Role of clans in the proximities of intuitionistic fuzzy sets

¹S.K.Samanta, ²K.C.Chattopadhyay ²U.K.Mukherjee and ¹Tapas Kumar Mondal ¹Department of Mathematics, Visva-Bharati University Santiniketan-731235, W.Bengal, INDIA

e-mail: root@vbharat.ernet.in

FAX: (91) (03463) 52 672

²Department of Mathematics, Burdwan University Burdwan-713104, W.Bengal, INDIA

Abstract: Definitions of filters, grills, clans and proximities are given in intuitionistic fuzzy setting. It is proved that proximities of intuitionistic fuzzy sets is a clan generated structure.

Keywards: Intuitionistic fuzzy sets, filters, grills, clans and proximities of intuitionistic fuzzy sets.

0. Introduction

In [1] K.Atanassov and S.Stoeva defined intuitionistic fuzzy sets. Later on several authors worked on intuitionistic fuzzy sets. Among others mention may be made of Atanassov [2], [3], [4], Burillo and Bustince [5], [6], D.Çoker [8], [9] and Samanta et. el. [10], [11]. Atanassov and Bustince mainly worked on several operators and algebraic properties of intuitionistic fuzzy sets; where as D.Çoker, Samanta et. el. worked on topological structures of intuitionistic fuzzy sets.

In [7] Chattopadhyay. Samanta and Mukherjee fuzzified an important result of classical proximity by proving that proximities of fuzzy sets are clan generated structer. In this paper we define a preproximity and a proximity of intuitionistic fuzzy sets and prove that proximities of intuitionistic fuzzy sets are clan generated structures.

1. Preliminaries and Notations

Definition 1.1 [1] Let X be a nonempty fixed set. An intuitionistic fuzzy set (IFS in short) A is

an object having the form

$$A = \{ \langle x, \mu_A(x), \nu_A(x) \rangle : x \in X \}$$

where the functions $\mu_A, \nu_A : X \to I$ denote the degree of membership (namely $\mu_A(x)$) and the degree of nonmembership (namely $\nu_A(x)$) of the element $x \in X$ to the set A respectively and $0 \le \mu_A(x) + \nu_A(x) \le 1$, for each $x \in X$.

Example 1.2 [1] Every fuzzy set A on a nonempty set X is obviously an IFS having the form

$$A = \{ \langle x, \mu_A(x), 1 - \mu_A(x) \rangle : x \in X \}.$$

Notation 1.3 IFSs are denoted by A, B, C, D etc with (or without) suffix. Set of all IFSs on X are denoted by I(X).

Definition 1.4 [1] Let $A, B \in I(X)$. Then

- (a) $A \subset B$ iff $\mu_A(x) \leq \mu_B(x)$ and $\nu_A(x) \geq \nu_B(x), \forall x \in X$,
- (b) A = B iff $A \subset B$ and $B \subset A$,
- (c) $A^c = \{ \langle x, \nu_A(x), \mu_A(x) \rangle : x \in X \},$
- (d) $A \cap B = \{ \langle x, \mu_A(x) \land \mu_B(x), \nu_A(x) \lor \nu_B(x) >: x \in X \},$
- (e) $A \cup B = \{ \langle x, \mu_A(x) \lor \mu_B(x), \nu_A(x) \land \nu_B(x) >: x \in X \}.$

Definition 1.5 [8] $\tilde{0} = \{ \langle x, 0, 1 \rangle : x \in X \}$ and $\tilde{1} = \{ \langle x, 1, 0 \rangle : x \in X \}$.

Corollary 1.6 [8] Let $A, B \in I(X)$. Then

- (a) $(A \bigcup B)^c = A^c \cap B^c$,
- (b) $(A \cap B)^c = A^c \bigcup B^c$,
- $(c) (\dot{1})^c = \dot{0},$
- (d) $(\hat{0})^c = \hat{1}$.

Definition 1.7 For $x \in X$, $p \in (0,1]$, $q \in [0,1)$ with $p + q \le 1$, an IFS A s.t.

$$\mu_A(x) = p, \ \nu_A(x) = q$$

and

$$\mu_A(y) = 0, \ \nu_A(y) = 1, \ \forall \ y \neq x \in X$$

is called an intuitionistic fuzzy point (in short IFP) on X. This is denoted by $(p,q)_x$.

Notation 1.8 We denote J as an indexing set.

2. Filter, Grill, Prime filter of intuitionistic fuzzy sets

Definition 2.1 A stack S of IFSs on X is a subset of I(X) such that $A \supset B \in S \Rightarrow A \in S$.

Definition 2.2 A filter F of IFSs on X is a subset of I(X) satisfying the following:

 $F \neq \phi$

 $A \supset B \in F \Rightarrow A \in F$

 $A, B \in F \Rightarrow A \cap B \in F$.

A filter F of IFSs is called proper if $\tilde{0} \notin F$.

Definition 2.3 A Grill G of IFSs on X is a subset of I(X) satisfying the following:

 $\tilde{0} \notin G$

 $A\supset B\in G\Rightarrow A\in G$

 $A \cup B \in G \Rightarrow A \in G \text{ or } B \in G.$

A grill G of IFSs is called proper if $G \neq \phi$.

Definition 2.4 A stack V of IFSs on X is a prime filter of IFSs on X if it is a filter of IFSs on X and as well as a grill of IFSs on X.

A maximal proper filter U of IFSs is called an ultrafilter of IFSs.

 $\phi(X) = \text{Set of all filters of IFSs on } X.$

 $\Gamma(X) = \text{Set of all grills of IFSs on } X.$

 $\omega(X) = \text{Set of all prime filters of IFSs on } X.$

Example 2.5 Let $A \in I(X)$. Define $F \subset I(X)$ by

$$F = \{B \in I(X) : B \supset A\}.$$

Now clearly $F \neq \phi$. Let $C \supset B \in F$. Then $C \supset B \supset A$ and hence $C \in F$. Again let $B, C \in F$ and so $\mu_B(x) \geq \mu_A(x)$, $\nu_B(x) \leq \nu_A(x)$ and $\mu_C(x) \geq \mu_A(x)$, $\nu_C(x) \leq \nu_A(x)$. It follows that $\mu_B(x) \wedge \mu_C(x) \geq \mu_A(x)$ and $\nu_B(x) \vee \nu_C(x) \leq \nu_A(x)$. Thus $B \cap C \supset A$ and therefore $B \cap C \in F$. Consequently F is a filter of IFSs.

Example 2.6 Let p > 0 and X be a nonempty set. Then

$$V_{p_x} = \{ A \in I(X) : \mu_A(x) \ge p \}$$

is a prime filter of IFSs on X.

Proof. Let $A \supset B \in V_{p_x}$. Then $\mu_A(x) \ge \mu_B(x) \ge p$ and hence $A \in V_{p_x}$. Now $0 = \{\langle x, 0, 1 \rangle : x \in X\} \notin V_{p_x}$. Again let $A, B \in V_{p_x}$. Then $A \cap B \in V_{p_x}$. Finally suppose that $A \cup B \in V_{p_x}$. Therefore $\mu_{A \cup B}(x) \geq p$ that is $\mu_A(x) \geq P$ or $\mu_B(x) \geq p$. It follows that $A \in V_{p_x}$ or $B \in V_{p_x}$.

Hence V_{ρ_x} is a prime filter of IFS on X.

Remark 2.7 It is to be noted that for IFP $(p,q)_x$, the collection

$$V_{(p,q)_x} = \{ A \in I(X) : (p,q)_x \tilde{\in} A \}$$

is a filter but in general not a prime filter. In fact, it may not be a grill. To justify this take an ordinary set $X \neq \phi$. Let p = 0.2, q = 0.3 and a fixed $x \in X$. Let $A, B \in I(X)$ with $\mu_A(x) = 0.25$, $\nu_A(x) = 0.35$, $\mu_B(x) = 0.15$, $\nu_B(x) = 0.25$. Then $A \bigcup B \in V_{(p,q)_x}$ but $A \notin V_{(p,q)_x}$ and $B \notin V_{(p,q)_x}$.

Theorem 2.8 Let F^1 , $F^2 \in \phi(X)$ and G^1 , $G^2 \in \Gamma(X)$. Then

- (1) $F^1 \cap F^2 \subset G^1 \Rightarrow F^1 \subset G^1 \text{ or } F^2 \subset G^1$
- (2) $F^1 \subset G^1 \cup G^2 \Rightarrow F^1 \subset G^1 \text{ or } F^1 \subset G^2.$

Proof. (1) If possible suppose that $F^1 \not\subset G^1$ and $F^2 \not\subset G^1$. Then there exists $A_1 \in F^1$ such that $A_1 \not\in G^1$ and $A_2 \in F^2$ such that $A_2 \not\in G^1$. So $A_1 \bigcup A_2 \not\in G^1$ but $A_1 \bigcup A_2 \in F^1 \cap F^2$ ——a contradiction.

(2) If possible suppose that $F^1 \not\subset G^1$ and $F^1 \not\subset G^2$. Then there exists $A_1 \in F^1 - G^1$ and $A_2 \in F^1 - G^2$ and hence $A_1 \cap A_2 \in F^1 \subset G^1 \cup G^2$. So $A_1 \cap A_2 \in G^1$ or $A_1 \cap A_2 \in G^2$ which implies $A_1 \in G^1$ or $A_2 \in G^2$ —a contradiction.

This completes the proof.

Theorem 2.9 Intersection of filters of IFSs is a filter of IFSs.

Proof is straightforward.

Theorem 2.10 Union of grills of IFSs is a grill of IFSs.

Proof. Let $G = \bigcup \{G^j : j \in J, G^j \in \Gamma(X)\}$. Since $\tilde{0} \notin G^j$, $\forall j \in J, \tilde{0} \notin G$. Also clearly $A \supset B \in G$ implies $A \in G$ and $A \bigcup B \in G$ implies $A \bigcup B \in G^j$ for some $j \in J$ and it follows $A \in G^j$ or $B \in G^j$. Therefore $A \in G$ or $B \in G$. Hence G is a grill of IFSs on X.

Definition 2.11 For each stack S of IFSs, define $dS = \{A : A^c \notin S\}$.

Theorem 2.12 If S (with or without suffixes) is a stack of IFSs, F is a filter of IFSs and G is a grill of IFSs on X, then followings hold:

(1) $dS^1 \subset dS^2$ if $S^1 \supset S^2$,

- (2) d(dS) = S,
- $(3) \ d(\bigcup S^i) = \bigcap dS^i,$
- $(4) \ d(\bigcap S^i) = \bigcup dS^i,$
- (5) dF is a grill of IFSs,
- (6) dG is a filter of IFSs.

Proof. (1) Let $A \in dS^1$. That is $A^c \notin S^1$. This implies $A^c \notin S^2$. That is $A \in dS^2$. Thus $dS^1 \subset dS^2$.

- (2) Let $A \in I(X)$. Then $A \in d(dS) \Leftrightarrow A^c \notin dS \Leftrightarrow A \in S$. Thus d(dS) = S.
- (3) Let $A \in d(\bigcup S^i)$. Then $A \in d(\bigcup S^i) \Leftrightarrow A^c \notin \bigcup S^i \Leftrightarrow A^c \notin S^i$, $\forall i \in J \Leftrightarrow A \in dS^i$, $\forall i \in J \Leftrightarrow A \in dS^i$. Thus $d(\bigcup S^i) = \bigcap dS^i$.
- (4) Now $A \in d(\bigcap S^i) \Leftrightarrow A^c \notin \bigcap S^i \Leftrightarrow A^c \notin S^{i_o}$, for some $i_o \Leftrightarrow A \in dS^{i_o} \Leftrightarrow A \in \bigcup dS^i$. Thus $d(\bigcap S^i) = \bigcup dS^i$.
- (5) Since $\tilde{1} \in F$, $(\tilde{0})^c \in F$ and hence $\tilde{0} \not\in dF$. Let $A \supset B \in dF$. Then $B^c \not\in F$ and it follows $A^c \not\in F$ for $A^c \subset B^c$. Therefore $A \in dF$. Again let $A \bigcup B \in dF$. That is $(A \bigcup B)^c \not\in F$. Thus $A^c \cap B^c \not\in F$ and it follows $A^c \not\in F$ or $B^c \not\in F$. Therefore $A \in dF$ or $B \in dF$. So dF is a grill of IFSs.
- (6) Since $0 \notin G$, that is $(1)^c \notin G$ and it follows $1 \in dG$. Let $A \supset B \in dG$. Thus $B^c \notin G$ and consequently $A^c \notin G$ and it follows $A \in dG$. Further let $A, B \in dG$. That is $A^c \notin G$ and $B^c \notin G$ and it follows $A^c \bigcup B^c \notin G$ and that is $(A \cap B)^c \notin G$ and therefore $A \cap B \in dG$. Thus dG is a filter of IFSs.

Theorem 2.13 If F is a filter of IFSs and G is a grill of IFSs such that $F \subset G$ then there exists a prime filter V of IFSs such that $F \subset V \subset G$.

Proof. Let Γ be a collection of subsets of I(X) defined by

 $\forall \alpha \subset I(X), \ \alpha \in \Gamma \Leftrightarrow F \subset \alpha \text{ and } \forall A_1, A_2, \dots, A_m \in \alpha \Leftrightarrow A_1 \cap A_2 \cap \dots \cap A_m \in G$. Clearly (Γ, \subset) is a partially ordered set and $F \in \Gamma$. Also if $\alpha \in \Gamma$ then $F \subset \alpha \subset G$. Now one can check (by using Zorn's lemma) that (Γ, \subset) has a maximal element. Let V be such element. Obviously $F \subset V \subset G$.

Let $A_1, A_2 \in V$. Then $V \cup \{A_1 \cap A_2\} \in \Gamma$ and hence by maximality of V, $A_1 \cap A_2 \in V$. Let $A \supset B \in V$. Then $V \cup \{A\} \in \Gamma$ and again by maximality of V, $A \in V$. Thus V is a filter of IFSs on X. Let $A, B \in I(X)$ such that $A \notin V$ and $B \notin V$. Then both of $V \cup \{A\}$ do not belong to Γ . Hence one can find $A_1, \ldots, A_m \in V$ and $B_1, \ldots, B_n \in V$ such that $A \cap A_1 \cap \ldots \cap A_m \cap B_1 \cap \ldots \cap B_n \notin G$ and $A_1 \cap \ldots \cap A_m \cap B_1 \cap \ldots \cap A$

This shows that $A \cup B \notin V$. Thus V is a prime filter of IFSs. This completes the proof.

Corollary 2.14 Let $G \subset I(X)$. Then G is a grill of IFSs on X iff it is a union of prime filter of

IFSs on X.

Proof. Since an arbitrary union of grills of IFSs is a grill of IFSs, it follows that if G is an union of prime filters of IFSs then it is a grill of IFSs.

Conversely suppose that G is a grill of IFSs. Let $A \in G$. Set

$$F = \{ B \in I(X) : A \subset B \}.$$

Then F is a filter of IFSs and $F \subset G$. So by above Theorem, there exists a prime filter V of IFSs on X such that $F \subset V \subset G$ and hence $A \in V \subset G$. Thus G is an union of prime filters of IFSs on X.

3. Proximities of IFSs

Definition 3.1 A binary relation Δ on I(X) is said to be a basic preproximity of IFSs on X if it satisfies the following conditions:

- (1) $0 \notin \Delta(A), \forall A \in I(X),$
- (2) $\Delta = \Delta^{-1}$.
- (3) $A \cup B \in \Delta(C) \Leftrightarrow A \in \Delta(C)$ or $B \in \Delta(C)$ where $\Delta(A) = \{B \in I(X) : (A, B) \in \Delta\}$.

A binary relation π on I(X) is said to be a basic proximity of IFSs on X if it is a preproximity of IFSs and X satisfies the condition

$$A \cap B \neq \tilde{0} \Rightarrow (A, B) \in \pi.$$

When $\Delta(\pi)$ is a preproximity (proximity) of IFSs on X then X is called the reference set of $\Delta(\pi)$ and is denoted by $X(\Delta)(X(\pi))$.

Set of all basic preproximities (proximities) of IFSs on X is denoted by m(X)(M(X)).

In the sequel, we shall, in general, drop the prefix 'basic' and just talk of preproximities of IFSs and proximities of IFSs. The pair $(X, \Delta)((X, \pi))$ is called a preproximity space of IFSs (proximity space of IFSs) whenever $\Delta \in m(X)(\pi \in M(X))$.

Example 3.2 Let $T = \{(A, B) \in I(X) \times I(X) : A \cap B \neq \tilde{0}\}$. Then $(A, \tilde{0}) \notin T$ and $(A, B) \in T \Rightarrow (B, A) \in T$. Now

$$(A,B\bigcup C)\in T \iff A\bigcap (B\bigcup C)\neq \tilde{0}$$

$$\Leftrightarrow (A\bigcap B)\bigcup (A\bigcap C)\neq \tilde{0}$$

$$\Leftrightarrow A\bigcap B\neq \tilde{0} \text{ or } (A\bigcap C)\neq \tilde{0}$$

$$\Leftrightarrow (A,B)\in T \text{ or } (A,C)\in T.$$

Theorem 3.3 Let Δ^1 , $\Delta^2 \in m(X)$ and $A, B \in I(X)$. Then followings hold: (1) $\Delta^1(A \bigcup B) = \Delta^1(A) \bigcup \Delta^1(B)$,

$$(2) (\Delta^1 \bigcup \Delta^2)(A) = \Delta^1(A) \bigcup \Delta^2(A),$$

(3)
$$A \subset B \Rightarrow \Delta^1(A) \subset \Delta^2(B)$$
.

Proof is straightforward.

Theorem 3.4 Let Δ be a binary relation on I(X). Then Δ is a preproximity of IFSs on X if and only if $\Delta = \Delta^{-1}$ and $\Delta(A) \in \Gamma(X)$, $\forall A \in I(X)$.

Proof is straightforward.

Definition 3.5 Let $\Delta \in m(X)$, $A \in I(X)$. Then $B \in I(X)$ is called a neighbourhood (in short nbd) of A with respect to Δ if $B^c \notin \Delta(A)$.

The collection of all nbds of A w.r.t. Δ is denoted by $N(\Delta, A)$.

Theorem 3.6 Let $\Delta, \Delta^1, \Delta^2 \in m(X)$. Then followings hold:

- (1) $N(\delta, \tilde{0}) = I(X)$,
- (2) if $B \in N(\Delta, A)$, $B^1 \in N(\Delta, A^1)$, then $B \bigcup B^1 \in N(\Delta, A \bigcup A^1)$,
- (3) $N(\Delta, A \cup B) = N(\Delta, A) \cap N(\Delta, B)$,
- (4) $N(\Delta, A) \subset N(\Delta, A^1)$ if $A^1 \subset A$.
- (5) $N(\Delta^1 \bigcup \Delta^2, A) = N(\Delta^1, A) \cap N(\Delta^2, A),$
- (6) $N(\Delta^1, A) \subset N(\Delta^2, A)$ if $\Delta^2 \subset \Delta^1$.

Proof. (1) Since $A \notin \Delta(\tilde{0})$, $\forall A \in I(X)$, $N(\Delta, \tilde{0}) = I(X)$.

- (2) Since $B \in N(\Delta, A)$ and $B^1 \in N(\Delta, A^1)$, $B^c \notin \Delta(A)$ and $(B^1)^c \notin \Delta(A^1)$. It follows $(B \bigcup B^1)^c \notin \Delta(A)$ and $(B \bigcup B^1)^c \notin \Delta(A)$. That is $(B \bigcup B^1)^c \notin \Delta(A) \bigcup \Delta(A^1) = \Delta(A \bigcup A^1)$ and thus $B \bigcup B^1 \in N(\Delta, A \bigcup A^1)$.
- (3) For

$$D \in I(X), \ D \in N(\Delta, A \bigcup B) \iff D^c \not\in \Delta(A \bigcup B) = \Delta(A) \bigcup \Delta(B)$$
$$\Leftrightarrow D^c \not\in \Delta(A) \text{ and } D^c \not\in \Delta(B)$$
$$\Leftrightarrow D \in N(\Delta, A) \bigcap N(\Delta, B)$$

Thus $N(\Delta, A \cup B) = N(\Delta, A) \cap N(\Delta, B)$.

- (4) This follows from (3).
- (5) Let $B \in I(X)$. Now

$$\begin{split} B \in N(\Delta^1 \bigcup \Delta^2, A) & \Leftrightarrow & B^c \not\in (\Delta^1 \bigcup \Delta^2)(A) = \Delta^1(A) \bigcup \Delta^2(A) \\ & \Leftrightarrow & B^c \not\in \Delta^1(A) \text{ and } B^c \not\in \Delta^2(A) \\ & \Leftrightarrow & B \in N(\Delta^1, A) \bigcap N(\Delta^2, A). \end{split}$$

Thus $N(\Delta^1 \bigcup \Delta^2, A) = N(\Delta^1, A) \cap N(\Delta^2, A)$.

(6) This follows from (5).

Definition 3.7 Let $\Delta \in m(X)$, $A \in I(X)$. We define $C_{\Delta} : I(X) \to I(X)$ by

$$C_{\Delta}A = A \bigcup \bigcup \{(p,q)_x : (p,q)_x \in \Delta(A)\}\$$

where $(p,q)_x = \{\langle x, p, q \rangle : x \in X\}, \ 0 < p, \ 0 \le q \text{ and } p+q \le 1.$ C_{Δ} is called the closure operator induced by Δ on X.

Theorem 3.8 Let $\Delta, \Delta^1 \in m(X)$. $A, B \in I(X)$. Then C_{Δ} satisfies the following conditions:

- $(1) C_{\Delta} \hat{0} = \hat{0},$
- (2) $A \subset C_{\Delta}A$,
- (3) $C_{\Delta}(A \cup B) = C_{\Delta}A \cup C_{\Delta}B$,
- (4) $C_{\Delta}A \subset C_{\Delta^1}(A)$ if $\Delta \subset \Delta^1$.

Proof follows from above definition and Theorem 3.3.

From the above Theorem it is mentioned that C_{Δ} is a Čech closure operator and it is a Kuratowski closure operator if $C_{\Delta}(C_{\Delta}A) = C_{\Delta}A$, $\forall A \in I(X)$.

Theorem 3.9 Let Δ^1 , $\Delta^2 \in m(X)$. Then $\forall p \in (0,1], \forall q \in [0,1)$ with $p+q \leq 1$, $\forall x \in X$, $\Delta^1((p,q)_x) = \Delta^2((p,q)_x)$ implies $C_{\Delta^1}A = C_{\Delta^2}A$, $\forall A \in I(X)$.

Proof.

$$C_{\Delta^{1}}A = A \bigcup (\bigcup \{(p,q)_{x} : (p,q)_{x} \in \Delta^{1}(A)\})$$

$$= A \bigcup (\bigcup \{(p,q)_{x} : A \in \Delta^{1}((p,q)_{x})\})$$

$$= A \bigcup (\bigcup \{(p,q)_{x} : A \in \Delta^{2}((p,q)_{x})\})$$

$$= C_{\Delta^{2}}A.$$

Theorem 3.10 For a proximity π of IFSs on X, C_{π} is a Kuratowski closure operator iff

$$\tilde{1} \in \pi(C_{\pi}B) \Rightarrow \tilde{1} \in \pi(B).$$

Proof. Suppose that C_{π} is a Kuratowski closure operator and let $\tilde{1} \in \pi(C_{\pi}B)$. Then $C_{\pi}(C_{\pi}B) = \tilde{1} = C_{\pi}B$ and $\tilde{1} \in \pi(B)$. Conversely, suppose that $\tilde{1} \in \pi(C_{\pi}B) \Rightarrow \tilde{1} \in \pi(B)$. We have to show that C_{π} is a Kuratowski closure operator. Note that for each $x \in X$, $0 , <math>0 \le q < 1$ with $p + q \le 1$, $(p,q)_x \in \pi(C_{\pi}B)$ implies $(1,0)_x \in \pi(C_{\pi}B)$ and hence $(1,0)_x \in \pi(B)$. Consequently, $C_{\pi}B = \tilde{1}$. Thus $C_{\pi}(C_{\pi}B) \subset C_{\pi}B$ and therefore $C_{\pi}(C_{\pi}B) = C_{\pi}B$.

Definition 3.11 Let $\Delta \in m(X)$ and $F \in \phi(X)$. Then we define

$$\Delta(F) = \bigcap \{ \Delta(A) : A \in F \}.$$

Theorem 3.12 For $\Delta, \Delta^1, \Delta^2 \in m(X)$ and $F, F^1, F^2 \in \phi(X)$ followings hold:

- (1) $\Delta(F) \in \Gamma(X)$.
- (2) $\Delta(A) = \bigcup \{ \Delta(V) : V \in \omega(X), A \in V \},$
- (3) $F^1 \subset \Delta(F^2) \Rightarrow F^2 \subset \Delta(F^1)$,
- $(4) (\Delta^1 \bigcup \Delta^2)(F) = \Delta^1(F) \bigcup \Delta^2(F),$
- (5) $\Delta(F^1 \cap F^2) = \Delta(F^1) \bigcup \Delta(F^2)$.

proof. (1) Clearly $\tilde{0} \notin \Delta(F)$. Again $A \bigcup B \in \Delta(F) \Rightarrow F \subset \Delta(A \bigcup B) = \Delta(A) \bigcup \Delta(B)$. It follows that $F \subset \Delta(A)$ or $F \subset \Delta(B)$. Thus $A \in \Delta(F)$ or $B \in \Delta(F)$. Clearly $A \supset B \in \Delta(F) \Rightarrow A \in \Delta(F)$. Hence $\Delta(F) \in \Gamma(X)$.

(2) Let $B \in \bigcup \{\Delta(V) : V \in \omega(X), A \in V\}$. That is there exists $V \in \omega(X)$ such that $B \in \Delta(V)$ and $A \in V$. By above definition, $B \in \Delta(A)$. Thus $\Delta(A) \supset \bigcup \{\Delta(V) : A \in V\}$.

Next. let $B \in \Delta(A)$. Then $A \in \Delta(B)$ and it follows by corollary 2.13, $A \in V \subset \Delta(B)$ for some $V \in \omega(X)$. That is $A \in V$ and $B \in \Delta(V)$. Therefore $\Delta(A) \subset \bigcup \{\Delta(V) : A \in V\}$.

Thus $\Delta(A) = \bigcup \{\Delta(V) : V \in \omega(X), A \in V\}.$

- (3) Let $A \in F^2$. Since $F^1 \subset \Delta(F^2)$, $F^1 \subset \Delta(A)$. That is $A \in \Delta(F^1)$. Therefore $F^2 \subset \Delta(F^1)$.
- (4) For $A \in I(X)$,

$$A \in (\Delta^{1} \bigcup \Delta^{2})(F) \iff F \subset (\Delta^{1} \bigcup \Delta^{2})(A)$$

$$\Leftrightarrow F \subset \Delta^{1}(A) \bigcup \Delta^{2}(A)$$

$$\Leftrightarrow F \subset \Delta^{1}(A) \text{ or } F \subset \Delta^{2}(A) \text{ (by Theorem 2.8)}$$

$$\Leftrightarrow A \in \Delta^{1}(F) \text{ or } A \in \Delta^{2}(F)$$

$$\Leftrightarrow A \in \Delta^{1}(F) \bigcup \Delta^{2}(F)$$

Thus $(\Delta^1 \bigcup \Delta^2)(F) = \Delta^1(F) \bigcup \Delta^2(F)$.

(5) For $A \in I(X)$,

$$A \in \Delta(F^1 \cap F^2) \iff F^1 \cap F^2 \subset \Delta(A)$$

$$\Leftrightarrow F^1 \subset \Delta(A) \text{ or } F^2 \subset \Delta(A) \text{ (by Theorem 2.7(1))}$$

$$\Leftrightarrow A \in \Delta(F^1) \text{ or } A \in \Delta(F^2)$$

$$\Leftrightarrow A \in \Delta(F^1) \bigcup \Delta(F^2).$$

Thus $\Delta(F^1 \cap F^2) = \Delta(F^1) \bigcup \Delta(F^2)$.

Theorem 3.13 For a proximity π of IFSs on X, $F \subset \pi(F)$, \forall proper filter F of IFSs on X.

Proof. Let $A \in F$. Now $A \cap B \neq \tilde{0}$ for all $B \in F$. It follows that $A \in \pi(B)$ for all $B \in F$. Hence $A \in \pi(F)$. Therefore $F \subset \pi(F)$ for all proper filter F of IFSs on X.

Definition 3.14 Let $\Delta \in m(X)$. A subfamily T of I(X) is said to be Δ -compatible if

$$A, B \in T \Rightarrow A \in \Delta(B)$$
.

A Δ -compatible grill is called a Δ -clan.

Theorem 3.15 For $\Delta \in m(X)$, $G \in \Gamma(X)$, the followings are equivalent:

- (1) G is a Δ -clan.
- (2) If $V \in \omega(X)$ such that $V \subset G$ then $G \subset \Delta(V)$,
- (3) $G \subset \bigcap \{\Delta(V) : V \in \omega(X), V \subset G\},$
- (4) If $V^1, V^2 \in \omega(X)$ such that $V^1, V^2 \subset G$ then $V^1 \subset \Delta(V^2)$.

Proof. $((1)\Rightarrow(2))$: Suppose that (1) holds. Let $V \in \omega(X)$ such that $V \subset G$ and $A \in G$. It follows that $A \in \Delta(B)$. $\forall B \in V$. That is $A \in \Delta(V)$. Therefore $G \subset \Delta(V)$. Hence $(1)\Rightarrow(2)$.

- $((2)\Rightarrow(3))$: It is clear from the conditions of (2) and (3).
- $((3)\Rightarrow(4))$: Suppose that (3) holds. Let $V^1, V^2 \in \omega(X)$ such that $V^1, V^2 \subset G$. Since $V^2 \subset G$. $G \subset \Delta(V^2)$. Consequently, $V^1 \subset \Delta(V^2)$. Thus (3) implies (4).
- $((4)\Rightarrow(1))$: Suppose that (4) holds. Let $A,B\in G$. So by Corollary 2.13, there exists $V^1,V^2\in\omega(X)$ such that $A\in V^1,\ B\in V^2$ where $V^1\subset G$ and $V^2\subset G$. Therefore, $A\in V^1\subset\Delta(v^2)\subset\Delta(B)$. Hence (4) \Rightarrow (1).

Theorem 3.16 Let $\Delta \in m(X)$. Then every Δ -clan is contained in a maximal Δ -clan.

Proof. By Theorem 2.9, union of grills of IFSs is a grill of IFSs. Further for a family $\{G^j: j \in J\}$ Δ -clans with $G^j \subset G^{j'}$, $j \leq j'$, $\bigcup \{G^j: j \in J\}$ is a Δ -clan. Hence appling Zorn's lemma on the collection of all Δ -clans containing a Δ -clan G, proof of the Theorem follows.

Lemma 3.17 Let $\Delta \in m(X)$. If $A \in \Delta(B)$, then there exists $V^1, V^2 \in \omega(X)$ such that $A \in V^1$. $B \in V^2$ and $V^1 \subset \Delta(V^2)$.

Proof. Since $\Delta(B)$ is a grill of IFSs on X, by Corollary 2.13, there exists a prime filter V^1 of IFSs such that $A \in V^1 \subset \Delta(B)$. By symmetry of Δ , $B \in \Delta(V^1)$. Now $\Delta(V^1) \in \Gamma(X)$. Again by Corollary 2.13, there exists $V^2 \in \omega(X)$ such that $B \in V^2 \subset \Delta(V^1)$. Therefore $A \in V^1$, $B \in V^2$ and $V^1 \subset \Delta(V^2)$.

Theorem 3.18 Let $\pi \in M(X)$. If $A \in \pi(B)$, then there is a π -clan of the form $V^1 \cup V^2$ where V^1 , $V^2 \in \omega(X)$ such that $A \in V^1$ and $B \in V^2$.

Proof. Let $A \in \pi(B)$. So by the above Lemma, there exists V^1 , $V^2 \in \omega(X)$ such that $A \in V^1$. $B \in V^2$ and $V^1 \subset \pi(V^2)$. Since $\pi \in M(X)$ and V^1 , $V^2 \in \omega(X)$ then for any C, $D \in V^1$ or V^2 . $(C, D) \in \pi$ and hence $V^1 \bigcup V^2$ is a π -clan such that $A \in V^1$ and $B \in V^2$.

Corollary 3.19 Let $\pi \in M(X)$. If $A \in \pi(B)$, then there exists a maximal π -clan containing $\{A, B\}$.

Proof. From the above Theorem, there exists a π -clan $V^1 \cup V^2$ where V^1 , $V^2 \in \omega(X)$, such that $\{A, B\} \subset V^1 \cup V^2$. By Theorem 3.16 every π -clan is contained in a maximal π -clan and hence the proof follows.

```
Corollary 3.20 Let \pi \in M(X). Then \pi = \bigcup \{G \times G : G \text{ is maximal } \pi\text{-clan } \}
= \bigcup \{G \times G : G \text{ is a } \pi\text{-clan } \}.
```

Proof. Let $(A, B) \in \pi$. Then by above Corollary 3.19, there exists a maximal π -clan G such that $(A, B) \in G \times G$. It follows that $\pi \subset \bigcup \{G \times G : G \text{ is maximal } \pi\text{-clan }\}$. By the definition of π -clan, $G \times G \subset \pi$, for any π -clan G. Hence $\pi = \bigcup \{G \times G : G \text{ is maximal } \pi\text{-clan }\}$ $= \bigcup \{G \times G : G \text{ is a } \pi\text{-clan }\}$.

Remark 3.21 It is known that one of the most fundamental results in the area of proximities of fuzzy sets is that they are clan generated structure [3]. Because of the above representation, it follows that proximities of IFSs are also clan generated structures in the sense of their description as in the above Theorem.

References

- (1) K.Atanassov and S.Stoeva, Intuitionistic fuzzy sets, Proc. of Polish Symp. on Interval and Fuzzy Mathematics, Poznan (Aug. 1983) 23-26.
- (2) K.Atanassov. Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1) (1986) 87-96.
- (3) K.Atanassov, Review and new results on intuitionistic fuzzy sets, Preprint IM-MFAIS-1-88, Sofia, 1988.
- (4) K.Atanassov, New operators defined over the intuitionistic fuzzy sets, Fuzzy Sets and Systems. 61 (2) (1993) 131-142.

- (5) P.Burillo. H.Bustince. Two operators on interval-valued intuitionistic fuzzy sets: Part I. Comptes rendus de l'Acade'mie bulgare des Sciences, Tome 47, N°12, 1994.
- (6) P.Burillo. H.Bustince, Two operators on interval-valued intuitionistic fuzzy sets: Part II. Comptes rendus de l'Acade'mie bulgare des Sciences, Tome 48, N°1, 1995.
- (7) K.C.Chattopadhyay, U.K.Mukherjee, S.K.Samanta, Role of clans in the Proximities of fuzzy sets, The Journal of Fuzzy Mathematics 4 (1996), No-3.
- (8) Doğan Çoker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems 88 (1997) 81-89.
- (9) Doğan Çoker, An introduction to Fuzzy Subspaces in Intuitionistic Fuzzy Topological Spaces, The Journal of Fuzzy Mathetatics Vol.4 No.4, 1996 749-764.
- (10) S.K.Samanta and Tapas Kumar Mondal, Intuitionistic gradation of openness: Intuitionistic fuzzy topology. Communicated to "Fuzzy Sets and Systems".
- (11) Tapas Kumar Mondal and S.K.Samanta, Topology of interval-valued intuitionistic fuzzy sets. Communicated to "Fuzzy Sets and Systems".