
ICIFSTA’2016, 20–22 April 2016, Beni Mellal, Morocco
Notes on Intuitionistic Fuzzy Sets
Print ISSN 1310–4926, Online ISSN 2367–8283
Vol. 22, 2016, No. 2, 13–21

Characterization of compact subset
of intuitionistic fuzzy sets

S. Melliani, R. Ettoussi, M. Elomari and L. S. Chadli
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Abstract: In this paper we introduce two classes of metrics for spaces of intuitionistic fuzzy
sets IFn. The spaces shown to be complete. We use the support function to embed the metric
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1 Introduction

Applications of fuzzy set theory very often involve the metric space (En, dp), for 1 ≤ p ≤ ∞ of
normal fuzzy convex fuzzy sets over Rn, where dp extends the Hausdorff metric. This metric has
been found very convenient in studying, for example, fuzzy differential equations (Kaleva [6]),
dynamical systems (Kloeden [7]). A characterization of compact subset is discussed for the metric
space of normal fuzzy convex fuzzy sets on the space Rn the metric for which the supremum over
the Hausdorff distance between corresponding level sets [3], also for 1 ≤ p < ∞, Diamond and
Kloeden [4] are discussed the characterization of compact and locally compact subset.

As the intuitionistic fuzzy sets is a generalization of fuzzy sets so we propose in this paper
to introduce the metrics on the space of intuitionistic fuzzy numbers IFn. The first metric dp is
based upon Lp metrics and the second metric d∞ extends the Hausdorff metric. Our principal
result is that, for each 1 ≤ p ≤ ∞ the metric spaces (IFn, dp) are complete, A characterization of
the compact subsets in these spaces is also given in terms of boundedness and p-mean equileft-
continuity.

13



Various definitions and preliminaries are set out in Section 2. In section 3, the space IFLn
embedded into C([0, 1]×Sn−1) (Banach space of continuous functions on [0, 1]×Sn−1) by using
the support function. Finally we present a characterization of compacts and locally compact
subsets of IFn.

2 Preliminaries

Definition 2.1. An intuitionistic fuzzy set A in X ([1], [2]) is a set of ordered triples

A = {< x, µA(x), νA(x) >, x ∈ X}

where µA, νA : X → [0, 1] are functions such that

0 ≤ µA(x) + νA(x) ≤ 1 , ∀x ∈ X

For each x the numbers µA(x) and νA(x) represent the degree of membership and degree of
nonmembership of the element x ∈ X to A ⊂ X , respectively. For each element x ∈ X we can
compute the so-called, the intuitionistic fuzzy index of x in A defined as follows

πA(x) = 1− µA(x)− νA(x)

Of course, a fuzzy set is a particular case of the intuitionistic fuzzy set with νA(x) = 1−µA(x).
Hereinafter X = Rn. We denote by

IFn = IF(Rn) =
{
〈u, v〉 : Rn → [0, 1]2 , |∀ x ∈ Rn |0 ≤ u(x) + v(x) ≤ 1

}
.

An element 〈u, v〉 of IFn is said to be an intuitionistic fuzzy number if it satisfies the following
conditions:

(i) 〈u, v〉 is normal i.e there exists x0, x1 ∈ Rn such that u(x0) = 1 and v(x1) = 1.

(ii) u is fuzzy convex and v is fuzzy concave.

(iii) u is upper semi-continuous and v is lower semi-continuous

(iv) supp 〈u, v〉 = cl{x ∈ Rn : | v(x) < 1} is bounded.

So we denote the collection of all intuitionistic fuzzy number by IFn.
For α ∈ [0, 1] and 〈u, v〉 ∈ IFn, the upper and lower α-cuts of 〈u, v〉 are defined by

[〈u, v〉]α = {x ∈ Rn : v(x) ≤ 1− α}

and

[〈u, v〉]α = {x ∈ Rn : u(x) ≥ α}

Remark 2.1. If 〈u, v〉 ∈ IFn, so we can see [〈u, v〉]α as [u]α and [〈u, v〉]α as [1− v]α in the fuzzy
case.
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We define 0〈1,0〉 ∈ IFn as

0〈1,0〉(t) =

〈1, 0〉 t = 0

〈0, 1〉 t 6= 0
.

Let 〈u, v〉 ,〈u′, v′〉 ∈ IFn and λ ∈ R, we define the following operations by:(
〈u, v〉 ⊕ 〈u′, v′〉

)
(z) =

(
sup
z=x+y

min (u(x), u′(y)) , inf
z=x+y

max (v(x), v′(y))
)

λ 〈u, v〉 =

〈λu, λv〉 if λ 6= 0

0〈1,0〉 if λ = 0
.

For 〈u, v〉, 〈z, w〉 ∈ IFn and λ ∈ R, the addition and scaler-multiplication are defined as follows

[
〈u, v〉 ⊕ 〈z, w〉

]α
=

[
〈u, v〉

]α
+
[
〈z, w〉

]α
,[

λ 〈z, w〉
]α

= λ
[
〈z, w〉

]α
(1)

[
〈u, v〉 ⊕ 〈z, w〉

]
α

=
[
〈u, v〉

]
α
+
[
〈z, w〉

]
α
.[

λ 〈z, w〉
]
α

= λ
[
〈z, w〉

]
α

(2)

Definition 2.2. Let 〈u, v〉 be an element of IFn and α ∈ [0, 1], we define the following sets:[
〈u, v〉

]+
l
(α) = inf{x ∈ Rn | u(x) ≥ α},

[
〈u, v〉

]+
r
(α) = sup{x ∈ Rn | u(x) ≥ α}[

〈u, v〉
]−
l
(α) = inf{x ∈ Rn | v(x) ≤ 1− α},

[
〈u, v〉

]−
r
(α) = sup{x ∈ Rn | v(x) ≤ 1− α}

Proposition 2.1. For all α, β ∈ [0, 1] and 〈u, v〉 ∈ IFn

(i)
[
〈u, v〉

]
α
⊂
[
〈u, v〉

]α
.

(ii)
[
〈u, v〉

]
α

and
[
〈u, v〉

]α
are nonempty compact convex sets in Rn.

(iii) If α ≤ β then
[
〈u, v〉

]
β
⊂
[
〈u, v〉

]
α

and
[
〈u, v〉

]β
⊂
[
〈u, v〉

]α
.

(iv) If αn ↗ α then
[
〈u, v〉

]
α
=
⋂
n

[
〈u, v〉

]
αn

and
[
〈u, v〉

]α
=
⋂
n

[
〈u, v〉

]αn
.

Let M be any set and α ∈ [0, 1]. We denote by

Mα = {x ∈ Rn : u(x) ≥ α} and Mα = {x ∈ Rn : v(x) ≤ 1− α} .
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Lemma 2.1. [9] let
{
Mα, α ∈ [0, 1]

}
and

{
Mα, α ∈ [0, 1]

}
two families of subsets of Rn

satisfies (i)–(iv) in Proposition 2.1, if u and v define by

u(x) =

0 if x /∈M0

sup {α ∈ [0, 1] : x ∈Mα} if x ∈M0

v(x) =

1 if x /∈M0

1− sup {α ∈ [0, 1] : x ∈Mα} if x ∈M0

Then 〈u, v〉 ∈ IFn.

Lemma 2.2. Let I a dense subset of [0, 1], if
[
〈u, v〉

]
α
=
[
〈u′, v′〉

]
α

and[
〈u, v〉

]α
=
[
〈u′, v′〉

]α
, for all α ∈ I then 〈u, v〉 = 〈u′, v′〉.

2.1 Metric on IFn

We consider the mapping

dp (〈u, v〉 , 〈u′, v′〉) =
(∫ 1

0

dpH ([〈u, v〉]α, [〈u′, v′〉]α) dα
)1/p

+

(∫ 1

0

dpH ([〈u, v〉]α, [〈u′, v′〉]α) dα
)1/p

,

where dH is the Hausdorff metric and p ∈ [1,∞[.

d∞ (〈u, v〉 , 〈u′, v′〉) = sup
0≤α≤1

dH ([〈u, v〉]α, [〈u′, v′〉]α) + sup
0≤α≤1

dH ([〈u, v〉]α, [〈u′, v′〉]α) .

Theorem 2.1. dp defines a metric on IFn for p ∈ [1,∞].

Proof. Symmetry and the triangle inequality are trivial.
It remains to show that, if dp (〈u, v〉 , 〈u′, v′〉) = 0 then 〈u, v〉 = 〈u′, v′〉.
Suppose that dp (〈u, v〉 , 〈u′, v′〉) = 0, then dpH ([〈u, v〉]α, [〈u′, v′〉]α) = 0 and

dpH ([〈u, v〉]α, [〈u′, v′〉]α) = 0, except where α describes some A negligible for the Lebesgue-
measuring, which is complementary dense.

As, dH is a metric on the space Kc(Rn) so [〈u, v〉]α = [〈u′, v′〉]α a.e and [〈u, v〉]α = [〈u′, v′〉]α

a.e. According to the Lemma 2.2 the equalities hold for all α, and hence 〈u, v〉 = 〈u′, v′〉.
A similar reasoning proves that d∞ is a metric.

Theorem 2.2. (IFn, dp) is a complete metric space.

Proof. Let ([〈un, vn〉])n be a sequence of Cauchy in IFn, for ε > 0 there exist an integer n0 such
that for n, q ≥ n0 we have

dp (〈un, vn〉 , 〈uq, vq〉) =

(∫ 1

0

dpH ([〈un, vn〉]α, [〈uq, vq〉]α) dα
)1/p

+

(∫ 1

0

dpH ([〈un, vn〉]α, [〈uq, vq〉]α) dα
)1/p

≤ ε
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by the completed of the space Lp, hence

dH ([〈un, vn〉]α, [〈uq, vq〉]α) −→︸︷︷︸
n,q→∞

0

and
dH ([〈un, vn〉]α, [〈uq, vq〉]α) −→︸︷︷︸

n,q→∞

0.

In addition, the space (Kc(Rn), dH) is a complete metric space, where Kc(Rn) is the set of all
compact convex subset of Rn, so [〈un, vn〉]α −→︸︷︷︸

n→∞

[〈u, v〉]α and [〈un, vn〉]α −→︸︷︷︸
n→∞

[〈u, v〉]α.

Thus the sequence 〈un, vn〉 converge to the limit 〈u, v〉, the construction of the 〈u, v〉 via
Lemma 2.1.

3 The embedding theorem

We denote Sn−1 the unit sphere in Rn. Let IFLn the space of 〈u, v〉 ∈ IFn with lipschitzian α-level
sets [〈u, v〉]α and [〈u, v〉]α, i.e., with

dH ([〈u, v〉]α, [〈u, v〉]β) ≤ K1|α− β|

and
dH
(
[〈u, v〉]α, [〈u, v〉]β

)
≤ K2|α− β|

for all α, β ∈ [0, 1] and K1, K2 ∈ R+.
The addition and scalar multiplication defined by (1), (2) define a linear structure on IFn, but

does not make IFn a vector space. So for this reason we will use the embedding theorem [8] for
embed the subset IFLn of the space IFn into Banach space C([0, 1] × Sn−1) by using the support
function 〈u, v〉∗ = j(〈u, v〉) where 〈u, v〉∗ is the support function of 〈u, v〉 defined by

〈u, v〉∗ (α, x) = sup
a∈[〈u,v〉]α

〈a, x〉 for all (α, x) ∈ I × Sn−1.

Then for all 〈u, v〉 ∈ IFn, there corresponds a support function 〈u, v〉∗ = j (〈u, v〉) is well-
defined and satisfies the following properties

1. 〈u, v〉∗ is uniformly bounded on I × Sn−1,

| 〈u, v〉∗ (α, x) |≤ sup
a∈[〈u,v〉]0

||a|| for all α ∈ I and all x ∈ Sn−1;

2. 〈u, v〉∗ (., x) is nonincreasing and leftcontinuous in α for each x ∈ Sn−1;

3. 〈u, v〉∗ (α, .) is Lipschitz continuous in x uniformly in α ∈ I

| 〈u, v〉∗ (α, x)− 〈u, v〉∗ (α, y) |≤
(

sup
a∈[〈u,v〉]0

||a||
)
||x− y||

for all α ∈ I and all x, y ∈ Sn−1;
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4. For each α ∈ I and 〈u, v〉 , 〈u′, v′〉 ∈ IFn, according to Proposition 2.1 property (i), the
following inequality holds

dH

(
[〈u, v〉]α, [〈u′v′〉]α

)
≤ dH

(
[〈u, v〉]α, [〈u′, v′〉]α

)
= sup

x∈Sn−1

∣∣〈u, v〉∗ (α, x)− 〈u′, v′〉∗ (α, x)∣∣.
The following theorem gives the desired embedding, which we will used in the next section to
characterize compacts subsets of IFn.

Theorem 3.1. There exists a function j : IFL
n → C ([0, 1]× Sn−1) such that

1. d∞
(
〈u, v〉 , 〈u′, v′〉

)
≤ 2||j

(
〈u, v〉

)
− j
(
〈u′, v′〉

)
||∞,

2. j
(
〈u, v〉 ⊕ 〈u′, v′〉

)
= j
(
〈u, v〉

)
+ j
(
〈u′, v′〉

)
,

3. j
(
λ 〈u, v〉

)
= λj

(
〈u, v〉

)
, λ ≥ 0.

Proof. Let 〈u, v〉, 〈u′, v′〉 ∈ IFn We define the function j by

j (〈u, v〉) =

 max
a∈[〈u,v〉]α

〈a, x〉 if α > 0

max
a∈supp{〈u,v〉}

〈a, x〉 if α = 0
.

Hence, the support function verified the property (4) which allows to write

d∞ (〈u, v〉 , 〈u′, v′〉) = sup
0≤α≤1

dH ([〈u, v〉]α, [〈u′, v′〉]α) + sup
0≤α≤1

dH ([〈u, v〉]α, [〈u′, v′〉]α)

≤ 2 sup
0≤α≤1

dH ([〈u, v〉]α, [〈u′, v′〉]α)

≤ 2||j
(
〈u, v〉

)
− j
(
〈u′, v′〉

)
||∞.

For the Properties 2 and 3 we refer to [8].

4 Compactness in dp topology

Definition 4.1. Let 〈u, v〉 ∈ IFn. If for each ε > 0 there exists δ = δ(ε, 〈u, v〉) > 0, such that for
all 0 ≤ h < δ, ∫ 1

h

dH
(
[〈u, v〉]α, [〈u, v〉]α−h

)p
dα ≤ εp,

say that 〈u, v〉 is p-mean left-continuous. If for nonempty U ⊂ IFn this holds uniformly in
〈u, v〉 ∈ U , we say U is p-mean equi-left-continuous. If, in addition, U is uniformly support
bounded i.e (if there exists a K ∈ R+ such that sup

a∈[〈u,v〉]0
||a|| ≤ K), then U is said to have the

p-Blaschke property. Also, this property translates as∫ 1

h

(
〈u, v〉∗ (α− h, x)− 〈u, v〉∗ (α, x)

)p
dα ≤ εp.

For all 0 ≤ h ≤ δ, x ∈ Sn−1 and 〈u, v〉∗ ∈ U∗ = j(U).
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In the limit p =∞ this concept is just the Blaschke property of the previous section.

Lemma 4.1. Any 〈u, v〉 ∈ IFn, is p-mean left-continuous.

Proof. Let α ∈ [0, 1] and suppose {αn} is a nondecreasing sequence converging to α. Then,
[〈u, v〉]α =

⋂
n≥1

[〈u, v〉]αn and [〈u, v〉]α =
⋂
n≥1

[〈u, v〉]αn so, dH ([〈u, v〉]αn , [〈u, v〉]α) → 0 and

dH ([〈u, v〉]αn , [〈u, v〉]α)→ 0, and the result follows from left-continuity on the compact interval
[0, 1]

Theorem 4.1. A closed set U of (IFn, dp) (1 ≤ p < ∞), is compact iff U has the p-Blaschke
property.

Proof. Necessity. Let U be a compact set in (IFn, dp). If U were not uniformly support bounded,
then there would exist a sequence of compact convex sets in Rn (i.e (Vj)j∈N ⊂ Kc(Rn)), Vj =

supp{〈uj, vj〉}, 〈uj, vj〉 ∈ U , such that dH (Vj, {0}) > j. Clearly {Vj} has no subsequence
with limit in Kc(Rn). But since U is compact, there is a subsequence 〈ujk , vjk〉 converging to
〈u, v〉 ∈ U , and limkVjk = supp{〈u, v〉} which is impossible. Hence U must be uniformly
support bounded.

Let ε > 0 and let 〈u1, v1〉 , ..., 〈un, vn〉 ∈ IFn be a 1
3
ε-cover of U , that is for any 〈u, v〉 ∈ U

one of the sequence elements 〈ui, vi〉 satisfies dp (〈u, v〉 , 〈ui, vi〉) < 1
3
ε.

Such a sequence exists by the compactness of U .
By Lemma 4.1, 〈u1, v1〉 , ..., 〈uk, vk〉 are p-mean left-continuous and so there exists η =

min
1≤i≤k

δ(ε, 〈ui, vi〉) > 0 such that
∫ 1

h
dH
(
[〈ui, vi〉]α, [〈ui, vi〉]α−h

)p
dα < (1

3
ε)p for i = 1, ..., k

and 0 ≤ h ≤ η. Thus for 〈u, v〉 ∈ U , the triangle inequality gives

(∫ 1

h

dH
(
[〈u, v〉]α, [〈u, v〉]α−h

)p
dα
)1/p

≤ dp (〈u, v〉 , 〈ui, vi〉)

+
(∫ 1

h

dH

(
[〈ui, vi〉]α, [〈ui, vi〉]α−h

)p
dα
)1/p

+ dp

(
〈u, v〉 , 〈ui, vi〉

)
≤ ε

so U is p-mean equileft-continuous.
Sufficiency. Let {〈uk, vk〉} be a sequence in U and {〈uk, vk〉∗} the corresponding sequence in
U∗. Let D1 = {αi ∈ I, i = 1, 2, 3, ...}, D2 = {xj ∈ Sn−1, j = 1, 2, 3, ...} be countable dense
subsets of I and Sn−1 respectively. The usual diagonalisation construction gives a subsequence
{〈ukk , vkk〉

∗} and a function g : D1×D2 → R such that 〈ukk , vkk〉
∗ (αi, xj)→ g(αi, xj) uniformly

in (αi, xj) ∈ D1×D2 as k →∞. For notational simplicity write 〈w, z〉∗k = 〈ukk , vkk〉
∗ ,〈w, z〉k =

〈ukk , vkk〉 .
Since U is uniformly support bounded, there exists K > 0 such that

| 〈w, z〉∗k (αi, x)− 〈w, z〉
∗
k (αi, y)| ≤

(
sup

a∈[〈w,z〉k]0
||a||

)
||x− y|| = K||x− y||
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for all αi ∈ D1 and any 〈w, z〉∗ ∈ U∗. That is, the 〈w, z〉∗k (αi, .) are equicontinuous on Sn−1 ,
uniformly in αi ∈ D1. Hence the sequence {〈w, z〉∗k (αi, x)} converges for each αi ∈ D1 and
x ∈ Sn−1, by Theorem 3.1, Property 1, also this convergence in the d∞ and hence dp norms, and
we denote the limits by g(αi, x). As in [3] (see also [5]) such convergence is uniform in Sn−1,
and moreover is uniform in D1 as well, for the sup norm, and thus for dp norm.

From the properties of the 〈w, z〉∗k ∈ U∗ it follows that

1. |g(αi, x)| ≤ K for all αi ∈ D1 and x ∈ Sn−1;

2. |g(αi, x)− g(αi, y)| ≤ K||x− y|| for all αi ∈ D1;

3. g(αi, x) ≤ g(βi, x) for all βi ≤ αi in D1 and x ∈ Sn−1.

Then for each (αi, x) ∈ I × Sn−1, define

g(α, x) = lim
αi→α−

g(αi, x), αi ∈ D1.

Each such exists because g(., x) is nonincreasing in αi ∈ D1 and bounded. This defines g on
all of I × Sn−1 and in such a way that the three properties, immediately above, hold for g on all
of I × Sn−1. These, together with the left-continuity of g(., x) , show that g(., .) is the support
function of a well-defined intuitionistic fuzzy set 〈w, z〉 whose support lies in

⋃
〈u,v〉∈U

[〈u, v〉]0. It

remains to show that dp
(
〈w, z〉k , 〈w, z〉

)
→ 0 as k →∞.

By p-mean equi-left-continuity, for a monotonic nondecreasing sequence αi = α− hi ∈ D1∫ 1

hi

dH

(
[〈w, z〉k]

α−hi , [〈w, z〉k]
α
)p
dα < (

1

2
ε)p

provided 0 ≤ hi < δ for δ = δ(ε), uniformly in 〈w, z〉k ∈ U . But for k > N(1
2
ε),

g(αi, x)− 1
2
ε < 〈w, z〉∗k (αi, x) < g(αi, x) uniformly in Sn−1 and since g is nonincreasing,

g(α, x)− 1

2
ε ≤ g(αi, x)−

1

2
ε < 〈w, z〉∗k (αi, x) < g(α, x) +

1

2
ε.

Thus, dH
(
[〈w, z〉k]αi , [〈w, z〉]α

)
= sup

x∈Sn−1

| 〈w, z〉∗k (αi, x)− g(α, x)| <
1
2
ε. Hence,

dp(〈w, z〉k , 〈w, z〉) ≤
(∫ 1

hi

dH

(
[〈w, z〉k]

α, [〈w, z〉k]
α−hi

)p
dα
) 1
p

+
(∫ 1

hi

dH

(
[〈w, z〉k]

α−hi , [〈w, z〉]α
)p
dα
) 1
p

< ε

for all K > N(1
2
ε).
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5 Locally compact in (IFn, dp)

Theorem 5.1. The space (IFn, dp), 1 ≤ p < ∞, is locally compact. Moreover, a subset U is
locally compact iff every uniformly support bounded and closed subset of U is p-Blaschke.

Proof. For sufficiency, let U ⊂ IFn be such that any uniformly support bounded and closed
set is p-Blaschke, and take 〈u, v〉 ∈ U . Since 〈u, v〉 has compact support, there exists K >

0 such that dp
(
〈u, v〉 , 0〈1,0〉

)
≤ K. Then, Nε(〈u, v〉) = {〈u′, v′〉 : dp (〈u, v〉 , 〈u′, v′〉) < ε}

form a neighborhood basis of 〈u, v〉, and for every 〈w, z〉 ∈ Nε(〈u, v〉), dp
(
〈w, z〉 , 0〈1,0〉

)
≤

dp (〈w, z〉 , 〈u, v〉)+dp
(
〈u, v〉 , 0〈1,0〉

)
≤ K+ε. So Nε(〈u, v〉) is uniformly support bounded, and

hence p-Blaschke. So cl(Nε(〈u, v〉)) is compact, and U is locally compact.
For necessity, we have the space (IFn, dp), 1 ≤ p < ∞, is locally compact, since the same
argument shows every point of the metric space has a compact neighborhood. Since, for 1 ≤ p <

∞, the space is also separable, IFn =
⋃
k≥1 Uk where U1 ⊆ U2... ⊆ Uk ⊆ Uk+1... and the Uk are

p-Blaschke. So any closed subset of U that is uniformly support bounded lies in one of the Uk,
for some sufficiently large k, and is thus p-mean equileft-continuous, and so p-Blaschke.
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