Transversals of intuitionistic fuzzy directed hypergraphs

K. K. Myithili ${ }^{1}$ and R. Parvathi ${ }^{2}$
${ }^{1}$ Department of Mathematics, Vellalar College for Women
Erode - 638 012, Tamilnadu, India
e-mail: myth_maths@rediffmail.com
${ }^{2}$ Department of Mathematics, Vellalar College for Women
Erode - 638 012, Tamilnadu, India
e-mail: paarvathis@rediffmail.com

Abstract

Hypergraph is a graph in which an edge can connect more than two vertices. Directed hypergraphs are much like standard directed graphs. In usual directed graph, standard arcs connect a single tail node to a single head node whereas in the intuitionistic fuzzy directed hypergraph, hyperarcs connect a set of tail nodes to a set of head nodes. A transversal is a line that intersects two lines whereas in intuitionistic fuzzy directed hypergraph the transversals, is a hyperarc that intersects two or more hyperedges. In this paper, operations on intuitionistic fuzzy transversals of intuitionistic fuzzy directed hypergraphs are introduced and some of their properties are discussed. Further, operations like union, join, intersection, structural subtraction, composition and cartesian product on intuitionistic fuzzy directed hypergraphs are defined and studied with minimal intuitionistic fuzzy transversals as the edge set.

Keywords: Intuitionistic fuzzy directed hypergraph,transversals, operations.
AMS Classification: 03E72

1 Introduction

The notion of graph theory was introduced by Euler in 1736. The theory of graphs is an extremely useful tool for solving combinatorial problems in different areas such as geometry, algebra, number theory, topology, optimization and computer science. In order to expand the application base, the notion of graph was generalized to that of a hypergraph, that is, a set V of vertices together
with a collection of subsets of V. In 1976, Berge [5] introduced the concepts of graph and hypergraph. In [6], the concepts of fuzzy graph and fuzzy hypergraph were introduced. Fuzzy graph theory is now finding numerous applications in modern science and technology. In 1986, Atanassov[1] introduced the concept of intuitionistic fuzzy sets as a generalization of fuzzy sets. Intuitionistic fuzzy graph and intuitionistic fuzzy hypergraph (IFHG) were introduced in [7, 9]. In [2, 8], index matrix representation and operations on intuitionistic fuzzy graphs have been discussed. Hypergraphs have vast applications in system analysis, circuit clustering and pattern recognition. In mathematical and computer science problems, hypergraphs also arise naturally in important practical problems, including circuit layout, boolean satisfiability, numerical linear algebra. Directed hypergraphs are a generalization of directed graphs (digraphs) and they can model binary relations among subsets of a given set. In [16] transversals of intuitionistic fuzzy directed hypergraphs (IFDHGs) and minimal transversals of IFDHG were initiated. In this way, the authors got motivated to extend their work on operations in transversals of intuitionistic fuzzy directed hypergraph. Hence in this paper, operations such as union, join, intersection, structural subtraction, composition and cartesian product of transversals of intuitionistic fuzzy directed hypergraphs (TIFDHGs) have been introduced and studied.

2 Notations and Preliminaries

$H=(V, E)$	- Hypergraph with vertex set V and edge set E
$h(H)$	- Height of a hypergraph H
$F(H)$	- Fundamental sequence of H
$C(H)$	- Core set of H
$I(H)$	- Induced fundamental sequence of H
$H^{\left(r_{i}, s_{i}\right)}$	- $\left(r_{i}, s_{i}\right)$ - level intuitionistic fuzzy hypergraph
$\operatorname{Tr}(H)$	- Intuitionistic fuzzy transversals (IFT) of H
T	- Minimal IFT of H
$\mu_{t_{i}}, \nu_{t_{i}}$	- Degrees of membership and non-membership of the vertex v_{i} of $\operatorname{Tr}(H)$
$\mu_{t_{i j}}, \nu_{t_{i j}}$	- Degrees of membership and non-membership of the edge $e_{i j}$ of $\operatorname{Tr}(H)$

In this section, basic definitions relating to intuitionistic fuzzy sets, intuitionistic fuzzy graphs, IFDHGs are dealt with.

Definition 2.1. [1] Let a set E be fixed. An intuitionistic fuzzy set (IFS) V in E is an object of the form $V=\left\{\left\langle v_{i}, \mu_{i}\left(v_{i}\right), \nu_{i}\left(v_{i}\right)\right\rangle / v_{i} \in E\right\}$, where the function $\mu_{i}: E \rightarrow[0,1]$ and $\nu_{i}: E \rightarrow[0,1]$ determine the degree of membership and the degree of non-membership of the element $v_{i} \in E$, respectively and for every $v_{i} \in E, 0 \leq \mu_{i}\left(v_{i}\right)+\nu_{i}\left(v_{i}\right) \leq 1$.

Definition 2.2. [4] The six cartesian products of the two IFSs V_{1}, V_{2} of V over E is defined as

$$
\begin{aligned}
& V_{1} \times_{1} V_{2}=\left\{\left\langle\left(v_{1}, v_{2}\right), \mu_{1} \cdot \mu_{2}, \nu_{1} \cdot \nu_{2}\right\rangle \mid v_{1} \in V_{1}, v_{2} \in V_{2}\right\}, \\
& V_{1} \times_{2} V_{2}=\left\{\left\langle\left(v_{1}, v_{2}\right), \mu_{1}+\mu_{2}-\mu_{1} \mu_{2}, \nu_{1} \cdot \nu_{2}\right\rangle \mid v_{1} \in V_{1}, v_{2} \in V_{2}\right\}, \\
& V_{1} \times_{3} V_{2}=\left\{\left\langle\left(v_{1}, v_{2}\right), \mu_{1} \cdot \mu_{2}, \nu_{1}+\nu_{2}-\nu_{1} \cdot \nu_{2}\right\rangle \mid v_{1} \in V_{1}, v_{2} \in V_{2}\right\}, \\
& V_{1} \times_{4} V_{2}=\left\{\left\langle\left(v_{1}, v_{2}\right), \min \left(\mu_{1}, \mu_{2}\right), \max \left(\nu_{1}, \nu_{2}\right)\right\rangle \mid v_{1} \in V_{1}, v_{2} \in V_{2}\right\}, \\
& \left.V_{1} \times_{5} V_{2}=\left\{\left\langle\left(v_{1}, v_{2}\right), \max \left(\mu_{1}, \mu_{2}\right), \min \left(\nu_{1}, \nu_{2}\right)\right\rangle\right\rangle \mid v_{1} \in V_{1}, v_{2} \in V_{2}\right\} . \\
& \left.\left.V_{1} \times_{6} V_{2}=\left\{\left\langle\left(v_{1}, v_{2}\right), \frac{\mu_{1}+\mu_{2}}{2}, \frac{\nu_{1}+\nu_{2}}{2}\right)\right\rangle \right\rvert\, v_{1} \in V_{1}, v_{2} \in V_{2}\right\} .
\end{aligned}
$$

It must be noted that $V_{1} \times{ }_{s} V_{2}$ is an IFS, where $s=1,2,3,4,5,6$.
Definition 2.3. [17] An intuitionistic fuzzy graph (IFG) is of the form $G=\langle V, E\rangle$ where (i) $V=\left\{v_{1}, v_{2}, \ldots v_{n}\right\}$ such that $\mu_{i}: V \rightarrow[0,1]$ and $\nu_{i}: V \rightarrow[0,1]$ denote the degrees of membership and non-membership of the element $v_{i} \in V$ respectively and

$$
0 \leq \mu_{i}\left(v_{i}\right)+\nu_{i}\left(v_{i}\right) \leq 1
$$

for every $v_{i} \in V, i=1,2, \ldots, n$
(ii) $E \subseteq V \times V$ where $\mu_{i j}: V \times V \rightarrow[0,1]$ and $\nu_{i j}: V \times V \rightarrow[0,1]$ are such that

$$
\begin{aligned}
& \mu_{i j} \leq \mu_{i} \oslash \mu_{j} \\
& \nu_{i j} \leq \nu_{i} \oslash \nu_{j}
\end{aligned}
$$

and

$$
0 \leq \mu_{i j}+\nu_{i j} \leq 1
$$

where $\mu_{i j}$ and $\nu_{i j}$ are the degrees of membership and non-membership of the edge $\left(v_{i}, v_{j}\right)$; the values of $\mu_{i} \oslash \mu_{j}$ and $\nu_{i} \oslash \nu_{j}$ can be determined by one of the cartesian products $\times_{s}, s=1,2, \ldots, 6$ for all i and j given in Definition 2.2.

Note: Throughout this paper, it is assumed that the fifth cartesian product

$$
\begin{aligned}
V_{1} \times{ }_{5} V_{2} \times_{5} V_{3} \ldots \times_{5} V_{n}= & \left\{\left\langle\left(v_{1}, v_{2}, \cdots, v_{n}\right), \max \left(\mu_{1}, \mu_{2}, \cdots, \mu_{n}\right),\right.\right. \\
& \left.\left.\min \left(\nu_{1}, \nu_{2}, \cdots, \nu_{n}\right)\right\rangle \mid v_{1} \in V_{1}, v_{2} \in V_{2}, \cdots, v_{n} \in V_{n}\right\} .
\end{aligned}
$$

is used to determine the degrees of membership $\left(\mu_{i j}\right)$ and non-membership $\left(\nu_{i j}\right)$ of the edge $e_{i j}$.
Definition 2.4. [9] An intuitionistic fuzzy hypergraph (IFHG) is an ordered pair $H=(V, E)$ where
(i) $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, is a finite set of intuitionistic fuzzy vertices,
(ii) $E=\left\{E_{1}, E_{2}, \ldots, E_{m}\right\}$ is a family of crisp subsets of V,
(iii) $E_{j}=\left\{\left(v_{i}, \mu_{j}\left(v_{i}\right), \nu_{j}\left(v_{j}\right)\right): \mu_{j}\left(v_{i}\right), \nu_{j}\left(v_{i}\right) \geq 0\right.$ and $\left.\mu_{j}\left(x_{i}\right)+\nu_{j}\left(x_{i}\right) \leq 1\right\}, j=1,2, \ldots, m$,
(iv) $E_{j} \neq \phi, j=1,2, \ldots, m$,
(v) $\bigcup_{j} \operatorname{supp}\left(E_{j}\right)=V, j=1,2, \ldots, m$.

Here, the hyperedges E_{j} are crisp sets of intuitionistic fuzzy vertices, $\mu_{j}\left(v_{i}\right)$ and $\nu_{j}\left(v_{i}\right)$ denote the degrees of membership and non-membership of vertex v_{i} to edge E_{j}. Thus, the elements of the incidence matrix of IFHG are of the form $\left(v_{i j}, \mu_{j}\left(v_{i}\right), \nu_{j}\left(v_{j}\right)\right)$. The sets V, E are crisp sets.

Notations:

1. Hereafter, $\left\langle\mu\left(v_{i}\right), \nu\left(v_{i}\right)\right\rangle$ or simply $\left\langle\mu_{i}, \nu_{i}\right\rangle$ denote the degrees of membership and non-membership of the vertex $v_{i} \in V$, such that $0 \leq \mu_{i}+\nu_{i} \leq 1$.
2. $\left\langle\mu\left(e_{i j}\right), \nu\left(e_{i j}\right)\right\rangle$ or simply $\left\langle\mu_{i j}, \nu_{i j}\right\rangle$ denote the degrees of membership and non-membership of the edge $\left(v_{i}, v_{j}\right) \in V \times V$, such that $0 \leq \mu_{i j}+\nu_{i j} \leq 1$. That is, $\mu_{i j}$ and $\nu_{i j}$ are the degrees of membership and non-membership of $i^{\text {th }}$ vertex in $j^{\text {th }}$ edge.
Note: The support of an IFS V in E is denoted by $\operatorname{supp}\left(E_{j}\right)=\left\{v_{i} / \mu_{i j}>0\right.$ and $\left.\nu_{i j}>0\right\}$.
Definition 2.5. [11] An intuitionistic fuzzy directed hypergraph (IFDHG) H is a pair (V, E), where V is a non empty set of vertices and E is a set of intuitionistic fuzzy hyperarcs; an intuitionistic fuzzy hyperarc $E_{i} \in E$ is defined as a pair $\left(t\left(E_{i}\right), h\left(E_{i}\right)\right)$, where $t\left(E_{i}\right) \subset V$, with $t\left(E_{i}\right) \neq \emptyset$, is its tail, and $h\left(E_{i}\right) \in V-t\left(E_{i}\right)$ is its head. A vertex s is said to be a source vertex in H if $h\left(E_{i}\right) \neq s$, for every $E_{i} \in E$. A vertex d is said to be a destination vertex in H if $d \neq t\left(E_{i}\right)$, for every $E_{i} \in E$.

Definition 2.6. [16] Let $H=(V, E)$ be an intuitionistic fuzzy directed hypergraph. Suppose $E_{j}, E_{k} \in E$ and $0<\alpha \leq 1,0<\beta \leq 1$. The (α, β)-level is defined by

$$
\begin{equation*}
\left(E_{j}, E_{k}\right)^{(\alpha, \beta)}=\left\{v_{i} \in V / \max \left(\mu_{i j}^{\alpha}\left(v_{i}\right) \geq \alpha, \min \left(\nu_{i j}^{\beta}\left(v_{i}\right) \leq \beta\right\}\right.\right. \tag{1}
\end{equation*}
$$

Definition 2.7. [16] Let $H=(V, E)$ be an intuitionistic fuzzy directed hypergraph, for $0<$ $\left(r_{i}, s_{i}\right) \leq h(H)$, let $H^{r_{i}, s_{i}}=\left(V^{r_{i}, s_{i}}, E^{r_{i}, s_{i}}\right)$ be the $\left(r_{i}, s_{i}\right)$ - level intuitionistic fuzzy hypergraph of H. The sequence of real numbers $\left\{r_{1}, r_{2}, \ldots, r_{n} ; s_{1}, s_{2}, \ldots, s_{n}\right\}$, such that $0 \leq r_{i} \leq h_{\mu}(H)$ and $0 \leq s_{i} \leq h_{\nu}(H)$, satisfying the properties:
(i) If $r_{1}<\alpha \leq 1$ and $0 \leq \beta<s_{1}$ then $E^{\alpha, \beta}=\emptyset$,
(ii) If $r_{i+1} \leq \alpha \leq r_{i} ; s_{i} \leq \beta \leq s_{i+1}$ then $E^{\alpha, \beta}=E^{r_{i}, s_{i}}$,
(iii) $E^{r_{i}, s_{i}} \sqsubset E^{r_{i+1}, s_{i+1}}$
is called the fundamental sequence of H, and is denoted by $F(H)$.
The core set of H is denoted by $C(H)$ and is defined by $C(H)=\left\{H^{r_{1}, s_{1}}, H^{r_{2}, s_{2}}, \ldots, H^{r_{n}, s_{n}}\right\}$. The corresponding set of $\left(r_{i}, s_{i}\right)$ - level hypergraphs $H^{r_{1}, s_{1}} \subset H^{r_{2}, s_{2}} \subset \ldots \subset H^{r_{n}, s_{n}}$ is called the H induced fundamental sequence and is denoted by $I(H)$. The $\left(r_{n}, s_{n}\right)$ level is called the support level of H and the $H^{r_{n}, s_{n}}$ is called the support of H.

Definition 2.8. [16] Let $H=(V, E)$ be an intuitionistic fuzzy directed hypergraph. An intuitionistic fuzzy transversal T of H is an intuitionistic fuzzy subset of V with the property that $T^{\left(E_{j}, E_{k}\right)} \bigcap A^{\left(E_{j}, E_{k}\right)} \neq \emptyset$ for each $A \in E$, where $E_{j}=\max \left(\mu_{i j}\right)$ and $E_{k}=\min \left(\nu_{i j}\right)$, for all $i=1,2, \ldots, m$ and $j=1,2, \ldots, n$. Also $\mu_{i j}$ is the membership value of $i^{t h}$ vertex in $j^{t h}$ edge and $\nu_{i j}$ is the non-membership value of $i^{\text {th }}$ vertex in $j^{\text {th }}$ edge.

Definition 2.9. [16] A minimal intuitionistic fuzzy transversal T for H is a transversal of H with the property that if $T_{1} \subset T$, then T_{1} is not an intuitionistic fuzzy transversal of H.

3 Operations on transversals of IFDHG

Proposition 3.1. Let E be the fixed set and $V=\left\{\left\langle v_{i}, \mu_{i}\left(v_{i}\right), \nu_{i}\left(v_{i}\right)\right\rangle \mid v_{i} \in V\right\}$ be an IFS. Let $V_{1}, V_{2}, \cdots, V_{n}$ be n subsets of V over E. Then the following six cartesian products of intuitionistic fuzzy sets are:

$$
\begin{aligned}
& \text { (i) } V_{1} \times_{1} V_{2} \times_{1} V_{3} \ldots \times_{1} V_{n}=\left\{\left\langle\left(v_{1}, v_{2}, \cdots, v_{n}\right), \prod_{i=1}^{n} \mu_{i}, \prod_{i=1}^{n} \nu_{i}\right\rangle\right. \\
& \left.\mid v_{1} \in V_{1}, v_{2} \in V_{2}, \cdots, v_{n} \in V_{n}\right\}, \\
& \text { (ii) } V_{i_{1}} \times_{2} V_{i_{2}} \times_{2} V_{i_{3}} \ldots \times_{2} V_{i_{n}}=\left\{\left\langle\left(v_{1}, v_{2}, \cdots, v_{n}\right), \sum_{i=1}^{n} \mu_{i}-\sum_{i \neq j} \mu_{i} \mu_{j}+\right.\right. \\
& \sum_{i \neq j \neq k} \mu_{i} \mu_{j} \mu_{k}-\cdots+(-1)^{n-2} \sum_{i \neq j \neq k \cdots \neq n} \mu_{i} \mu_{j} \mu_{k} \cdots \mu_{n}+ \\
& \left.\left.(-1)^{n-1} \prod_{i=1}^{n} \mu_{i}, \prod_{i=1}^{n} \nu_{i}\right\rangle \mid v_{1} \in V_{1}, v_{2} \in V_{2}, \cdots, v_{n} \in V_{n}\right\} \\
& \text { (iii) } V_{i_{1}} \times{ }_{3} V_{i_{2}} \times{ }_{3} V_{i_{3}} \ldots \times_{3} V_{i_{n}}=\left\{\left\langle\left(v_{1}, v_{2}, \cdots, v_{n}\right), \prod_{i=1}^{n} \mu_{i}, \sum_{i=1}^{n} \nu_{i}-\sum_{i \neq j} \nu_{i} \nu_{j}+\right.\right. \\
& \sum_{i \neq j \neq k} \nu_{i} \nu_{j} \nu_{k}-\cdots+(-1)^{n-2} \sum_{i \neq j \neq k \cdots \neq n} \nu_{i} \nu_{j} \nu_{k} \cdots \nu_{n}+ \\
& \left.\left.(-1)^{n-1} \prod_{i=1}^{n} \nu_{i}\right\rangle \mid v_{1} \in V_{1}, v_{2} \in V_{2}, \cdots, v_{n} \in V_{n}\right\} \\
& \text { (iv) } V_{1} \times{ }_{4} V_{2} \times{ }_{4} V_{3} \ldots \times_{4} V_{n}=\left\{\left\langle\left(v_{1}, v_{2}, \cdots, v_{n}\right), \min \left(\mu_{1}, \mu_{2}, \cdots, \mu_{n}\right)\right.\right. \text {, } \\
& \left.\left.\max \left(\nu_{1}, \nu_{2}, \cdots, \nu_{n}\right)\right\rangle \mid v_{1} \in V_{1}, v_{2} \in V_{2}, \cdots, v_{n} \in V_{n}\right\} \\
& (v) V_{1} \times_{5} V_{2} \times_{5} V_{3} \ldots \times_{5} V_{n}=\left\{\left\langle\left(v_{1}, v_{2}, \cdots, v_{n}\right), \max \left(\mu_{1}, \mu_{2}, \cdots, \mu_{n}\right),\right.\right. \\
& \left.\left.\min \left(\nu_{1}, \nu_{2}, \cdots, \nu_{n}\right)\right\rangle \mid v_{1} \in V_{1}, v_{2} \in V_{2}, \cdots, v_{n} \in V_{n}\right\} . \\
& (v i) V_{1} \times{ }_{6} V_{2} \times{ }_{6} V_{3} \ldots \times{ }_{6} V_{n}=\left\{\left\langle\left(v_{1}, v_{2}, \cdots, v_{n}\right), \frac{\sum_{i=1}^{n} \mu_{i}}{n}, \frac{\sum_{i=1}^{n} \nu_{i}}{n}\right\rangle\right. \\
& \left.\mid v_{1} \in V_{1}, v_{2} \in V_{2}, \cdots, v_{n} \in V_{n}\right\} .
\end{aligned}
$$

Proof:
(i) Claim: $V_{i_{1}} \times{ }_{2} V_{i_{2}} \times{ }_{2} V_{i_{3}} \ldots \times_{2} V_{i_{n}}=\left\{\left\langle\left(v_{1}, v_{2}, \cdots, v_{n}\right), \sum_{i=1}^{n} \mu_{i}-\sum_{i \neq j} \mu_{i} \mu_{j}+\sum_{i \neq j \neq k} \mu_{i} \mu_{j} \mu_{k}-\cdots+\right.\right.$ $\left.\left.(-1)^{n-2} \sum_{i \neq j \neq k \cdots \neq n} \mu_{i} \mu_{j} \mu_{k} \cdots \mu_{n}+(-1)^{n-1} \prod_{i=1}^{n} \mu_{i}, \prod_{i=1}^{n} \nu_{i}\right\rangle \mid v_{1} \in V_{1}, v_{2} \in V_{2}, \cdots, v_{n} \in V_{n}\right\}$ is an intuitionistic fuzzy set.
When $n=2$, the proof is obvious.
When $n=3, V_{i_{1}} \times_{2} V_{i_{2}} \times_{2} V_{i_{3}}=\left\{\left\langle\left(v_{1}, v_{2}, v_{3}\right), \sum_{i=1}^{3} \mu_{i}-\sum_{i \neq j} \mu_{i} \mu_{j}+\sum_{i \neq j \neq k} \mu_{i} \mu_{j} \mu_{k}, \prod_{i=1}^{3} \nu_{i}\right\rangle \mid v_{1} \in\right.$ $V_{1}, v_{2} \in V_{2}, v_{3} \in V_{3}$. The proposition is true for $n=3$. Assume that the proposition is true for $n=m-1$. Therefore, for $n=m,\left(V_{i_{1}} \times_{2} V_{i_{2}} \times{ }_{2} V_{i_{3}} \cdots \times_{2} V_{i_{m-1}}\right) \times_{2} V_{i_{m}}=$ $\left\{\left\langle\left(v_{1}, v_{2}, \cdots, v_{m-1}, v_{m}\right), \sum_{i=1}^{m} \mu_{i}-\sum_{i \neq j} \mu_{i} \mu_{j}+\sum_{i \neq j \neq k} \mu_{i} \mu_{j} \mu_{k}-\cdots+(-1)^{m-2} \sum_{i \neq j \neq k} \mu_{i} \mu_{j} \mu_{k}+(-1)^{m-1}\right.\right.$ $\left.\left.\prod_{i=1}^{m} \mu_{i}, \prod_{i=1}^{m} \nu_{i}\right\rangle \mid v_{1} \in V_{1}, v_{2} \in V_{2}, \cdots, v_{m} \in V_{m}\right\}$.
Obviously $\sum_{i=1}^{n} \mu_{i}-\sum_{i \neq j} \mu_{i} \mu_{j}+\sum_{i \neq j \neq k} \mu_{i} \mu_{j} \mu_{k}-\cdots+(-1)^{n-1} \prod_{i=1}^{n} \mu_{i}+\prod_{i=1}^{n} \nu_{i} \geq 0$.
Now to prove $\sum_{i=1}^{n} \mu_{i}-\sum_{i \neq j} \mu_{i} \mu_{j}+\sum_{i \neq j \neq k} \mu_{i} \mu_{j} \mu_{k}-\cdots+(-1)^{n-1} \prod_{i=1}^{n} \mu_{i}+\prod_{i=1}^{n} \nu_{i} \leq 1$.

For $n=2$,

$$
\begin{aligned}
0 & \leq \nu_{1} \cdot \nu_{2} \\
& \leq \mu_{1}+\mu_{2}-\mu_{1} \cdot \mu_{2}+\nu_{1} \cdot \nu_{2}, \text { since } \mu_{1}, \mu_{2} \in[0,1] \\
& \leq \mu_{1}+\mu_{2}-\mu_{1} \cdot \mu_{2}+\left(1-\mu_{1}\right)\left(1-\mu_{2}\right) \\
& \leq \mu_{1}+\mu_{2}-\mu_{1} \cdot \mu_{2}+1-\mu_{1}-\mu_{2}+\mu_{1} \cdot \mu_{2} \\
& =1 .
\end{aligned}
$$

For $n=3$,

$$
\begin{aligned}
0 & \leq \nu_{1} \cdot \nu_{2} \nu_{3} \\
& \leq \mu_{1}+\mu_{2}+\mu_{3}-\mu_{1} \cdot \mu_{2}-\mu_{2} \cdot \mu_{3}-\mu_{3} \cdot \mu_{1}+\mu_{1} \cdot \mu_{2} \cdot \mu_{3}-\mu_{1} \mu_{2} \mu_{3}+\nu_{1} \cdot \nu_{2} \cdot \nu_{3} \\
\quad & \text { since } \mu_{i} \in[0,1], i=1,2,3 \\
& \leq \mu_{1}+\mu_{2}+\mu_{3}-\mu_{1} \cdot \mu_{2}-\mu_{2} \cdot \mu_{3}-\mu_{3} \cdot \mu_{1}+\mu_{1} \cdot \mu_{2} \cdot \mu_{3}-\mu_{1} \mu_{2} \mu_{3}+\left(1-\mu_{1}\right)\left(1-\mu_{2}\right)\left(1-\mu_{3}\right) \\
& \leq \mu_{1}+\mu_{2}+\mu_{3}-\mu_{1} \cdot \mu_{2}-\mu_{2} \cdot \mu_{3}-\mu_{3} \cdot \mu_{1}+\mu_{1} \cdot \mu_{2} \cdot \mu_{3}-\mu_{1} \mu_{2} \mu_{3}+1-\mu_{2}-\mu_{1}+\mu_{1} \mu_{2}-\mu_{3} \\
& +\mu_{2} \mu_{3}+\mu_{1} \mu_{3}-\mu_{1} \cdot \mu_{2} \cdot \mu_{3} \\
& =1
\end{aligned}
$$

Assume that the result holdsgood for $n=m-1$.

$$
\begin{aligned}
0 & \leq \nu_{1} \cdot \nu_{2} \cdots \nu_{m-1} \\
& \leq \sum_{i=1}^{m-1} \mu_{i}-\sum_{i \neq j} \mu_{i} \cdot \mu_{j}+\sum_{i \neq j \neq k} \mu_{i} \mu_{j} \mu_{k}-\cdots+(-1)^{(m-2)} \sum_{i \neq j \neq \cdots \neq m-1} \mu_{i_{1}} \mu_{i_{2}} \cdots \mu_{i_{m-1}}+\prod_{i=1}^{m-1} \nu_{i} \\
& =1 .
\end{aligned}
$$

Therefore for $n=m$,

$$
\begin{aligned}
0 & \leq \prod_{i=1}^{m} \nu_{i} \\
& \leq \nu_{1} \cdot \nu_{2} \cdots \nu_{m} \\
& \leq \sum_{i=1}^{m} \mu_{i}-\sum_{i \neq j} \mu_{i} \cdot \mu_{j}+\sum_{i \neq j \neq k} \mu_{i} \mu_{j} \mu_{k}-\cdots+(-1)^{(m-1)} \sum_{i \neq j \neq \cdots \neq m} \mu_{i_{1}} \mu_{i_{2}} \cdots \mu_{i_{m}}+\prod_{i=1}^{m} \nu_{i} \\
& =1 .
\end{aligned}
$$

Hence the result is true for all n.
The other results can be proved in a similar way.

Throughout this chapter the following notations were considered.
Let $H_{1}=\left(V_{1}, E_{1},\left\langle\mu_{t_{i}}, \nu_{t_{i}}\right\rangle,\left\langle\mu_{t_{i j}}, \nu_{t_{i j}}\right\rangle\right)$ and $H_{2}=\left(V_{2}, E_{2},\left\langle\mu_{t_{i}^{\prime}}, \nu_{t_{i}^{\prime}}\right\rangle,\left\langle\mu_{t_{i j}^{\prime}}, \nu_{t_{i j}^{\prime}}\right\rangle\right)$ be two IFDHGs. Then T_{1} and T_{2} be the transversals of H_{1} and H_{2} respectively.

Definition 3.1. The union of T_{1} and T_{2}, denoted by $T_{1} \cup T_{2}$, is defined as

$$
\begin{aligned}
& T=T_{1} \cup T_{2}=\left\{V_{1} \cup V_{2}, E_{1} \cup E_{2},\left\langle\mu_{t_{r}}=\mu_{t_{i} \cup t_{i}^{\prime}}, \nu_{t_{r}}=\nu_{t_{i} \cup t_{i}^{\prime}}\right\rangle,\left\langle\mu_{t_{r s}}=\mu_{t_{i j} \cup t_{i j}^{\prime}}, \nu_{t_{r s}}=\nu_{t_{i j} \cup t_{i j}^{\prime}}\right\rangle\right\} \\
& \left\langle\mu_{t_{r}}, \nu_{t_{r}}\right\rangle=\left\{\begin{aligned}
\left\langle\mu_{t_{i}}, \nu_{t_{i}}\right\rangle & \text { if } v \in V_{1}-V_{2} \\
\left\langle\mu_{t_{i}^{\prime}}, \nu_{t_{i}^{\prime}}\right\rangle & \text { if } v \in V_{2}-V_{1} \\
\left\langle\max \left(\mu_{t_{i}}, \mu_{t_{i}^{\prime}}\right), \min \left(\nu_{t_{i}}, \nu_{t_{i}^{\prime}}\right)\right\rangle & \text { if } v \in V_{1} \cap V_{2}
\end{aligned}\right. \\
& \left\langle\mu_{t_{r s}}, \nu_{t_{r s}}\right\rangle=\left\{\begin{array}{rrl}
\left\langle\mu_{t_{i j}}, \nu_{t_{i j}}\right\rangle & \text { if } & e_{i j} \in E_{1}-E_{2} \\
\left\langle\mu_{t_{i j}^{\prime}}, \nu_{t_{i j}^{\prime}}\right\rangle & \text { if } & e_{i j} \in E_{2}-E_{1} \\
\left\langle\max \left(\mu_{t_{i j}}, \mu_{t_{i j}^{\prime}}\right), \min \left(\nu_{t_{i j}}, \nu_{t_{i j}^{\prime}}\right)\right\rangle & \text { if } & e_{i j} \in E_{1} \cap E_{2} \\
\langle 0,1\rangle & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

Example 1. Consider an IFDHGs, $H_{1}=\left(V_{1}, E_{1}\right)$ and $H_{2}=\left(V_{2}, E_{2}\right)$. Its adjacency matrix is given by

$$
H_{1}=\begin{gathered}
E_{1} \\
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{gathered}\left(\begin{array}{cc}
\langle 0.4,0.6\rangle & \langle 0,1\rangle \\
\langle 0.6,0.2\rangle & \langle 0.6,0.2\rangle \\
\langle 0.3,0.3\rangle & \langle 0.3,0.3\rangle \\
\langle 0,1\rangle & \langle 0.5,0.4\rangle
\end{array}\right)
$$

and

$$
H_{2}=\begin{gathered}
E_{1} \\
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{gathered}\left(\begin{array}{ccc}
\langle 0.5,0.4\rangle & \langle 0,1\rangle & E_{3} \\
\langle 0.3,0.5\rangle & \langle 0.3,0.5\rangle & \langle 0,1\rangle \\
\langle 0,1\rangle & \langle 0.4,0.3\rangle & \langle 0.4,0.3\rangle \\
\langle 0,1\rangle & \langle 0,1\rangle & \langle 0.6,0.1\rangle
\end{array}\right)
$$

The corresponding graph is shown in Figure 1.

$$
\operatorname{Tr}\left(H_{1}\right)=\begin{gathered}
T_{1} \\
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{gathered}\left(\begin{array}{ccc}
\langle 0.5,0.4\rangle & \langle 0,1\rangle & T_{3} \\
\langle 0,1\rangle & \langle 0.6,0.2\rangle & \langle 0,1\rangle \\
\langle 0,1\rangle & \langle 0,1\rangle & \langle 0.4,0.3\rangle \\
\langle 0.6,0.1\rangle & \langle 0.6,0.1\rangle & \langle 0.6,0.1\rangle
\end{array}\right) .
$$

and

$$
\operatorname{Tr}\left(H_{2}\right)=\begin{gathered}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{gathered}\left(\begin{array}{cc}
\langle 0,1\rangle & \langle 0.5,0.4\rangle \\
\langle 0.6,0.2\rangle & \langle 0,1\rangle \\
\langle 0,1\rangle & \langle 0.4,0.3\rangle \\
\langle 0.6,0.1\rangle & \langle 0.6,0.1\rangle
\end{array}\right)
$$

The corresponding graph is shown in Figure 2.

Graph of $H_{1} \cup H_{2}$

Figure 1: Union of IFDHG.

Figure 2: Transversals of Union of IFDHG.

Definition 3.2. The intersection of T_{1} and T_{2}, denoted by $T_{1} \cap T_{2}$, is defined as

$$
T=T_{1} \cap T_{2}=\left\{V_{1} \cap V_{2}, E_{1} \cap E_{2},\left\langle\mu_{t_{r}}=\mu_{t_{i} \cap t_{i}^{\prime}}, \nu_{t_{r}}=\nu_{t_{i} \cap t_{i}^{\prime}}\right\rangle,\left\langle\mu_{t_{r s}}=\mu_{t_{i j} \cap t_{i j}^{\prime}}, \nu_{t_{r s}}=\nu_{t_{i j} \cap t_{i j}^{\prime}}\right\rangle\right\}
$$

and defined by

$$
\begin{aligned}
& \left\langle\mu_{t_{r}}, \nu_{t_{r}}\right\rangle=\left\{\begin{array}{rll}
\left\langle\mu_{t_{i}}, \nu_{t_{i}}\right\rangle & \text { if } & v \in V_{1}-V_{2} \\
\left\langle\mu_{t_{i}^{\prime}}, \nu_{t_{t^{\prime}}}\right\rangle & \text { if } & v \in V_{2}-V_{1} \\
\left\langle\min \left(\mu_{t_{i}}, \mu_{t_{i}^{\prime}}\right), \max \left(\nu_{t_{i}}, \nu_{t_{i}^{\prime}}\right)\right\rangle & \text { if } & v \in V_{1} \cap V_{2}
\end{array}\right. \\
& \left\langle\mu_{t_{r s},}, \nu_{t_{r s}}\right\rangle=\left\{\begin{array}{rlll}
\left\langle\mu_{t_{i j}}, \nu_{t_{i j}}\right\rangle & \text { if } & e_{i j} \in E_{1}-E_{2} \\
\left\langle\mu_{t_{i j}^{\prime}}, \nu_{t_{i j}^{\prime}}^{\prime}\right\rangle & \text { if } & e_{i j} \in E_{2}-E_{1} \\
\left\langle\min \left(\mu_{t_{i j}}, \mu_{t_{i j}^{\prime}}\right), \max \left(\nu_{t_{i j}}, \nu_{t_{t_{j}^{\prime}}}\right)\right\rangle & \text { if } & e_{i j} \in E_{1} \cap E_{2} \\
\langle 0,1\rangle & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

Definition 3.3. The join of T_{1} and T_{2}, denoted by $T_{1}+T_{2}$, is defined as $T=T_{1}+T_{2}=$ $\left\{V_{1} \cup V_{2}, E_{1} \cup E_{2} \cup E^{\prime},\left\langle\mu_{t_{i}+t_{i}^{\prime}}, \nu_{t_{i}+t_{i}^{\prime}}\right\rangle,\left\langle\mu_{t_{i j}+t_{i j}^{\prime}}, \nu_{t_{i j}+t_{i j}^{\prime}}\right\rangle\right\}$ and defined by

$$
\begin{aligned}
& \left(\mu_{t_{i}+t_{i}^{\prime}}\right)(v)=\left(\mu_{t_{i}} \vee \mu_{t_{i}^{\prime}}\right)(v) \text { if } v \in V_{1} \cup V_{2} \\
& \begin{aligned}
\left(\nu_{t_{i}+t_{i}^{\prime}}\right)(v)= & \left(\nu_{t_{i}} \wedge \nu_{t_{i}^{\prime}}\right)(v) \text { if } v \in V_{1} \cup V_{2} \\
\left(\mu_{t_{i j}+t_{i j}^{\prime}}\right)\left(v_{i} v_{j}\right) & =\left(\mu_{t_{i j}} \vee \mu_{t_{i j}^{\prime}}\right)\left(v_{i} v_{j}\right) \text { if } v_{i} v_{j} \in E_{1} \cup E_{2} \\
& =\left(\mu_{t_{i j}}\left(v_{i}\right) \cdot \mu_{t_{i j}^{\prime}}\left(v_{j}\right)\right) \text { if } v_{i} v_{j} \in E^{\prime} . \\
\left(\nu_{t_{i j}+t_{i j}^{\prime}}\right)\left(v_{i} v_{j}\right)= & \left(\nu_{t_{i j}} \wedge \nu_{t_{i j}^{\prime}}\right)\left(v_{i} v_{j}\right) \text { if } v_{i} v_{j} \in E_{1} \cup E_{2} \\
& =\left(\nu_{t_{i j}}\left(v_{i}\right) \cdot \nu_{t_{i j}^{\prime}}\left(v_{j}\right)\right) \text { if } v_{i} v_{j} \in E^{\prime} .
\end{aligned}
\end{aligned}
$$

Definition 3.4. The structural subtraction of T_{1} and T_{2}, denoted by $T_{1} \ominus T_{2}$, is defined as $T=T_{1} \ominus T_{2}=\left\{V_{1}-V_{2},\left\langle\mu_{t_{r}}, \nu_{t_{r}}\right\rangle,\left\langle\mu_{t_{r s}}, \nu_{t_{r s}}\right\rangle\right\}$ where ' - ' is the set theoretical difference operation and

$$
\begin{aligned}
& \left\langle\mu_{t_{r}}, \nu_{t_{r}}\right\rangle=\left\{\begin{array}{ccc}
\left\langle\mu_{t_{i}}, \nu_{t_{i}}\right\rangle & \text { if } & v_{i} \in V_{1} \\
\left\langle\mu_{t_{j}}, \nu_{t_{j}}\right\rangle & \text { if } & v_{j} \in V_{2} \\
\langle 0,1\rangle & \text { otherwise. } &
\end{array}\right.
\end{aligned}
$$

where $V_{1}-V_{2}=\emptyset$.

Definition 3.5. The cartesian product of T_{1} and T_{2}, denoted by $T_{1} \times T_{2}$, is defined as $T=$ $T_{1} \times T_{2}=\left(V, E^{\prime}\right)$ where $V=V_{1} \times V_{2}$ and $E^{\prime}=\left\{\left(u, u_{j}\right),\left(u, v_{j}\right): u \in V_{1}, u_{j} v_{j} \in E_{2}\right\} \cup$ $\left\{\left(u_{i}, w\right)\left(v_{i}, w\right): w \in v_{2}, u_{i} v_{j} \in E_{1}\right\}$. Then,

$$
\left(\mu_{t_{i} \times t_{i}^{\prime}}\right)\left(u_{i}, u_{j}\right)=\left(\mu_{t_{i}} \cdot \mu_{t_{i}^{\prime}}\right)\left(u_{j}\right) \text { for every }\left(u_{i}, u_{j}\right) \text { in } V \text { and }
$$

$$
\begin{aligned}
& \left(\nu_{t_{i} \times t_{i}^{\prime}}\right)\left(u_{i}, u_{j}\right)=\left(\nu_{t_{i}} \cdot \nu_{t_{i}^{\prime}}\right)\left(u_{j}\right) \text { for every }\left(u_{i}, u_{j}\right) \text { in } V . \\
& \left(\mu_{t_{i j} \times t_{i j}^{\prime}}\right)\left(u, u_{j}\right),\left(u, v_{j}\right)=\left(\mu_{t_{i}}(u) \cdot \mu_{t_{i j}}\right)\left(v_{i} v_{j}\right) \text { for every } u \in V_{1} \text { and } u_{j} v_{j} \in E_{2} \\
& \left(\nu_{t_{i j} \times t_{i j}^{\prime}}\right)\left(u, u_{j}\right),\left(u, v_{j}\right)=\left(\nu_{t_{i}}(u) \cdot \nu_{t_{i j}}\right)\left(v_{i} v_{j}\right) \text { for every } u \in V_{1} \text { and } u_{j} v_{j} \in E_{2} \\
& \left.\left(\mu_{t_{i j} \times t_{i j}^{\prime}}\right)\left(u_{i}, w\right),\left(v_{i}, w\right)\right)=\left(\mu_{t_{i}}(w) \cdot \mu_{t_{i j}}\right)\left(u_{i} v_{i}\right) \text { for every } w \in V_{2} \text { and } u_{i} v_{i} \in E_{1} \\
& \left.\left(\nu_{t_{i j} \times t_{i j}^{\prime}}\right)\left(u_{i}, w\right),\left(v_{i}, w\right)\right)=\left(\nu_{t_{i}}(w) \cdot \nu_{t_{i j}}\right)\left(u_{i} v_{i}\right) \text { for every } w \in V_{2} \text { and } u_{i} v_{i} \in E_{1}
\end{aligned}
$$

Definition 3.6. The composition of T_{1} and T_{2}, denoted by $T_{1} \circ T_{2}$, is defined as $T=T_{1} \circ T_{2}=$ $\left(V_{1} \times V_{2}, E\right)$ where $V=V_{1} \times V_{2}$ and $E=\left\{\left(u, u_{j}\right),\left(u, v_{j}\right): u \in V_{1}, u_{j} v_{j} \in E_{2}\right\} \cup\left\{\left(u_{i}, w\right)\left(v_{i}, w\right)\right.$: $\left.w \in v_{2}, u_{i} v_{i} \in E_{1}\right\} \cup\left\{\left(u_{i}, u_{j}\right)\left(v_{i}, v_{j}\right): u_{i} v_{i} \in E_{1}, u_{j} \neq v_{j}\right\}$. Then,

$$
\begin{aligned}
& \left(\mu_{t_{i} \circ t_{i}^{\prime}}\right)\left(u_{i}, u_{j}\right)=\left(\mu_{t_{i}} \cdot \mu_{t_{i}^{\prime}}\right)\left(u_{j}\right) \text { for every }\left(u_{i}, u_{j}\right) \text { in } V_{1} \times V_{2} \text { and } \\
& \left(\nu_{t_{i} \circ t_{i}^{\prime}}\right)\left(u_{i}, u_{j}\right)=\left(\nu_{t_{i}} \cdot \nu_{t_{i}^{\prime}}\right)\left(u_{j}\right) \text { for every }\left(u_{i}, u_{j}\right) \text { in } V_{1} \times V_{2} . \\
& \left(\mu_{t_{i j} \circ t_{i j}^{\prime}}\right)\left(u, u_{j}\right),\left(u, v_{j}\right)=\left(\mu_{t_{i}}(u) \cdot \mu_{t_{i j}}\right)\left(u_{j} v_{j}\right) \text { for every } u \in V_{1} \text { and } u_{j} v_{j} \in E_{2} \\
& \left(\nu_{t_{i j} \circ t_{i j}^{\prime}}\right)\left(u, u_{j}\right),\left(u, v_{j}\right)=\left(\nu_{t_{i}}(u) \cdot \nu_{t_{i j}}\right)\left(u_{j} v_{j}\right) \text { for every } u \in V_{1} \text { and } u_{j} v_{j} \in E_{2} \\
& \left.\left(\mu_{t_{i j} \partial t_{i j}^{\prime}}\right)\left(u_{i}, w\right),\left(v_{i}, w\right)\right)=\left(\mu_{t_{i}}(w) \cdot \mu_{t_{i j}}\right)\left(u_{i} v_{i}\right) \text { for every } w \in V_{2} \text { and } u_{i} v_{i} \in E_{1} \\
& \left.\left(\nu_{t_{i j} \circ t_{i j}^{\prime}}\right)\left(u_{i}, w\right),\left(v_{i}, w\right)\right)=\left(\nu_{t_{i}}(w) \cdot \nu_{t_{i j}}\right)\left(u_{i} v_{i}\right) \text { for every } w \in V_{2} \text { and } u_{i} v_{i} \in E_{1} \\
& \left.\left(\mu_{t_{i j} \circ t_{i j}^{\prime}}\right)\left(u_{i}, u_{j}\right),\left(v_{i}, v_{j}\right)\right)=\left(\mu_{t_{i}^{\prime}}\left(u_{j}\right) \cdot \mu_{t_{i}^{\prime}}\left(v_{j}\right) \cdot \mu_{t_{i j}}\right)\left(u_{i} v_{i}\right) \text { for every }\left(u_{i}, u_{j}\right),\left(v_{i}, v_{j}\right) \in E-E^{\prime} \\
& \left.\left(\nu_{t_{i j} \circ t_{i j}^{\prime}}\right)\left(u_{i}, u_{j}\right),\left(v_{i}, v_{j}\right)\right)=\left(\nu_{t_{i}^{\prime}}\left(u_{j}\right) \cdot \nu_{t_{i}^{\prime}}\left(v_{j}\right) \cdot \nu_{t_{i j}}\right)\left(u_{i} v_{i}\right) \text { for every }\left(u_{i}, u_{j}\right),\left(v_{i}, v_{j}\right) \in E-E^{\prime}
\end{aligned}
$$

where $E^{\prime}=\left\{\left(u, u_{j}\right),\left(u, v_{j}\right): u \in V_{1}, u_{j} v_{j} \in E_{2}\right\} \cup\left\{\left(u_{i}, w\right)\left(v_{i}, w\right): w \in v_{2}, u_{i} v_{j} \in E_{1}\right\}$.

4 Properties of TIFDHGs

Theorem 4.1. $\operatorname{Tr}\left(H_{1} \cup H_{2}\right) \subseteq \operatorname{Tr}\left(H_{1}\right) \cup \operatorname{Tr}\left(H_{2}\right)$. That is, union of IFTs of H_{1} and H_{2} contains the IFT of union of H_{1} and H_{2}.
Proof: Let $H_{1}=\left(V_{1}, E_{1},\left\langle\mu_{i}, \nu_{i}\right\rangle,\left\langle\mu_{i j}, \nu_{i j}\right\rangle\right)$ and $H_{2}=\left(V_{2}, E_{2},\left\langle\mu_{p}, \nu_{p}\right\rangle,\left\langle\mu_{p q}, \nu_{p q}\right\rangle\right)$ be two IFDHGs with $i, j=1,2, \ldots, m$ and $p, q=1,2, \ldots, n$ vertices respectively.

Then, $H_{1} \cup H_{2}=\left(V_{1} \cup V_{2}, E_{1} \cup E_{2},\left\langle\mu_{i \cup p}, \nu_{i \cup p}\right\rangle,\left\langle\mu_{(i j) \cup(p q)}, \nu_{(i j) \cup(p q)}\right\rangle\right)$.

Hence, $\operatorname{Tr}\left(H_{1} \cup H_{2}\right)=\left(V_{T}, E_{T},\left\langle\mu_{t}, \nu_{t}\right\rangle,\left\langle\mu_{t^{\prime}}, \nu_{t^{\prime}}\right\rangle\right)$ where

$$
\left.\begin{array}{c}
V_{T}=V_{1} \cup V_{2}-\left\{v_{k}\right\}_{k}, k<m \tag{2}\\
E_{T}=E_{1} \cup E_{2}-\left\{e_{p q}\right\}_{p, q}, p, q<n
\end{array}\right\},
$$

Also, $\operatorname{Tr}\left(H_{1}\right)=\left(V_{T_{1}}, E_{T_{1}},\left\langle\mu_{t_{i}}, \nu_{t_{i}}\right\rangle,\left\langle\mu_{t_{i j}}, \nu_{t_{i j}}\right\rangle\right)$ and $\operatorname{Tr}\left(H_{2}\right)=\left(V_{T_{2}}, E_{T_{2}},\left\langle\mu_{t_{p}}, \nu_{t_{p}}\right\rangle,\left\langle\mu_{t_{p q}}, \nu_{t_{p q}}\right\rangle\right)$ where

$$
\begin{gathered}
V_{T_{1}}=V_{1}-\left\{v_{a}\right\}_{a}, a<m, \\
E_{T_{1}}=E_{1}-\left\{e_{l s}\right\}_{l, s}, l, s<n, \\
\left\langle\mu_{t_{i}}, \nu_{t_{i}}\right\rangle=\left\langle\max \left(\mu_{i}\right), \min \left(\nu_{i}\right)\right\rangle \text { and } \\
\left\langle\mu_{t_{i j}}, \nu_{t_{i j}}\right\rangle=\left\langle\max \left(\mu_{i j}\right), \min \left(\nu_{i j}\right)\right\rangle
\end{gathered}
$$

and

$$
\begin{gathered}
V_{T_{2}}=V_{2}-\left\{v_{b}\right\}_{b}, b<m, \\
E_{T_{2}}=E_{2}-\left\{e_{u v}\right\}_{u, v}, u, v<n, \\
\left\langle\mu_{t_{p}}, \nu_{t_{p}}\right\rangle=\left\langle\max \left(\mu_{p}\right), \min \left(\nu_{p}\right)\right\rangle \text { and } \\
\left\langle\mu_{t_{p q}}, \nu_{t_{p q}}\right\rangle=\left\langle\max \left(\mu_{p q}\right), \min \left(\nu_{p q}\right)\right\rangle
\end{gathered}
$$

Therefore, $\operatorname{Tr}\left(H_{1}\right) \cup \operatorname{Tr}\left(H_{2}\right)=\left(V_{T_{1}} \cup V_{T_{2}}, E_{T_{1}} \cup E_{T_{2}},\left\langle\mu_{x}, \nu_{x}\right\rangle,\left\langle\mu_{y}, \nu_{y}\right\rangle\right.$ where

$$
\begin{gather*}
V_{T_{1}} \cup V_{T_{2}}=V_{1} \cup V_{2}-\left\{v_{a}\right\}_{a}-\left\{v_{b}\right\}_{b} \tag{3}\\
\left.E_{T_{1}} \cup E_{T_{2}}=E_{1} \cup E_{2}-\left\{e_{l s}\right\}_{l, s}-\left\{e_{u v}\right\}_{u, v}\right\}, \\
\left\langle\mu_{x}, \nu_{x}\right\rangle=\left\langle\max \left(\mu_{i}, \mu_{p}\right), \min \left(\nu_{i}, \nu_{p}\right)\right\rangle \text { and } \\
\left\langle\mu_{y}, \nu_{y}\right\rangle=\left\langle\max \left(\mu_{i j}, \mu_{p q}\right), \min \left(\nu_{i j}, \nu_{p q}\right)\right\rangle
\end{gather*}
$$

such that
a and b take at least one value of k
l and s take at least one value of p and u and v take at least one value of q.

From (2) and (3), it is clear that

$$
\begin{aligned}
& V_{T} \subseteq V_{T_{1}} \cup V_{T_{2}} \\
& E_{T} \subseteq E_{T_{1}} \cup E_{T_{2}}
\end{aligned}
$$

Hence $\operatorname{Tr}\left(H_{1} \cup H_{2}\right) \subseteq \operatorname{Tr}\left(H_{1}\right) \cup \operatorname{Tr}\left(H_{2}\right)$.
Note: Similarly, the following properties can also be verified.
(i) $\operatorname{Tr}\left(H_{1} \cap H_{2}\right) \supseteq \operatorname{Tr}\left(H_{1}\right) \cap \operatorname{Tr}\left(H_{2}\right)$

Every IFT of intersection of H_{1} and H_{2} contains intersection of IFTs of H_{1} and H_{2}.
(ii) $\operatorname{Tr}\left(H_{1} \ominus H_{2}\right) \supseteq \operatorname{Tr}\left(H_{1}\right) \ominus \operatorname{Tr}\left(H_{2}\right)$

Theorem 4.2. Transversals of addition of two IFDHGs is always a null IFHG. That is $\operatorname{Tr}\left(H_{1}+\right.$ $\left.H_{2}\right)=\emptyset$.
Corollary: $\operatorname{Tr}\left(H_{1}+H_{2}\right) \neq \operatorname{Tr}\left(H_{1}\right)+\operatorname{Tr}\left(H_{2}\right)$.
Proof: Let $H_{1}=\left(V_{1}, E_{1},\left\langle\mu_{i}, \nu_{i}\right\rangle,\left\langle\mu_{i j}, \nu_{i j}\right\rangle\right)$ and $H_{2}=\left(V_{2}, E_{2},\left\langle\mu_{p}, \nu_{p}\right\rangle,\left\langle\mu_{p q}, \nu_{p q}\right\rangle\right)$ be two IFDHGs with $i, j=1,2, \ldots, m$ and $p, q=1,2, \ldots, n$ vertices respectively.
Then, $H_{1}+H_{2}=\left(V_{1} \cup V_{2}, E_{1} \cup E_{2} \cup E^{\prime},\left\langle\mu_{i+p}, \nu_{i+p}\right\rangle,\left\langle\mu_{i j+p q}, \nu_{i j+p q}\right\rangle\right)$.
Hence, by Defnition 3.3 and Theorem 4.2, $\operatorname{Tr}\left(H_{1}+H_{2}\right)=\left(V_{T}, E_{T},\left\langle\mu_{t}, \nu_{t}\right\rangle,\left\langle\mu_{t^{\prime}}, \nu_{t^{\prime}}\right\rangle\right)$ where

$$
\left.\begin{array}{c}
V_{T}=V_{1} \cup V_{2}-\left\{v_{k}\right\}_{k}, k<n \tag{4}\\
E_{T}=\emptyset
\end{array}\right\},
$$

Also, $\operatorname{Tr}\left(H_{1}\right)=\left(V_{T_{1}}, E_{T_{1}},\left\langle\mu_{t_{i}}, \nu_{t_{i}}\right\rangle,\left\langle\mu_{t_{i j}}, \nu_{t_{i j}}\right\rangle\right)$ and $\operatorname{Tr}\left(H_{2}\right)=\left(V_{T_{2}}, E_{T_{2}},\left\langle\mu_{t_{p}}, \nu_{t_{p}}\right\rangle,\left\langle\mu_{t_{p q}}, \nu_{t_{p q}}\right\rangle\right)$ where

$$
\begin{gathered}
V_{T_{1}}=V_{1}-\left\{v_{a}\right\}_{a}, a<m, \\
E_{T_{1}}=E_{1}-\left\{e_{l s}\right\}_{l, s}, l, s<n, \\
\left\langle\mu_{t_{i}}, \nu_{t_{i}}\right\rangle=\left\langle\max \left(\mu_{i}\right), \min \left(\nu_{i}\right)\right\rangle, \text { and } \\
\left\langle\mu_{t_{i j}}, \nu_{t_{i j}}\right\rangle=\left\langle\max \left(\mu_{i j}\right), \min \left(\nu_{i j}\right)\right\rangle
\end{gathered}
$$

and

$$
\begin{gathered}
V_{T_{2}}=V_{2}-\left\{v_{b}\right\}_{b}, b<m, \\
E_{T_{2}}=E_{2}-\left\{e_{u v}\right\}_{u, v}, u, v<n, \\
\left\langle\mu_{t_{p}}, \nu_{t_{p}}\right\rangle=\left\langle\max \left(\mu_{p}\right), \min \left(\nu_{p}\right)\right\rangle, \text { and } \\
\left\langle\mu_{t_{p q}}, \nu_{t_{p q}}\right\rangle=\left\langle\max \left(\mu_{p q}\right), \min \left(\nu_{p q}\right)\right\rangle
\end{gathered}
$$

Therefore, $\operatorname{Tr}\left(H_{1}\right)+\operatorname{Tr}\left(H_{2}\right)=\left(V_{T_{1}} \cup V_{T_{2}}, E_{T_{1}} \cup E_{T_{2}} \cup E_{T}^{\prime},\left\langle\mu_{x}, \nu_{x}\right\rangle,\left\langle\mu_{y}, \nu_{y}\right\rangle\right.$
where

$$
\left.\begin{array}{c}
V_{T_{1}} \cup V_{T_{2}}=V_{1} \cup V_{2}-\left\{v_{a}\right\}_{a}-\left\{v_{b}\right\}_{b} \tag{5}\\
E_{T_{1}} \cup E_{T_{2}} \cup E_{T}^{\prime} \neq \emptyset
\end{array}\right\},
$$

such that a and b assume at least one value of k.
From (4) and (5),

$$
\begin{gathered}
V_{T} \subseteq V_{T_{1}} \cup V_{T_{2}} \\
E_{T} \neq E_{T_{1}} \cup E_{T_{2}} \cup E_{T}^{\prime}
\end{gathered}
$$

Hence $\operatorname{Tr}\left(H_{1}+H_{2}\right) \neq \operatorname{Tr}\left(H_{1}\right)+\operatorname{Tr}\left(H_{2}\right)$. This completes the proof.

Note: Similarly, the following properties can also be verified.
(i) $\operatorname{Tr}\left(H_{1} \otimes H_{2}\right) \neq \operatorname{Tr}\left(H_{1}\right) \otimes \operatorname{Tr}\left(H_{2}\right)$.
(ii) $\operatorname{Tr}\left(H_{1} \circ H_{2}\right) \neq \operatorname{Tr}\left(H_{1}\right) \circ \operatorname{Tr}\left(H_{2}\right)$.
(iii) $\operatorname{Tr}\left(H^{c}\right)=(\operatorname{Tr}(H))^{c}$.

5 Conclusion

In this paper, the operations on TIFDHG are defined and discussed. Also, some interesting properties like union, intersection, addition, structural subtraction, multiplication and complement are dealt with. There is abundant scope for future research on this topic. Further, the authors proposed to work on truncation of an IFDHG and its applications in coloring of intuitionistic fuzzy hypergraphs.

Acknowledgement

The author K. K. Myithili would like to thank University Grants Commission, Hyderbad, India for its financial support to the Minor Research Project F. NO: 4-4/2013-14 (MRP - SEM/UGC - SERO), dated 17.03.2014.

References

[1] Atanassov. K. T. (1999) Intuitionistic fuzzy sets - Theory and Applications, New York, Physica-verlag, Heidelberg.
[2] Atanassov K. T. (2002) On Index matrix representation of the Intuitionistic fuzzy graphs, Notes on Intuitionistic Fuzzy Sets, 4, 73-78.
[3] Atanassov, K. T. (2014) Index Matrices: Towards an Augmented matrix Calculus, Springer, Cham.
[4] Atanassov, K. T. (2012) On Intuitionistic fuzzy sets theory, Springer, Berlin.
[5] Berge, C. Graphs and Hypergraphs, North-Holland, NewYork, 1976.
[6] Mordeson, N. J. \& Nair, S. P. (2000) Fuzzy graphs and fuzzy hypergraphs, New York, Physica-verlag.
[7] Parvathi, R. \& Karunambigai, M. G. (2006) Intuitionistic fuzzy graphs, Proceedings of 9th Fuzzy Days International Conference on Computational Intelligence, Advances in soft computing: Computational Intelligence, Theory and Applications, Springer-Verlag, 20, 139150.
[8] Parvathi, R., Karunambigai, M. G \& Atanassov, K. T (2009) Operations on Intuitionistic fuzzy graphs, Proceedings of IEEE International Conference on Fuzzy Systems(FUZZIEEE), August 2009, 1396-1401.
[9] Parvathi, R., Thilagavathi, S. \& Karunambigai, M. G. (2009) Intuitionistic fuzzy hypergraph, Bulgarian Academy of Sciences, Cybernetics and Information Techonoliges, 9(2), 46-53.
[10] Parvathi, R, Thilagavathi, S. \& Karunambigai, M. G. (2012) Operations on intuitionistic fuzzy hypergraphs, International Journal of Computer Applications, 51(5), 46-54.
[11] Parvathi, R. \& Thilagavathi, S. (2013) Intuitionistic fuzzy directed hypergraphs, Advances in Fuzzy Sets and Systems 14(1), 39-52.
[12] Rosenfeld, A. (1975) Fuzzy graphs, Fuzzy sets and their applications, L.A.Zadeh, K.S.Fu and M.Shimura Eds, Academic Press, New York, 77-95.
[13] Goetschel, R., Jr. (1995) Introduction to fuzzy hypergraphs and hebbian structures, Fuzzy Sets and Systems, 76, 113-130.
[14] Goetschel, R., Jr., Craine, W.L. \& Voxman, W. (1996) Fuzzy transversals of fuzzy hypergraphs, Fuzzy Sets and Systems, 84, 235-254.
[15] Goetschel, R., Jr. (1998) Fuzzy colorings of fuzzy hypergraphs, Fuzzy Sets and Systems, 94, 185-204.
[16] Myithili, K. K, Parvathi, R. \& Akram, M (2014) Certain types intuitionistic fuzzy directed hypergraph, International Journal of Cybernatics and Machine Learning, DOI 10.1007/s13042-014-0235-1, 1-9.
[17] Shannon, A. \& Atanassov, K. (1994) A first step to a theory of the intuitionistic fuzzy graphs, Proc.of the First Workshop on Fuzzy Based Expert Systems(D. Lakov, Ed.), Sofia, Sept. 28-30, 59-61.

