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1 Introduction

The concept of intuitionistic fuzzy sets is introduced by K. Atanassov in 1983 (see [1, 2]). This
concept is a generalization of fuzzy theory introduced by L. Zadeh [15]. Several works were
devoted to investigation of Cauchy problems with fuzzy initial conditions [7, 8]. By the metric
space defined in [10], we have established a way to study this problem in intuitionistic fuzzy
theory.

The central result in the theory of semigroups of linear operators is the characterization, by
the Hill–Yosida theorem, of the generators of semigroup of bounded linear operators in general
Banach spaces, see [11]. The birth of the α-semigroups of linear operators [4] is it come with
the introduce of the new derivative [14]. O. Kaleva in [7] introduced an iteration semigroup of
a nonlinear fuzzy-valued function, and showed that the iterates

(
i+ f

n

)n
(x) denoting the n-fold
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composition of i + f
n

, converge for all x ∈ F (with i being the identity function of F), under
some assumptions on the function f and the limit function was called fuzzy exponential function
(due to the obvious similarity with the classical exponential function) and was denoted by ef (x).

This paper is organized as follows. In Section 2, we recall some concepts related to the
intuitionistic fuzzy sets. Some properties about measurability, integrability and differentiability
are provided in Section 3. Finally, we present the principal goal of this work in Section 4.

2 Preliminaries

In this paper α ∈ (0, 1).

Definition 1. [10] The set of all intuitionistic fuzzy numbers is given by

IF1 =
{
〈u, v〉 : R −→ [0, 1]2, 0 ≤ u+ v ≤ 1

}
with the following conditions:

1. For each 〈u, v〉 ∈ IF1 is normal, i.e., ∃x0, x1 ∈ R, such that u(x0) = 1 and v(x1) = 1.

2. For each 〈u, v〉 ∈ IF1 is a convex intuitionistic set, i.e., u is fuzzy convex and v is fuzzy
concave.

3. For each 〈u, v〉 ∈ IF1, u is lower continuous and v is upper continuous.

4. the closure of {x ∈ R : v(x) ≤ α} is bounded.

Definition 2. [10] For t ∈ [0, 1], we define the upper and lower t-cut by[
〈u, v〉

]
t
=
{
x ∈ R, u(x) ≥ t

}
[
〈u, v〉

]t
=
{
x ∈ R, v(x) ≤ 1− t

}
Definition 3. The intuitionistic fuzzy zero is intuitionistic fuzzy set defined by

0(1,0)(x) =

{
(1, 0) x = 0

(0, 1) x 6= 0

Proposition 1. [6] We can write[
〈u, v〉

]
t
=

[[
〈u, v〉

]+
l
(t),
[
〈u, v〉

]+
r
(t)

]
[
〈u, v〉

]t
=

[[
〈u, v〉

]−
l
(t),
[
〈u, v〉

]−
r
(t)

]

Remark 1. In the fuzzy case, we can write
[
〈u, v〉

]
t
= [u]t and

[
〈u, v〉

]t
= [1− v]t.
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We define two operations on IF1 by

〈u, v〉 ⊕ 〈u′, v′〉 = 〈u ∨ v, u′ ∧ v′〉, ∀〈u, v〉, 〈u′, v′〉〉 ∈ IF1

λ〈u, v〉 = 〈λu, λv〉, ∀λ ∈ R, ∀〈u, v〉 ∈ IF1.

According to Zadeh extension principle, we have[
〈u, v〉 ⊕ 〈u′, v′〉

]
t
=
[
〈u, v〉

]
t
+
[
〈u′, v′〉

]
t
,[

λ〈u, v〉
]
t
= λ

[
〈u, v〉

]
t
,[

〈u, v〉 ⊕ 〈u′, v′〉
]t

=
[
〈u, v〉

]t
+
[
〈u′, v′〉

]t
,[

λ〈u, v〉
]t

= λ
[
〈u, v〉

]t
.

Definition 4. Let 〈u, v〉, 〈u′, v′〉 ∈ IF1 the H-difference is the IFN (z, w) ∈ IF1, if it exists, such
that

〈u, v〉 	 〈u′, v′〉 = 〈z, w〉 ⇐⇒ 〈u, v〉 = 〈u′, v′〉 ⊕ 〈z, w〉

Theorem 1. [6] LetM = {Mt,M
t, t ∈ [0, 1]} be a family of subsets in R satisfying the following

conditions

1. t ≤ s =⇒Ms ⊂Mt and M s ⊂M t;

2. Mt and Ms are nonempty compact convex sets in R for each t ∈ [0, 1];

3. For any nondecreasing sequence ti −→ t on [0, 1], we have Mt =
⋂
iMti and M t =⋂

iM
ti .

We define u and v by

u(x) =

{
0 x /∈M0

supt∈[0,1]Mt x ∈M0

, v(x) =

{
1, x /∈M0

1− supt∈[0,1]Mt x ∈M0
.

Then 〈u, v〉 ∈ IF1, with Mt = [〈u, v〉]t and M t = [〈u, v〉]t.

Remark 2. [6]

1. The family {[〈u, v〉]t, [〈u, v〉]t, t ∈ [0, 1]} satisfies the conditions 1.–3. of the previous
theorem.

2. For all t ∈ [0, 1], [〈u, v〉]t ⊂ [〈u, v〉]t.

Theorem 2. [6] On IF1, we define the metric

d∞

(
(u, v), (z, w)

)
=

1

4

{
sup

0<α≤1

∥∥∥∥[(u, v)]+
r
(α)−

[
(z, w)

]+
r
(α)

∥∥∥∥
+ sup

0<α≤1

∥∥∥∥[(u, v)]+
l
(α)−

[
(z, w)

]+
l
(α)

∥∥∥∥+ sup
0<α≤1

∥∥∥∥[(u, v)]−
r
(α)−

[
(z, w)

]−
r
(α)

∥∥∥∥
+ sup

0<α≤1

∥∥∥∥[(u, v)]−
l
(α)−

[
(z, w)

]−
l
(α)

∥∥∥∥},
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where ‖ ‖ denotes the usual Euclidean norm in R, and

dp

(
〈u, v〉, 〈u′, v′〉

)
=
(1
4

∫ 1

0

|[〈u, v〉]+l (t)− [〈u′, v′〉]+l (t)|dt

+
1

4

∫ 1

0

|[〈u, v〉]+r (t)− [〈u′, v′〉]+r (t)|dt+
1

4

∫ 1

0

|[〈u, v〉]−l (t)− [〈u′, v′〉]−l (t)|dt

+
1

4

∫ 1

0

|[〈u, v〉]−r (t)− [〈u′, v′〉]−r (t)|dt
) 1
p
.

For p ∈ [1,∞), we have (IF1, dp) is a complete metric space.

3 Measurability, integrability and differentiability

3.1 Measurability

The symbol Pk(R) denotes the family of all nonempty compact convex subsets of R.

Definition 5. [6] We say that a mapping F : [a, b] −→ IF1 is strongly measurable if for all
t ∈ [0, 1], the set-valued mapping Ft : [a, b] −→ Pk(R) defined by Ft(x) = [F (x)]t and
F t : [a, b] −→ Pk(R) defined by F t(x) = [F (x)]t are (Lebesgue) measurable, when Pk(R)
is endowed with the topology generated the Hausdorff metric dH .

We have the following remark.

Remark 3. The previous definition is equivalent to the expressions{
(x, y), y ∈ Ft(x)

}
∈Me× B(R),

whereMe denotes the o-algebra of measurable sets and B(R) denotes the Borel sets of R.

Definition 6. Let I be an interval of R. We say that a mapping F : I −→ IF1 is strongly
measurable if for all t ∈ [0, 1], its restriction on any segment is strongly continuous.

Lemma 1. If F is strongly measurable, then it is measurable with respect to the topology gener-
ated by d∞, where d∞ is defined as in [3].

Proof. Let ε > 0 and 〈u, v〉 ∈ IF1 be arbitrary. Then

T =
{
x | d∞

(
F (x), 〈u, v〉

)
≤ ε
}

=
⋂
t∈[0,1]

{t|d∞(Ft(x), [〈u, v〉]t) ≤ ε}
⋂
t∈[0,1]

{t|d∞(F t(x), [〈u, v〉]t) ≤ ε}.

But for all 〈u, v〉 ∈ IF1 we have (see [10])

lim
k→∞

dH

([
〈u, v〉

]tk
,
[
〈u, v〉

]t)
= 0
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and

lim
k→∞

dH

([
〈u, v〉

]
tk
,
[
〈u, v〉

]
t

)
= 0,

whenever (tk) is a nondecreasing sequence converging to t. Thus, by the triangle inequality for
the metric dH we have

dH

(
Ft(x),

[
〈u, v〉

]
t

)
≤ `imdH

(
Ftk(x),

[
〈u, v〉

]
tk

)
and

dH

(
F t(x),

[
〈u, v〉

]t)
≤ `imdH

(
F tk(x),

[
〈u, v〉

]tk)
where tk ↑ t, and consequently⋂

k≥1

{
t | dH

(
Ftk(x),

[
〈u, v〉

]
tk

)
≤ ε

}
⊂
{
t | dH

(
Ft(x),

[
〈u, v〉

]
t

)
≤ ε

}
and ⋂

k≥1

{
t | dH

(
F tk(x),

[
〈u, v〉

]tk)
≤ ε

}
⊂
{
t| dH

(
F t(x),

[
〈u, v〉

]t
) ≤ ε

}
Thus,

T =
⋂
k≥1

{t |d
(
F tk(x),

[
〈u, v〉

]tk)
≤ ε

}⋂
k≥1

{t | d
(
Ftk(x),

[
〈u, v〉

]
tk

)
≤ ε

}
where {tk | k = 1, 2, . . .} is any denumerable dense subset of [0, 1].
Hence, T is measurable.

Lemma 2. Let F : [a, b] −→ IF1 be strongly measurable and denote Ft(x) = [µ(t), ν(t)] and
F t(x) =

[
µ′(t), ν ′(t)

]
for t ∈ [0, 1], Then µ(t), ν(t), µ′(t) and ν ′(t) are measurable.

Proof. Use Remark 1 and apply [9, Lemma 3.3].

3.2 Integrability

Definition 7. A mapping F : [a, b] −→ IF1 is called integrably bounded if there exists an inte-
grable function h such that ‖y‖ ≤ h(x) for all y ∈ F o(x).

Definition 8. Let F : [a, b] −→ IF1. The integral of F over I , denoted
∫
[a,b]

F (x)dx, is defined
levelwise by the equation[∫

[a,b]

F (x)dx

]
t

=
{∫

I

f(x)dx, f : I −→ R is a measurable selection for Ft
}

and [∫
[a,b]

F (x)dx

]t
=
{∫

I

f(x)dx, f : I −→ R is a measurable selection for F t
}

for all 0 < t < 1. A strongly measurable and integrably bounded mapping F : [a, b] −→ IF1 is
said to be integrable over [a, b] if

∫
I
F (x)dx ∈ IF1.
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Theorem 3. If F : [a, b] −→ IF1 is strongly measurable and integrably bounded, then F is
integrable.

Proof. See [12].

Corollary 1. [9] If F : [a, b] −→ IF1 is continuous, then it is integrable.

Theorem 4. Let F : [a, b] −→ IF1 be integrable and c ∈ R. Then∫ b

a

F =

∫ c

a

F +

∫ b

c

F.

Corollary 2. If F : [a, b] −→ IF1 is continuous, then G(t) =
∫ t
a
f(x)dx is Lipschitz continuous

on [a, b].

We have the same result as [9] in Theorem 4.2.

Remark 4. We can extend the concept of integrability on a segment to integrability on an interval
of R. We obtain the same result as improper integral.

3.3 Differentiability

Let 〈u, v〉, 〈u′, v′〉 ∈ IF1, if there exist 〈u′′, v′′〉 ∈ IF1 that satisfies

〈u, v〉 	 〈u′, v′〉 = 〈u′′, v′′〉 ⇐⇒ 〈u, v〉 = 〈u′, v′〉 ⊕ 〈u′′, v′′〉

then, 〈u′′, v′′〉 is called the H-difference (see [10]).

Definition 9. A mapping F : [a, b] −→ IF1 is differentiable at to ∈ [a, b] if there exists a F ′(to) ∈
IF1 such that the limits

lim
h→0+

F (t0 + h)	 F (t0)
h

and lim
h→0+

F (t0)	 F (t0 − h)
h

exist and equal to F ′(to).

Following [9], we have the following properties in the intuitionistic fuzzy case.

Theorem 5. Let F : [a, b] −→ IF1 be differentiable. Denote

Ft(x) =
[
f(x), g(x)

]
and F t(x) =

[
h(x), r(x)

]
then F ′t(x) =

[
f ′(x), g′(x)

]
and F ′t(x) =

[
h′(x), r′(x)

]
Theorem 6. If F : [a, b] −→ IF1 is differentiable, then it is continuous.

Theorem 7. Let F : [a, b] −→ IF1 be continuous. Then, for all t ∈ [a, b] the integral G(s) =∫ s

0

F is differentiable and G′(t) = F (t).

Theorem 8. Let F : [a, b] −→ IF1 be differentiable and assume that the derivative F ′ is inte-
grable over [a, b]. Then, for each s ∈ T we have

F (s) = F (a)⊕
∫ s

0

F (x)dx.
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4 Intuitionistic fuzzy sets framework

Since the concept of linear mapping is not defined on the sets of all intuitionistic fuzzy numbers
IF1, it is necessary to answer the following question. How to solve the evolution problem in the
intuitionistic fuzzy case? Since this problem is a nonlinear problem, thus it is necessary to exploit
the results from previous section.

Now, firstly we introduce the connection between the classical case and the intuitionistic fuzzy
case.

4.1 Embedding theorem

Since the elements of IF1 are closed (Hausdorff topology) and convex, we can apply the result of
[13]

Theorem 9. We can extend IF1 in a normed space

Proof. Consider the following relation on IF1 × IF1 defined by(
〈u, v〉, 〈z, w〉

)
∼

(
〈u′, v′〉, 〈z′, w′〉

)
⇐⇒ 〈u, v〉 + 〈z′, w′〉 = 〈z, w〉 + 〈u′, v′〉.

The relation is a relation of equivalence.
We denote IF∗ = IF1 × IF1/∼ is a vector space (see [13]).
Now consider that the map

j :

IF1 −→ IF∗1

〈u, v〉 −→
(
〈u, v〉, 0̃

) (1)

is an injection, indeed:

j(〈u, v〉) = j(〈u′, v′〉) =⇒
(
〈u, v〉, 0̃

)
=
(
〈u′, v′〉, 0̃

)
=⇒ (〈u, v〉, 0̃) ∼ (〈u′, v′〉, 0̃) =⇒ 〈u, v〉 = 〈u′, v′〉

Further we can define the norm on IF∗1 as

‖
(
〈u, v〉, 〈u′, v′〉

)
‖= d1

(
〈u, v〉, 〈u′, v′〉

)
.

This proves that
(

IF∗1, ‖ . ‖
)

is a normed vector space.

Theorem 10. There exists a Banach space X such that IF1 can be embedded as a convex cone C
with vertex 0 in X . Furthermore, the following conditions hold true:

1. The embedding j is isometric,

2. The addition in X induces the addition in IF1,

3. The multiplication by a non-negative real number in X induces the corresponding opera-
tion in IF1,
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4. C − C = {a− b, a, b ∈ C} is dense in X ,

5. C is closed.

Proof. By Theorem 9, IF1 can be embedded as a convex cone C in a normed linear space Y such
that C spans Y and the conditions 1.− 3. hold true.
If X is a completion of Y , then also 4 is satisfied. Since (IF1, d1) is complete, which follows by
combining results in [5] and [13], and the embedding j is isometric we have condition 5.

Definition 10. Let a > 0 and denote I = [0, 0 + a]. A mapping f : I −→ IF1 is conformable
differentiable of order α if there is a f (α)(t) ∈ IF1 such that the limit

lim
ε→0

f(t+ εt1−α)	 f(t)
ε

∀t > 0

exists and is equal to f (α)(t). Also, fα(0) = limt→0 f
(α)(t). The α-integral is defined by(

Iαf
)
(t) =

∫ t

0

f(s)

s1−α
ds.

Here, the limit is taken in the metric space (IF1, d1).
Theorem 10 is the motivation for the following definition.

Definition 11. A subset Aα of IF1 × IF1 is in the class Aω if for each 0 < λ < αω−1 and
〈ui, vi〉, 〈u′i, v′i〉] ∈ Aα,∀i = 1, 2 we have

d1

(
〈u1, v1〉 + λ〈u′1, v′1〉, 〈u2, v2〉 + λ〈u′2, v′2〉

)
≥ (1 − λ

α
ω)d1

(
〈u1, v1〉, 〈u2, v2〉

)
Aα is called intuitionistic fuzzy α-accretive if Aα ∈ A{0}.

Now consider the following initial-value problem{
u(α)(t) = Aαu(t) t ∈ (0,∞)

u(0) = 〈u0, v0〉 ∈ IF1

(2)

where Aα ∈ A(ω). A function u(t) defined on R+, with values in IF1 is a solution of (2) if
(u(t), 0̃) is absolutely continuous in t, u(t) is IF-differentiable a.e. on (0,∞), u(t) ∈ D(Aα) =

{〈u, v〉 ∈ IF1, Aα〈u, v〉 6= 0̃} and u satisfies (2).
If (2) has a solution u(t), for every 〈u0, v0〉 ∈ D(Aα), we define Sα(t)〈u0, v0〉 = u(t), Sα(t)
is a continuous operator on D(Aα) and extending it by continuity to D(Aα) we obtain a family
{Sα(t), t ≥ 0)} of operators Sα : D(Aα) −→ D(Aα) satisfying the conditions

1. Sα(0) = i = iIF1
;

2. Sα
(
((t+ s)

1
α

)
= Sα(t

1
α )Sα(s

1
α );

3. lim
t→0

Sα(t)x = x for x ∈ D(Aα);
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4. For all 〈u, v〉, 〈u′, v′〉 ∈ IF1,

d1 (Sα(t)〈u, v〉, Sα(t)〈u′, v′〉) ≤ eωtd1 (〈u, v〉, 〈u′, v′〉) .

This and the previous section are the motivation for the following definition.

Definition 12. A continuous one-parameter intuitionistic fuzzy α-semigroup {Tα(t), t ≥ 0} of
operators on IF1 is defined by the following conditions:

1. For any fixed t ≥ 0, Tα(t) is a continuous operator defined on IF1 into IF1;

2. For any 〈u, v〉 ∈ IF1, Tα(t)〈u, v〉 is strongly continuous in t with the metric d1;

3. Tα
(
(t+ s)

1
α

)
= Tα

(
(t)

1
α

)
Tα

(
(s)

1
α

)
;

4. For all 〈u, v〉, 〈u′, v′〉 ∈ IF1

d1 (Tα(t)〈u, v〉, Tα(t)〈u′, v′〉) ≤ eωt
α

d1 (x, y) ∀t ≥ 0.

We call such a family {Tα(t)} simply intuitionistic fuzzy α-semigroup of type ω. The strict
α-infinitesimal generator Aα of an intuitionistic fuzzy α-semigroup {Tα(t)} is defined by

Aαx = lim
t→0

T (α)
α (t)〈u, v〉, 〈u, v〉 ∈ IF1.

The right-hand side exists in IF1.
We define the domain of Aα, by

D(Aα) =
{
〈u, v〉 ∈ IF1, lim

t→0
T (α)
α (t)〈u, v〉 exists

}
.

Lemma 3. If the family {Tα(t), t ≥ 0} is an intuitionistic fuzzy α-semigroup of type ω, then
jTα(t)j

−1 is a nonlinear α-semigroup of type ω on C.

Proof. By [7], jTα(t)j−1 : C −→ C, since j is isometric, which implies that jTα(t)j−1 is a
nonlinear α-semigroup of type ω on C.

Lemma 4. If Aα is an intuitionistic fuzzy infinitesimal generator of an intuitionistic fuzzy
α-semigroup of type ω {Tα(t)}t≥0, then jAαj−1 is the infinitesimal generator of jTα(t)j−1.

Proof. Let x ∈ C and put Rα(t) = jTα(t)j
−1. We have T (t) : C −→ C, and 〈u, v〉 = j−1x

lim
t→0

∥∥∥∥Rα(t+ εt1−α)x−Rα(t)x

ε
−R(α)

α (t)x

∥∥∥∥ = 0,

which implies

lim
t→0

∥∥∥∥jTα(t+ εt1−α)j−1x− jTα(t)j−1x
ε

− jT (α)
α (t)j−1x

∥∥∥∥ = 0

and

lim
t→0

d1

(
Tα(t+ εt1−α)j−1x	 Tα(t)j−1x

ε
, T (α)

α (t)j−1x

)
= 0,
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which implies

lim
t→0

d1

(
Tα(t+ εt1−α)〈u, v〉 	 Tα(t)〈u, v〉

ε
, T (α)

α (t)〈u, v〉
)

= 0.

Theorem 11. The familly of Tα(t) is an intuitionistic fuzzy α-semigroup if and only if the family
Tα(t

1
α ) is an intuitionistic fuzzy semigroup.

Proof. Just use Lemmas 3 and 4.

Lemma 5. If t −→ Tα(t) is intuitionistic fuzzy differentiable and t −→ T (t) is differentiable,
then

T (α)
α (t) = α

d

dt
T (tα).

Proof. Just use Lemmas 3 and 4.

Proposition 2. If t −→ Tα(t) is intuitionistic fuzzy differentiable, then

D(Aα) =
{
〈u, v〉 ∈ IF1, lim

t→0
T (tα)x

}
and

Aαx = αAx, ∀x ∈ D(Aα),

where A is the infinitesimal generator of T (t).

Proof. Just use Lemmas 3 and 4.

5 Intuitionistic fuzzy conformable problem

In this section, we consider the problem{
u(α)(t) = Aαu(t) + f(t, u(t)) 0 ≤ t ≤ T

u(0) ∈ IF1

, (3)

where f : [0, T ] × IF1 −→ IF1, Aα : D(Aα) ⊂ IF1 −→ IF1 is the infinitesimal generator of an
intuitionistic fuzzy α-semigroups Tα(t).

Lemma 6. The Problem (3) is equivalent to the integral equation

u(t) = u(0) +
(
IαAαu(.)

)
(t) +

(
Iαf(., u(.))

)
(t).

Proof. Just use 4 and Theorems 6, 7 and 8.

Lemma 7. The space
(
C0
(
[0, T ], IF1

)
, d
)

is a complete metric space, with the metric

d(u, v) = sup
0≤s≤T

d1

(
u(s), v(s)

)
36



Proof. Let (un) be a Cauchy sequence in
(
C0 ([0, T ], IF1) , d

)
.

∀ε > 0 ∃n0 ∈ N such that sup
0≤s≤T

d1

(
un(s), up(s)

)
≤ ε n ≥ p ≥ n0(

IF1, d1
)

is a complete metric space space, so (un(t)) converge to a limit u(t), for all t ∈ [0, T ]

When n tends to +∞, we get

d1

(
un(s), u(s)

)
≤ ε ∀s ∈ [0, T ]

which implies sup0≤s≤T d1

(
u(s), up(s)

)
≤ ε for all p ≥ n0, and (un) converges uniformly to u

on [0, T ].

Definition 13. An intuitionistic fuzzy solution of Problem 3 is a mapping u : [0, T ] −→ IF1

α-differentiable, satisfying the condition

u(t) = Tα(t)u(0)⊕ (IαTα(.)) (t)⊕ (IαTα(.− t)f(., u(.))) (t),

where {Tα(t)} is an intuitionistic fuzzy α-semigroups and Aα is an intuitionistic fuzzy α-infinite-
simal generator.

We assume that there exists M > 0 such that ∀t ∈ [0, T ], ∀〈u, v〉, 〈u′, v′〉 ∈ IF1,

d1

(
f
(
t, 〈u, v〉

)
, f
(
t, 〈u′, v′〉

))
≤Md1

(
〈u, v〉, 〈u′, v′〉

)
.

Theorem 12. By the previous condition on f , the Problem 3 has a unique solution.

Proof. Let C0 = C ([0, T ], X) and consider the following mapping

P : C0 −→ C0

u −→ (Pu) (t) = Tα(t)u(0)⊕
(
IαTαu(.)

)
(t)⊕

(
IαTα(.− t)f

(
., u(.)

))
(t)

(4)

and the following metric

d(u, v) = sup
0≤s≤T

d1

(
u(s), v(s)

)
, ∀u, v ∈ C0.

Step 1. Let h > 0 be small, then we have

d1

(
(Pu)(t+ h), (Pu)(t)

)
= d1

(
Tα(t)u(0)⊕

(
IαTαu(.)

)
(t+ h)

⊕
(
IαTα(.− t)f(., u(.))

)
(t+ h), Tα(t)u(0)⊕

(
IαTα(t)uα(.)

)
(t)

⊕
(
IαTα(.− t)f(., u(.))

)
(t)

)

d1

(
(Pu)(t+h), (Pu)(t)

)
= d1

((
IαTα(t)u(.)

)
(t+h)⊕

(
IαTα(.− t)f(., u(.))

)
(t+h),(

IαTα(t)uα(.)
)
(t)⊕

(
IαTα(.− t)f(., u(.))

)
(t)

)
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d1

(
(Pu)(t+ h), (Pu)(t)

)
= d1

((
IαTα(t)u(.)

)
(t+ h),

(
IαTα(t)u(.)

)
(t)

)
+ d1

((
IαTα(.− t)f(., u(.))

)
(t+ h),

(
IαTα(.− t)f(., u(.))

)
(t)

)
We have

d1

((
IαTα(t)u(.)

)
(t+ h),

(
IαTα(t)u(.)

)
(t)

)
= d1

(∫ t+h

t

Tα(t)u(s)

s1−α
ds, 0̃

)
≤
∫ t+h

t

1

s1−α
eωt

α

d1

(
u(s), 0̃

)
≤ d(u, 0̃)

α

(
(t+ h)α − tα

)
eωt

α −→ 0, as, h −→ 0.

Also

d1

((
IαTα(.− t)f(., u(.))

)
(t+ h),

(
IαTα(.− t)f(., u(.))

)
(t)

)
≤
∫ t+h

t

1

s1−α
eωt

α

d1

(
f(s, u(s)), 0̃

)
≤ MeωT

α
d(u, 0̃)

α

(
(t+ h)α − tα

)
−→ 0, as h −→ 0,

which implies
d1

(
(Pu)(t+ h), (Pu)(t)

)
−→ 0, as h −→ 0.

Step 2. Let u, v ∈ C0, from the first part we have

d1

(
(Pu)(t), (Pv)(t)

)
≤
∫ t

0

eωt
α

s1−α
d1

(
u(s), v(s)

)
+

∫ t

0

Meωt
α

s1−α
d1

(
u(s), v(s)

)
≤ t

(1 +M)eωT
α

α
d(u, v).

It follows easily that

d1

(
(P nu)(t), (P nv)(t)

)
≤

(
T (1+M)eωT

α

α

)n
n!

d(u, v).

By Lemma 7 and using the result of [11, p. 184], P has a unique fixed point u ∈ C0. This
fixed point is the desired solution of Problem 3.

This completes the proof.
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