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Abstract: Hypergraph is a graph in which an edge can connect more than two vertices. Di-
rected hypergraphs are much like standard directed graphs. In usual directed graph, standard
arcs connect a single tail node to a single head node whereas in the intuitionistic fuzzy directed
hypergraph, hyperarcs connect a set of tail nodes to a set of head nodes. A transversal is a line
that intersects two lines whereas in intuitionistic fuzzy directed hypergraph the transversals, is
a hyperarc that intersects two or more hyperedges. In this paper, operations on intuitionistic
fuzzy transversals of intuitionistic fuzzy directed hypergraphs are introduced and some of their
properties are discussed. Further, operations like union, join, intersection, structural subtraction,
composition and cartesian product on intuitionistic fuzzy directed hypergraphs are defined and
studied with minimal intuitionistic fuzzy transversals as the edge set.
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AMS Classification: 03E72

1 Introduction

The notion of graph theory was introduced by Euler in 1736. The theory of graphs is an extremely
useful tool for solving combinatorial problems in different areas such as geometry, algebra, num-
ber theory, topology, optimization and computer science. In order to expand the application base,
the notion of graph was generalized to that of a hypergraph, that is, a set V' of vertices together
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with a collection of subsets of V. In 1976, Berge [5] introduced the concepts of graph and hy-
pergraph. In [6], the concepts of fuzzy graph and fuzzy hypergraph were introduced. Fuzzy
graph theory is now finding numerous applications in modern science and technology. In 1986,
Atanassov[1] introduced the concept of intuitionistic fuzzy sets as a generalization of fuzzy sets.
Intuitionistic fuzzy graph and intuitionistic fuzzy hypergraph (IFHG) were introduced in [7, 9].
In [2, 8], index matrix representation and operations on intuitionistic fuzzy graphs have been
discussed. Hypergraphs have vast applications in system analysis, circuit clustering and pattern
recognition. In mathematical and computer science problems, hypergraphs also arise naturally
in important practical problems, including circuit layout, boolean satisfiability, numerical linear
algebra. Directed hypergraphs are a generalization of directed graphs (digraphs) and they can
model binary relations among subsets of a given set. In [16] transversals of intuitionistic fuzzy
directed hypergraphs (IFDHGs) and minimal transversals of IFDHG were initiated. In this way,
the authors got motivated to extend their work on operations in transversals of intuitionistic fuzzy
directed hypergraph. Hence in this paper, operations such as union, join, intersection, structural
subtraction, composition and cartesian product of transversals of intuitionistic fuzzy directed hy-
pergraphs (TIFDHGs) have been introduced and studied.

2 Notations and Preliminaries

H = (V,E) -Hypergraph with vertex set V" and edge set F/

h(H) - Height of a hypergraph H

F(H) - Fundamental sequence of H

C(H) - Core set of H

I(H) - Induced fundamental sequence of H

H(risi) - (74, 8;) - level intuitionistic fuzzy hypergraph

Tr(H) - Intuitionistic fuzzy transversals (IFT) of H

T - Minimal IFT of H

Lt Uy, - Degrees of membership and non-membership of the vertex v; of 7'r(H)
ity Vt; - Degrees of membership and non-membership of the edge e;; of Tr(H)

In this section, basic definitions relating to intuitionistic fuzzy sets, intuitionistic fuzzy graphs,
IFDHGs are dealt with.

Definition 2.1. [1] Let a set &' be fixed. An intuitionistic fuzzy set (IFS) V in E is an object of the
form V' = {(v;, u;(v;), v;(v;)) /v; € E}, where the function y; : £ — [0,1} and v; : E — [0, 1]
determine the degree of membership and the degree of non-membership of the element v; € E,
respectively and for every v; € E, 0 < p;(v;) + v3(v;) < 1.
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Definition 2.2. [4] The six cartesian products of the two IFSs V, V5 of V over E is defined as

~
X
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Il
—
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\.G

(v1,v2)

(v1,02) , i1 + pi2 — papig, v1.v2)vg € Vlavz € Vat,

(v1,V2) , i1 -2, 1 + 12 — Vi) |vy € Vi, 0g € Vol

(v1,v2) , min(p, p2), max(yl, vo))|v1 € Vi, vy € Vi,

(v1,v2)
v2)

’ u1+u2 V1+V2)>|1)1 c ‘/1’?]2 c ‘/'2}
It must be noted that V; x, V5 is an IFS, where s = 1,2, 3,4, 5, 6.

Definition 2.3. [17] An intuitionistic fuzzy graph (IFG) is of the form G = (V, E') where
(1) V = {v1,v9,..v,} such that y; : V. — [0,1] and v; : V — [0,1] denote the degrees of
membership and non-membership of the element v; € V' respectively and

0 < pi(vy) +viv;) <1

foreveryv, e Vi =1,2,...,n
(i) E CV x Vwhere p;; : VxV —[0,1]and v;; : V x V — [0, 1] are such that

Hij < i © pj
Vij SV Qv
and
0< iy +r; <1
where /1;; and v;; are the degrees of membership and non-membership of the edge (v;, v;); the

values of u; © p; and v; © v; can be determined by one of the cartesian products x4, s = 1,2, ...,6
for all 7 and 7 given in Definition 2.2.

Note: Throughout this paper, it is assumed that the fifth cartesian product

‘/1 X5 ‘/2 X5 ‘/3 X5 Vn - {((U17U27“ : ,Un) 7ma’X(,UJ1a,UJ27 e 7#71)’
min(ul,ug, e 7Vn)>|vl S ‘/17'02 € Vv?a T, Up € Vn}

is used to determine the degrees of membership (;.;;) and non-membership (v;;) of the edge e;;.

Definition 2.4. [9] An intuitionistic fuzzy hypergraph (IFHG) is an ordered pair H = (V, E)
where

(1) V = {v1, v, ...,v,}, is a finite set of intuitionistic fuzzy vertices,

(i) B = {F1, Es, ..., E,,} is a family of crisp subsets of V,

(iii) £ = {(vi, 1 (vi), v (v3)) = 5 (vi), v5(vi) = 0 and pj () + vy(z;) < 1}, =1,2,...,m,

(V) E; £ ¢,j=1,2,...m

W U, supp(Ej) =V,j=1,2,...m

Here, the hyperedges E; are crisp sets of intuitionistic fuzzy vertices, y;(v;) and v;(v;) denote
the degrees of membership and non-membership of vertex v; to edge F;. Thus, the elements of
the incidence matrix of IFHG are of the form (v;;, ;(v;), v;(v;)). The sets V, E are crisp sets.
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Notations:

1. Hereafter,(y(v;), v(v;)) or simply (u;, ;) denote the degrees of membership and non-member-
ship of the vertex v; € V, such that 0 < p; +1; < 1.

2. (u(eij), v(e;j)) or simply (u;;,v;;) denote the degrees of membership and non-membership of
the edge (v;,v;) € V x V, such that 0 < p;; + v;; < 1. That is, y;; and v;; are the degrees of
membership and non-membership of 7" vertex in j** edge.

Note: The support of an IFS V' in E is denoted by supp(E;) = {v;/pi; > 0 and v;; > 0}.

Definition 2.5. [11] An intuitionistic fuzzy directed hypergraph (IFDHG) H is a pair (V, E),
where V' is a non empty set of vertices and £ is a set of intuitionistic fuzzy hyperarcs; an in-
tuitionistic fuzzy hyperarc E; € FE is defined as a pair (¢ (E;), h (E;)), where t (E;) C V, with
t (E;) # 0, isits tail, and h (E;) € V —t (E;) is its head. A vertex s is said to be a source vertex in
Hif h(E;) # s, forevery E; € E. A vertex d is said to be a destination vertex in H if d # t (E;),
forevery I; € E.

Definition 2.6. [16] Let H = (V, E) be an intuitionistic fuzzy directed hypergraph. Suppose
E;,Ey e Fand0 < a < 1,0 < § < 1. The (o, §)-level is defined by

(Ej, By)>?) = {Ui € V/max(pug;(vi) > oz,min(l/g-(vi) < B} (1)

Definition 2.7. [16] Let H = (V, E) be an intuitionistic fuzzy directed hypergraph, for 0 <
(riys;) < h(H),let H™»% = (V7% E"%) be the (1, s;) - level intuitionistic fuzzy hypergraph
of H. The sequence of real numbers {1, s, ..., 7} S1, S2, ..., S}, such that 0 < r; < h,(H) and
0 <s; < h,(H), satisfying the properties:

) Ifr; <a<land0 < B < s; then E*? =),

() Ifri <a <7158 < B < siqq then E4F = Eris,

(iii) % C pritnsitt

is called the fundamental sequence of H, and is denoted by F'(H).

The core set of H is denoted by C'(H) and is defined by C'(H) = {H"™*, H"™* ... H™*"}.
The corresponding set of (7;, s;) - level hypergraphs H™»** C H"™*> C .... C H™"*" is called the
H induced fundamental sequence and is denoted by I(H). The (r,, s,,) level is called the support
level of H and the H™*" is called the support of H.

Definition 2.8. [16] Let H = (V, E)) be an intuitionistic fuzzy directed hypergraph. An intu-
itionistic fuzzy transversal T of H is an intuitionistic fuzzy subset of V' with the property that
TEiE) N AEER) o£ () for each A € F, where E; = max(y;;) and Ej, = min(v,;), for all
i=1,2,..,mand j = 1,2,...,n. Also y;; is the membership value of i'" vertex in j* edge and
v;; is the non-membership value of 7' vertex in ;' edge.

Definition 2.9. [16] A minimal intuitionistic fuzzy transversal T for H is a transversal of H with
the property that if 77 C 7, then 77 is not an intuitionistic fuzzy transversal of .
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3 Operations on transversals of IFDHG

Proposition 3.1. Let E be the fixed set and V' = {(v;, p;(v;), v;(v;))|v; € V'} be an IFS. Let
Vi, Vo, -, V, be n subsets of V' over E. Then the following six cartesian products of intuition-
istic fuzzy sets are:

(0)V1 x1 Vo xq Voo xq Vi = {{(v1, 09, -+ son) T s T vi)
=1 =1

lvy € Vi,v9 € Vo, -+ v, € Vi),
(/M/)‘/;l X2 ‘/i2 X2 ‘/23 X2 V;n = {<(U17v27 T 7Un) ) Z,ui - Zﬂiﬂj+
i=1 izj
D e Gl ) D S N s
itk ik
(_1)”*1 H iy H Vi>|'U1 € ‘/1702 S ‘/Qa T, Up € Vn}
=1 =1
(i11)V;, x3 Viy X3 Vigo.. x3 Vi, = {((v1,v2, -+ o), [ s Do v — > vivj+
=1 i=1 i#j
o vy — o+ (1) > vy vt
itk i#j#hen
(_1)n—1 H Vi>‘vl € ‘/17'02 S ‘/27 T, Up € Vn}
i=1
(1)) x4 Vo X4 Vi Xq Viy = {((v1, 09, -+, 0p) ,min(p, pio, -+« fin),
maX(Vl,VQ,"' ,Vn)>|’U1 S ‘/171)2 S ‘/27 » Un S Vn}
(U)‘/i X5 ‘/2 X5 ‘/3 X5 Vn = {<<U17U27 v 77}”) 7maX(M17M27 T 7/1’71)7
min(vy, va, -+ ,Un))|vy € V1,09 € Vo, o+ v, € V)
(UZ)‘/I X6 ‘/2 X6 ‘/3 X6 vn = {<(U17027' o 7U7L> ’ 17711 7%>
lv1 € Vi,v9 € Vi, oo+ v, € V1
Proof:
(i) Claim:V;, xo Vi, Xo Vig... xo Vi, = {((v1, 02, -+ ,0n), D0 i — D pafbi + D fifbifls — -+ -+
i=1 i7j itk
(=02 >0 i + (1) ] [T vi)lor € Vi,on € Vayoo- v, € Vi }is an
ik En =1 =1

intuitionistic fuzzy set.

When n = 2, the proof is obvious.
3 3

When n = 3, Vi, Xa Viy X2 Viy = {{(v1,02,03), 20 e — 30 pupy + D0 patjpue, [T vi)|vr €
i=1 i=] i£j#k i=1

Vi,ve € Vh,u3 € V3. The proposition is true for n = 3. Assume that the proposition is

true for n = m — 1. Therefore, for n = m, (V;; Xo Vi, Xo Viy--- Xo V;, ) X2 V; =
{{(v1,v2, - Ome1,Um) s D0 = 3 i o = (=1 ST pag e (—=1)" !
i=1 iz ik ik
LT t, [T vi)lvn € Vi, v0 € Vi, -+ L0y, € Vi
=1 =1
Obviously > f1; — 3 papty + D2 prapjp — -+ (=" [T i+ [T > 0.
i=1 i7=j i#j2k i=1 i=1
Now to prove 3- i — 3° pipty + > it — -+ (=" [T+ [T < 1.
i=1 i7j itj 2k i=1 i=1
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Forn = 2,

0 <.
< 1+ g — piy-fio + vy.ve, since p, g € [0, 1]
< i+ pg — papz + (1= pa) (1 — pa2)
< plo = plaepe + 1 — g — po + e
=1.

Forn = 3,

0 < 1i.513
< pun o g — e — f2.fiy — [3-fy Tt o fhy — Haflefls + V1.V2. V3,
since p; € [0,1], i =1,2,3.
< g+ pio 3 — paeply — floofiy — pa.pn + py e i — papieps 4 (1 — pn) (1 — p2) (1 — p3)
<+ po A+ s — paflo = Hofiy — Ha-fla Tt pfe iy — faplepls + 1 — po — pi 4 paplo — s

+ Hafs + papi — p-fh2. 3
=1.

Assume that the result holdsgood for n = m — 1.

0< Vi.Vg s Vp—1

m—1
< Z =D i > e =+ (DTS gy, + [ [
=1

=1 i#] i#j7k i FEm—1
=1.

3

Therefore for n = m,

(@)
A
=

s

.
I
—

Sy Uy
< Z = i+ Y gk — o+ (DT gy, + [ [
i=1 i#] i#j#k i Am i=1
= 1.
Hence the result is true for all n.
The other results can be proved in a similar way. U

Throughout this chapter the following notations were considered.
Let H1 = (‘/1, El, <Mti7 Vti>7 <Mtij7 Vti]’>> and HQ = (‘/2, EQ, <Mt;7 Vt;>7 <Mt;j7 Vt;;’)) be two IFDHGs.
Then 7T} and 75 be the transversals of H; and Hs respectively.
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Definition 3.1. The union of T} and 75, denoted by 7T} U T, is defined as

T=T1UTy ={ViUVa, By U Ey, {1, = i, Ve = Visutr)s (Htpe = Htijutl, > Virs = Vtijut;)}

<:utiayti> if ’Ue‘/l_‘/é
(e, Vi) = (,ut;, Vt;> if velVo—-V;
(max(py,, pryr), min(vy,, v ) if v e VINV,

<lutij’ Vti]'> if €ij € E1 — EQ

(g, v1,) = <Mt;ja Vt;j> if eij € By — By
trsy Vitrs/ — . .
<maX(:utij7/th§j)7 mln(Vt“a Vt;j)> if €ij € EiNE,
(0,1) otherwise

Example 1. Consider an IFDHGs, H; = (Vi, Ey) and Hy = (V5, Es). Its adjacency matrix is
given by

Ey Ey
vy [ (0.4,0.6) (0,1)
va | (0.6,0.2) (0.6,0.2)
vs| (0.3,0.3) (0.3,0.3)
(on (0,1) (0.5,0.4)
and

Ey Ey E3
vy [ (0.5,0.4) (0,1) (0,1)
ve | (0.3,0.5) (0.3,0.5) (0,1)
U3 (0,1) (0.4,0.3) (0.4,0.3)
Uy (0,1) (0,1) (0.6,0.1)

Hy =

The corresponding graph is shown in Figure 1.

T T Ty
v [(05,04)  (0,1) (0,1)
w| (0,1) (06,02  (0,1)

)= 1 01 01 (04,03
u \ (0.6,0.1)  (0.6,0.1) (0.6,0.1)
and
T T
v (0,1 (0.5,0.4)
oy — 2| 0602 ©.)

vs| (0,1)  (0.4,0.3)
va \ (0.6,0.1)  (0.6,0.1)

The corresponding graph is shown in Figure 2.
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Graph of H; Graph of Hy
vg (0.6,0.2)

v3(0.4,0.3)
Tr (Hy U Hy) Tr (H,) UTr(Hy)
1)2.(0.6, 0.2) Vg gO._6,£.2)
>~ (0.6,0.1) ~0.6,0.1)
\ (0-6, 0 1) \
(0.6,0.1) A T - Ny
UVl g o> T ---. s s ~-o -
(0.5,0%) . S---%yy U1 s 0.6,0.1)
. (0.6,0.1) (0.5,0.4) \ Q\\//
\ \ @ﬁ)'\/[
\. \. _ 7
v3(0.4,0.3) v3(0.4,0.3)

Figure 2: Transversals of Union of IFDHG.

Definition 3.2. The intersection of T} and 15, denoted by 7 N 15, is defined as
T=TiNTy, ={ViNVa, B\ 0 Ea, {11, = fit,ns Ver = Visritr) s (Htpe = Htiintl, Virs = Vtijmt;)}
and defined by
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(e, v,y i veVy =V,
(bt v,) = (g, v) it veVa—V;
(min(py,, pyr), max(vy,, vye)) if veVinvs,
(s Veiy) if eij € By — Ey
<,ut;j, Vt;j> if €ij € E, — E;
(min(pu,;, pu, ), max(vy,;, v ) if eij € By N Ey
(0,1) otherwise

</j’trs ? Vt'r's> =

Definition 3.3. The join of 17 and 75, denoted by 17 + T5, is defined as T" = T + 15 =
{vl U ‘/27 EyUE,U El: <Mt¢+t;7 Vtﬂrt;)v <:U’t¢j+t§j7 Vtij+t§j>} and defined by

(e 40) (V) = (pe; V ) (v) if v € ViUV,
(V) (V) = (i, A ) (v) if v € VIU T,
(btiyre,) (Vivg) = (peg; V e (vivg) i f vivy € Ex U By
= (e, (vi) -y (v5)) if viv; € B
(Ve ) (Vivg) = (Ve A v )(vivg) if viv; € Ex U By
= (v, (vi) - vy, (v))) if viv; € B
Definition 3.4. The structural subtraction of Ty and T5, denoted by T} & T5, is defined as
T =TT, = {Vi — Vo, (u,, ), (iut,., ,..)} where © — * is the set theoretical difference
operation and
(i, , Ve, if v; € Vi

(fe,, Ve,) = (i, ve;) if v € Vo
(0,1) otherwise.

<M v >: </"Ltij7ytij> for v, =v; €V =V,
trsy Yirs US:UJGM—‘/Q

where V; — V, = ().

Definition 3.5. The cartesian product of T7 and T, denoted by 77 x T5, is defined as T' =
Ty xTp, = (V,E') where V. = Vi, x Vo and B = {(u,u;), (u,v;) : v € Vi,ujv; € Er} U
{(u;,w)(vi, w) : w € vy, wv; € Ey}. Then,

(i) (s ) = (pe-1) (1) for every (us, u;)in V and
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(Vesxe ) (i, uj) = (vi,.vy ) (uy) for every (ug, u;)in V.

(butiy s, ) (s ), (u, 05) = (g, (). ey ) (vivg) for every u € Vi and ujv; € By
(Ve ) (w, ug), (u, v5) = (v, ()., ) (viv;) for every u € Vi and ujv; € Eo
(Kutiy ;) (i, w), (V3 w)) = (pe, (W), ) (uiv;) for every w € Vo and ujv; € By

(Veiy s, ) (i, w), (vi, w)) = (v, (w).1, ) (ugv;) for every w € Vs and w;v; € Ey

Definition 3.6. The composition of T} and T5, denoted by T o T5, is defined as T' = T o T =
(VixVa, E)where V = Vi xVyand E = {(u, u;), (u,v;) : w € Vi, u;v; € EypU{(w;, w)(v;, w) :
w € vy, wv; € By} U{(u;,uy)(vi,v5) - wv; € Ey,u; # v;}. Then,

(10t ) (i wg) = (pue; -y ) (uy) for every (ug, uy)in Vi x V5 and

(Veyorr ) (wiy uz) = (v, ) (uy) for every (u, u;)in Vi X Va.

(Htijorr, ) (s ), (s v5) = (p, (). g, ) (ujvz) for every w € Vi and ujv; € Ep

(Veiyorr, ) (u, wz), (u, v5) = (v, (u).v,, ) (uyv;) for every u € Vi and ujv; € Es

(btiyory, ) (i, w), (vi, w)) = (pae, (w)-par,, ) (ugv;) for every w € Vs and w;v; € Ey

(Veijotr, ) (i, w), (vi, w)) = (v, (w).14,,) (wiv;) for every w € V3 and w;v; € By

(hutiyorr, ) (i wg), (Vi v5)) = (g (wg) - paeg (v7)- e, ) (wivi) for every (ui, wy), (vi,v5) € E— E

(Veiyorr, ) (i, ), (Vi v5)) = (v (wg).ve (vg) v, ) (wivg) for every (ug, uy), (vi,v;) € E — E

where £ = {(u,u; ), (u,v;) : u € Vi, u;v; € Eo} U{(u;, w)(v;, w) : w € vo,u0; € Ey}.

4 Properties of TIFDHGs

Theorem 4.1. Tr(H, U Hy) C Tr(H,) U Tr(H,). That is, union of IFTs of H; and H, contains
the IFT of union of H; and H,.
Proof: Let Hy = (Vi, Ex, (14, Vi), (g, vij)) and Hy = (Va, Ea, (f4p, Vp), (hpq, Vpq)) be two IFD-
HGs with i, = 1,2,...,mand p,q = 1,2, ..., n vertices respectively.

Then, Hy U Hy = (V1 U Va, By U Es, (piup, Viop) s (Hij)uwe) s Vijowa)))-
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Hence, Tr(H, U Hy) = (V, Eq, (e, ), (e, ver)) Where

2)

Vr =ViUVy —{vg e, b <m
Er=EUEy —{eptpqg g <n ’

<:uta Vt) - <ma’x(“iaﬂp)7min(yia VP)) and
(per, vir) = (max(pig, fpg), Min(Vij, Vpq))

AISO’ TT(H1> - (VT17 ET17 <Mti7 Vti>7 </’Ltij7 Vtij>) and TT<H2) — (VT27 ETzJ <Mtp7 th>7 </’Ltpq7 thq>)
where

VT1 = ‘/1 - {Ua}aaa <m,
Er, = E; —{eis}is, 1, s <,
(te; ve;) = (max(p;), min(v;)) and

</‘Ltij7 Vtij> = <max(ﬂij)7 mln(%]»
and
VTQ - ‘/2 - {Ub}b7 b <m,
ET2 = E2 - {euv}u,va u, v <n,

(s 11,) = (maz(yt,), min(v,)) and

<:“tpq ) thq> = (maz(tyq), min(vp,))

Therefore, T'r(H;) U Tr(Hy) = (Vi U Vi, Epy U Ery, (fia, V), 1y, vy) Where

Vi UV = ViU Vs — {va}a — {vb}b} | -

ET1 U ET2 = El U EZ - {els}l,s - {euv}u,v
(s Vi) = (max (g, p1p), min(v;, v,)) and
{1y vy)= (max (i, pipg), min(vij, Vpq))

such that

a and b take at least one value of &
[ and s take at least one value of p and
u and v take at least one value of q.

From (2) and (3), it is clear that

Vi CVp, UV,
Er C Ep U Ep,
Hence TT(H1 U HQ) Q TT’(Hl) U T?"(HQ) L]

Note: Similarly, the following properties can also be verified.

(1) Tr(HyNHy) DTr(Hy) NTr(Hs)

Every IFT of intersection of H; and H, contains intersection of IFTs of H; and H,.
(ii)) Tr(H, © Hy) 2 Tr(Hy) © Tr(Hs)
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Theorem 4.2. Transversals of addition of two IFDHGs is always a null IFHG. That is 7'r(H; +
Hs) = 0.

Corollary: Tr(H, + Hs) # Tr(Hy) + Tr(Hs).

Proof: Let Hy = (Vi, Ev, (i, vi), (pij, vi)) and Hy = (Va, Ea, (pp, 1), (tipg, Vpg)) be two
IFDHGs with 7,5 = 1,2,...,mand p,q = 1,2, ..., n vertices respectively.

Then, Hy + Hy = (Vi U Vo, By U Ey U B, (fitp,s Vitp)s (Hijtpgs Vij+pa))-

Hence, by Defnition 3.3 and Theorem 4.2, Tr(H, + Hs) = (Vir, E7, (i, ), (i, Vo)) Where

“)

VT:‘/lU‘/Q—{Uk}k,k<n
Er=0]"

(pes ve) = (max(pi, pp), min(v;, 1)), and
<:ut” Vt’> = <07 O>

Also, Tr(Hl) = (VTl’ ETl? </’1’ti7 Vti>7 <lutij7 Vtij>) and TT(HZ) = (VT27 ETQ’ <th> th>v <,Utpq7 thq>)
where

Vi, = Vi —{vat}a,a <m,
Er, = E1 —{eishs, I, s <,
(11,5 ve,) = (maz(p;), min(v;)), and
(Htys Vi) = (maz(pi;), min(vi;))

and

VTQ = ‘/2 - {Ub}b, b <m,
ET2 = E2 - {euv}u,va u,v<n,
(e, vr,) = (max(p,), min(v,)), and

<thq ) thq> = (maz(tyq), min(vp,))

Therefore, Tr(H;) + Tr(Hz) = (Vi UV, Ery U Ep, U ElL (fa, Va) s (fys Vy)
where

VTl U VTQ - ‘/1 U ‘/2 - {Ua}a - {Ub}b (5)
En UBEL, UEL 0|
<Mﬂc7 V:C) = <maw(:uia :up)a min(yi, Vp)>> and
(hys vy) = (max iz, fpg), Min(Vij, Vpq))
such that ¢ and b assume at least one value of k& .
From (4) and (5),
Vi C Vi, UV,
Er # Er, UEr, UEL
Hence T'r(H, + Hs) # Tr(H,) + Tr(H,). This completes the proof. O
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Note: Similarly, the following properties can also be verified.
(i) Tr(H, ® Hs) # Tr(Hy) @ Tr(Hs).

(ii) Tr(Hy o Hy) # Tr(Hy) o Tr(Hs).

(i) Tr(H®) = (Tr(H))".

5 Conclusion

In this paper, the operations on TIFDHG are defined and discussed. Also, some interesting prop-
erties like union, intersection, addition, structural subtraction, multiplication and complement are
dealt with. There is abundant scope for future research on this topic. Further, the authors pro-
posed to work on truncation of an IFDHG and its applications in coloring of intuitionistic fuzzy
hypergraphs.
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