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1 Introduction 

Evolutionary algorithms, such as genetic algorithms (GA), are widely used to solve various 
optimization problems. The GA are highly relevant for industrial applications, because they are 
capable of handling problems with non-linear constraints, multiple objectives, and dynamic 
components – properties that frequently appear in the real-world problems [10]. Since their 
introduction and subsequent popularization [12], the GA have been frequently used as an 
alternative optimization tool to the conventional methods and have been successfully applied in 
a variety of areas, and still find increasing acceptance. 

One of the main challenges of the field of evolutionary computation is appropriately 
varying parameter values during an evolutionary algorithm run (parameter control) [9]. In 
order to increase the performance of the regarded algorithms it is necessary to provide the 
adjustments of their parameters depending on the considered problem.  
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Finding robust control parameters setting is not a trivial task, since their interaction with 
GA performance is a complex relationship and the optimal one are problem-dependent [11]. 
An optimal or near-optimal set of control parameters for one GA does not generalize to all 
cases. This stresses the need for efficient techniques that help finding good parameter settings 
for a given problem, i.e. the need for good parameter tuning methods. 

In [9] authors present that any static set of parameters, having the fixed values during the 
algorithm run, seems to be inappropriate. It is intuitively obvious that different values of 
parameters might be optimal at different stages of the evolutionary process [15]. For instance, 
large mutation probability can be good in the early generations helping the exploration of the 
search space and small mutation probability might be needed in the late generations to help 
fine tuning the individuals. 

The problem of finding optimal control parameters for GAs has been studied by [8, 9, 15] 
and Fuzzy Control of Evolutionary Algorithm parameters is discussed in [11, 17]. In this paper, 
we investigate the use of Intuitionistic Fuzzy Logic (IFL) [4–6] for control of GA parameters. 
We propose a Generalized Net model describing the IFL control of GA parameters, namely 
crossover probability and mutation probability.  

IFL and Intuitionistic fuzzy sets (IFS) have gained recognition as a useful tool for control 
uncertain phenomena. In [1] authors described the development of an IFL controller for heater 
fans, developed on the basis of intuitionistic fuzzy systems. Intuitionistic fuzzy inference 
systems and defuzzification techniques are used to obtain speed of the heater fan from an 
intuitionistic fuzzy input – ambient temperature. The speed of the heater fan is calculated using 
intuitionistic fuzzy rules applied in an inference engine using defuzzification methods. 

Up to now, using the apparatus of Generalized Net (GN) [7] few GN-models, regarding 
GA performance, were developed. The first GN-model describes the GA search procedure 
[2, 3]. The apparatus of GN is also applied to a description of different GA operators – 
crossover operator [14] and mutation operator [16]. 

2 IFL controller  

The GA performance is correlated with its careful selection of parameters. As discussed in [13] 
it is possible to destroy a high fitness individual when a large crossover probability is set. 
Whereas, for a low crossover probability, sometimes it is hard to obtain better individuals and 
does not guarantee faster convergence. High mutation introduces too much diversity and takes 
longer time to get the optimal solution. Low mutation tends to miss some near-optimal points.  

The main idea is to use two IFL controllers. The controllers inputs are current GA per-
formance measures and which outputs are GA control parameters – crossover probability (pc) 
and mutation probability (pm). Current performance measures of the GA are sent to the IFLCs, 
which computers new control parameters values that will be used by the GA.  

The proposed strategy for updating of pc and pm is to consider the changes of the average 
fitness value in the GA population compared to the defined maximum and minimum fitness.  

According to Atanassov [4–6], an IFS on the universum X ≠ ∅ is an expression A given by: 

 A = {〈x, μA(x), νA(x)〉 | x ∈ X}, (1) 
where the functions  
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 μA, νA : X → [0, 1]  (2) 
satisfy the condition  
 0 ≤ μA(x) + νA(x) ≤ 1 (3) 

and describe, respectively, the degree of the membership μA(x) and the nonmembership νA(x) 
of an element x to A. 

Let  
 πA(x) = 1 – μA(x) – νA(x), (4) 

therefore, function πA determines the degree of uncertainty. 
Considering fitness function of the chromosome in the GA it can be assigned intuitionistic 

maximum and minimum values (fmax and fmin). So, if the average fitness function (fave) of the 
current population falls between these values, then it cannot be determined unambiguously 
whether it is a “good algorithm performance” or “poor algorithm performance”. Conversely, 
values outside the intuitionistic limits can be unambiguously assigned to one of the two 
categories. The following membership functions are defined: 

 μA : fave ≤ fmin, (5) 

 νA : fave ≥ fmax, (6) 

 πA : fmin < fave < fmax. (7) 

In a minimization problem, when average fitness value at the generation t (fave(t)) is less 
than fmin we have “well-performing” operators, so the pc and pm will keep their values. If 
fave(t) is greater than fmax we have “poorly performing” operators, so the pc and pm have to be 
changed based on the scheme: pc should be increased and pm – decreased. If fave(t) fall 
between fmin and fmax than the GA parameters have to be changed based on the scheme: pc 
should be decreased and pm – increased.  

The change of the pc and pm values is updated using the following equations: 

 pc(t) = pc(t – 1) ±  ∆pc(t),  (8) 

 pm(t) = pm(t – 1) m  ∆pm(t),  (9) 

where ∆pc(t) and ∆pm(t) are calculated by the IFL controllers. 

3 Generalized net model 

The generalized net model of IFL control of GA parameters is presented in Figure 1.  
 

 
Figure 1. GN-model of IFL control of GA parameters 
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The token α enters GN through place l1 with an initial characteristic “GA parameters”. The 
form of the first transition of the GN-model is 

 
Z1 = 〈{l1, l3, l10}, {l2, l3}, r1, ∨(l1)〉, 

 
 l2 l3 r1 = l1 true false

l3 true true 
l10 false true 

 
The token α obtains the characteristics “Genetic algorithm” in place l2 and characteristics 

“∆pc(t), ∆pm(t)” in places l3 and l10. In the place l2 could be replaced any GN-model of GA – 
for example, that presented in [2]. 

The form of the second transition of the GN-model is 
 

Z2 = 〈{l2}, {l4}, r2, ∨(l2)〉 
 

 l4 r2 = l2 true 
 

In place l4, the token α obtains the characteristic  “fave(t)”. The token β enters GN through 
place l5 with an initial characteristic “fmin, fmax”.  

The form of the third transition of the GN-model is 
 

Z3 = 〈{l4, l5, l7}, {l6, l7}, r3, ∧( l4, l5, l7)〉, 
 

 l6 l7 r3 = l4 false true 
l5 true false
l7 true true 

 
The tokens α and β are combined in a new token γ in place l6. The new token γ obtains the 

characteristics  “GA performance”. In place l7, the token α keeps the characteristics  “fave(t)” in 
place l3. 

The form of the fourth transition of the GN-model is 
 

Z4 = 〈{l6}, {l8, l9}, r4, ∨(l6)〉, 
 

 l8 l9 r4 = l6 true true 
 
The token γ obtains the characteristics  “∆pc(t)” in place l8 and “∆pm(t)” in place l9. 
The form of the fifth transition of the GN-model is: 
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Z5 = 〈{l8, l9}, {l10, l11}, r5, ∨(l8, l9)〉, 
 

 l10 l11 r5 = l8 W1 ¬W1

l9 W1 ¬W1 
 

where W1 = “end of the process is not reached”. 
The token γ obtains the characteristics  “∆pc(tend), ∆pm(tend)” in place l11. 

4 Conclusions  

One of the main challenges of the field of evolutionary computation is the parameter control. In 
order to increase the performance of the algorithms it is necessary to tune the algorithm 
parameters during the computation. Such procedure is not a trivial. In this paper, the 
Intuitionistic Fuzzy Logic for control of GA parameters is used. A Generalized Net model 
describing the GA parameters IFL controllers is considered. Proposed GN-model performs 
fine-tuning of crossover probability and mutation probability, during the algorithm run, using 
IFL controllers. 
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