\langle\mathcal{L}, \times_{3}\right\rangle$ is a commutative semi-group and if x and y are IFTPs, then $x \times_{3} y$, is an IFTP, while if x and y are TPs, then $x \times_{3} y$ is a TP.

Using the classical negation, defined in intuitionistic fuzzy propositional logic, for \times_{3} we obtain for every two IFPs x and y :

$$
\begin{gathered}
\neg\left(\neg x \times_{3} \neg y\right)=\neg\left(\neg\langle a, b\rangle \times_{3} \neg\langle c, d\rangle\right) \\
\neg\left(\langle b, a\rangle \times_{3}\langle d, c\rangle\right)=\neg\langle b d, a c\rangle \\
\langle a c, b d\rangle=x \times_{3} y .
\end{gathered}
$$

Therefore, operation \times_{3}, similarly to operation @ (see [1]), simultaneously has the behaviour of both the operations disjunction and conjunction.

2 Intuitionistic fuzzy implication \rightarrow_{189} and its properties

In the paper, using the standard logical formula

$$
x \rightarrow y=\neg x \vee y
$$

we obtain the new intuitionistic fuzzy implication

$$
x \rightarrow_{189} y=\neg x \vee y=\langle b c, a d\rangle
$$

First, we see that

$$
0 \leq b c+a d \leq b+a \leq 1
$$

i.e., implication \rightarrow_{189} is defined correctly.

Second, we see that

$$
\begin{aligned}
& \langle 0,1\rangle \rightarrow_{189}\langle 0,1\rangle=\langle 0,0\rangle, \\
& \langle 0,1\rangle \rightarrow_{189}\langle 1,0\rangle=\langle 1,0\rangle, \\
& \langle 1,0\rangle \rightarrow_{189}\langle 0,1\rangle=\langle 0,1\rangle, \\
& \langle 1,0\rangle \rightarrow_{189}\langle 1,0\rangle=\langle 0,0\rangle,
\end{aligned}
$$

i.e., this operation, similarly to operation \rightarrow_{188} from [3], satisfies only a part of the basic properties of an implication. So, operation \rightarrow_{189} can be classified as a semi-implication.

Third, semi-implication \rightarrow_{189} generates the following negation

$$
\neg^{*}\langle a, b\rangle=\langle a, b\rangle \rightarrow_{189}\langle 0,1\rangle=\langle 0, a\rangle,
$$

i.e., the same negation as the one generated by implication \rightarrow_{188} from [3].

Therefore,

$$
\begin{equation*}
\neg^{*} \neg^{*}\langle a, b\rangle=\neg^{*}\langle 0, a\rangle=\langle 0,0\rangle . \tag{1}
\end{equation*}
$$

Fourth, we see that

$$
\begin{gathered}
\left(x \rightarrow_{189} y\right) \vee\left(y \rightarrow_{189} x\right) \\
=\left(\langle a, b\rangle \rightarrow_{189}\langle c, d\rangle\right) \vee\left(\langle c, d\rangle \rightarrow_{189}\langle a, b\rangle\right) \\
=\langle b c, a d\rangle \vee\langle a d, b c\rangle \\
=\langle a d, b c\rangle .
\end{gathered}
$$

Therefore, for this operation the above expression can not be an IFTP.
On the other hand, if we use the analogue of operation \vee in its new form \times_{3}, we will obtain

$$
\begin{gathered}
\left(x \rightarrow_{189} y\right) \times_{3}\left(y \rightarrow_{189} x\right) \\
=\left(\langle a, b\rangle \rightarrow_{189}\langle c, d\rangle\right) \times_{2}\left(\langle c, d\rangle \rightarrow_{189}\langle a, b\rangle\right) \\
=\langle b c, a d\rangle \times_{2}\langle a d, b c\rangle \\
=\left\langle a d, b^{2} c^{2}\right\rangle
\end{gathered}
$$

i.e., the situation is similar to above one.

Following [1], we check G. F. Rose's formula [6, 7], that has the form:

$$
\left(\left(\neg \neg x \rightarrow_{189} x\right) \rightarrow_{189}(\neg \neg x \vee \neg x)\right) \rightarrow_{189}(\neg \neg x \vee \neg x),
$$

but compared to [3], here we use \neg^{*} instead of classical negation and will prove the following theorem.

Theorem 1. Rose's formula is an IFT.
Proof. Having in mind (1), we obtain sequentially:

$$
\begin{gathered}
\left(\left(\neg^{*} \neg^{*} x \rightarrow_{189} x\right) \rightarrow_{189}\left(\neg^{*} \neg^{*} x \vee \neg^{*} x\right)\right) \rightarrow_{189}\left(\neg^{*} \neg^{*} x \vee \neg^{*} x\right) \\
=\left(\left(\neg^{*} \neg^{*}\langle a, b\rangle \rightarrow_{189}\langle a, b\rangle\right) \rightarrow_{189}\left(\neg^{*} \neg^{*}\langle a, b\rangle \vee \neg^{*}\langle a, b\rangle\right)\right) \rightarrow_{189}\left(\neg^{*} \neg^{*}\langle a, b\rangle \vee \neg^{*}\langle a, b\rangle\right) \\
=\left(\left(\langle 0,0\rangle \rightarrow_{189}\langle a, b\rangle\right) \rightarrow_{189}(\langle 0,0\rangle \vee\langle 0, a\rangle)\right) \rightarrow_{189}(\langle 0,0\rangle \vee\langle 0, a\rangle) \\
=\left(\langle 0,0\rangle \rightarrow_{189}\langle 0,0\rangle\right) \rightarrow_{189}\langle 0,0\rangle \\
=\langle 0,0\rangle \rightarrow_{189}\langle 0,0\rangle=\langle 0,0\rangle,
\end{gathered}
$$

which is an IFT.

We obtain the same result, if we change operation \vee with operation $\times{ }_{3}$.

Fifth, following [1], we discuss the well-known Contraposition Law

$$
\left(x \rightarrow_{189} y\right) \rightarrow_{189}\left(\neg y \rightarrow_{189} \neg x\right) .
$$

Theorem 2. The Contraposition Law is an IFT, but not a tautology as for classical negation, as well as for the new negation \neg^{*}.
Proof. Sequentially, we obtain:

$$
\begin{gathered}
\left(x \rightarrow_{189} y\right) \rightarrow_{189}\left(\neg y \rightarrow_{189} \neg x\right) \\
=\left(\langle a, b\rangle \rightarrow_{189}\langle c, d\rangle\right) \rightarrow_{189}\left(\neg\langle c, d\rangle \rightarrow_{189} \neg\langle a, b\rangle\right) \\
=\left(\langle a, b\rangle \rightarrow_{189}\langle c, d\rangle\right) \rightarrow_{189}\left(\langle d, c\rangle \rightarrow_{189}\langle b, a\rangle\right) \\
=\langle b c, a d\rangle \rightarrow_{189}\langle b c, a d\rangle \\
=\langle a b c d, a b c d\rangle,
\end{gathered}
$$

which is an IFT.

$$
\begin{gathered}
\left(x \rightarrow_{189} y\right) \rightarrow_{189}\left(\neg^{*} y \rightarrow_{189} \neg^{*} x\right) \\
=\left(\langle a, b\rangle \rightarrow_{189}\langle c, d\rangle\right) \rightarrow_{189}\left(\neg^{*}\langle c, d\rangle \rightarrow_{189} \neg^{*}\langle a, b\rangle\right) \\
=\left(\langle a, b\rangle \rightarrow_{189}\langle c, d\rangle\right) \rightarrow_{189}\left(\langle 0, c\rangle \rightarrow_{189}\langle 0, a\rangle\right) \\
=\langle b c, a d\rangle \rightarrow_{189}\langle 0,0\rangle \\
=\langle 0,0\rangle
\end{gathered}
$$

which is an IFT.

Now, we check the validity of Klir and Yuan's axioms for fuzzy implications (marked by $I(x, y))$ [5], but in the intuitionistic fuzzy version from [1]:
Axiom $A 1(\forall x, y)(x \leq y \rightarrow(\forall z)(I(x, z) \geq I(y, z)))$,
$\operatorname{Axiom} A 2(\forall x, y)(x \leq y \rightarrow(\forall z)(I(z, x) \leq I(z, y)))$,
Axiom $A 3(\forall y)(I(0, y)=1)$,
Axiom $A 4(\forall y)(I(1, y)=y)$,
Axiom $A 5(\forall x)(I(x, x)=1)$,
Axiom $A 6(\forall x, y, z)(I(x, I(y, z))=I(y, I(x, z)))$,
Axiom $A 7(\forall x, y)(I(x, y)=1$ iff $x \leq y)$,
Axiom $A 8(\forall x, y)(I(x, y)=I(N(y), N(x)))$,
Axiom $A 9 I$ is a continuous function.

For our research, having in mind the specific forms of the intuitionistic fuzzy implication \rightarrow_{189} and following [1], we modify three of these axioms, as follows.

Axiom $A 3^{*}(\forall y)(I(0, y)$ is an IFT,
Axiom $A 5^{*}(\forall x)(I(x, x)$ is an IFT),
Axiom $A 7^{*}(\forall x, y)($ if $x \leq y$, then, $I(x, y)$ is an IFT).

Theorem 5. Intuitionistic fuzzy implication \rightarrow_{189} satisfies axioms $A 1, A 2, A 3^{*}, A 5^{*}, A 6, A 7^{*}$, $A 8$ (for the classical negation N) and $A 9$.

Proof. Let $x=\langle a, b\rangle, y=\langle c, d\rangle, z=\langle e, f\rangle$. We obtain sequentially. Let $x \leq y$. Then for $A 1$ is valid:

$$
I(x, z)=\langle b e, a f\rangle \geq\langle d e, c f\rangle=I(y, z)
$$

The checks for $A 2$ is similar. For $A 3^{*}$ we have

$$
I(0, y)=\langle c, 0\rangle,
$$

i.e., $A 3$ is not valid, but $A 3^{*}$ is valid, while $A 4$ is not valid, because

$$
I(1, y)=\langle 0, d\rangle
$$

is not an IFT. For $A 5^{*}$ we obtain

$$
I(x, x)=\langle a, b\rangle \rightarrow_{189}\langle a, b\rangle=\langle a b, a b\rangle .
$$

Therefore, $A 5^{*}$ is valid, while $A 5$ is not. For $A 6$ we have:

$$
\begin{gathered}
I(x, I(y, z))=\langle a, b\rangle \rightarrow_{189}\left(\langle c, d\rangle \rightarrow_{189}\langle e, f\rangle\right) \\
=\langle a, b\rangle \rightarrow_{189}\langle d e, c f\rangle \\
=\langle b d e, a c f\rangle \\
=\langle c, d\rangle \rightarrow_{189}\langle b e, a f\rangle \\
=\langle c, d\rangle \rightarrow_{189}\left(\langle a, b\rangle \rightarrow_{189}\langle e, f\rangle\right)=I(y, I(x, z)),
\end{gathered}
$$

i.e., this axiom is valid.

Let $x \leq y$, i.e., $a \leq c$ and $b \geq d$. Then,

$$
I(x, y)=\langle b c, a d\rangle,
$$

which is an IFT. Therefore, $A 7^{*}$ is valid, but $A 7$ is not valid.
From

$$
\begin{aligned}
& I(N(y), N(x))=\neg^{*}\langle c, d\rangle \rightarrow_{189} \neg^{*}\langle a, b\rangle \\
& =\langle 0, c\rangle \rightarrow_{189}\langle 0, a\rangle=\langle 0,0\rangle \neq I(x, y),
\end{aligned}
$$

it follows that $A 8$ is not valid for the new negation, while,

$$
\begin{aligned}
& I(N(y), N(x))=\neg\langle c, d\rangle \rightarrow_{189} \neg\langle a, b\rangle \\
= & \langle d, c\rangle \rightarrow_{189}\langle b, a\rangle=\langle b c, a d\rangle=I(x, y),
\end{aligned}
$$

i.e., $A 8$ is valid.

Finally, obviously, $A 9$ is valid.

3 Conclusion

In a next step of this leg of research, other properties of the implication \rightarrow_{189} will be introduced and studied. For example, we will check the validity of axioms of intuitionistic logic, Kolmogorov's axioms and others.

References

[1] Atanassov, K. (2017). Intuitionistic Fuzzy Logics. Springer, Cham.
[2] Atanassov, K., Szmidt, E., \& Kacprzyk, J. (2013). On intuitionistic fuzzy pairs, Notes on Intuitionistic Fuzzy Sets, 19(3), 1-13.
[3] Atanassov, K., Szmidt, E., \& Kacprzyk, J. (2017). Intuitionistic fuzzy implication \rightarrow_{189}. Notes on Intuitionistic Fuzzy Sets, 23(1), 6-13.
[4] Atanassov, K., Szmidt, E., \& Kacprzyk, J. (2017). Multiplicative type of operations over intuitionistic fuzzy pairs. Proceedings of FQAS'17, London, 21-22 June 2017, Springer (in press).
[5] Klir, G., \& Yuan, B. (1995). Fuzzy Sets and Fuzzy Logic. Prentice Hall, New Jersey.
[6] Plisko, V. (2009). A survey of propositional realizability logic. The Bulletin of Symbolic Logic, 15(1), 1-42.
[7] Rose, G. F. (1953). Propositional calculus and realizability. Transactions of the American Mathematical Society, 75, 1-19.

