NIFS 6 (2000), 1, 15-24

RESOLUTION OF COMPOSITE INTUITIONISTIC FUZZY RELATIONAL
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Abstract. We consider intuitionistic fuzzy relations and their compositions. Attention is paid
on the resolution problem for various composite fuzzy relational equations. Analytic expression for the
extreme solution is given. The relationship with matrices is studied.

1. Basic notions

In order to make the exposition clear we recall some basic definitions and results and
introduce the underlying notions for the fuzzy linear system under study.

We follow [3,5] for definitions of lattice theory. We use the ordinary symbol < for the partial
order relation on a partially ordered set (poset) P . By a greatest element of a poset P we mean an
element e P such that x<b for all xeP; the least element of P being defined dually. The
(unique) least and greatest elements of P, when they exist, are called universal bounds of P and are
denoted by 0 and 1 respectively. A lattice is a poset L any two of whose elements x and y have a
greatest lower bound (g1b.) or meet denoted by xAy, and a least upper bound (1.u.b.) or join
denoted by xv y. A lattice is complete when each of its subsets X has a l.u.b., denoted by sup X or
vX and a g.lb. denoted by inf X or AX . A Brouwerian lattice BL is a lattice L in which for any
given elements a and b the set of all xe L such that a Ax<b contains a greatest element, denoted
aab (called the relative pseudocomplement of a in b). In a dually Brouwerian lattice for any given

elements @ and b the set of all x € L suchthat av x>b contains a least element, denoted asb .

Example. Let L be a totally ordered set with universal bounds 0 and 1 and with operations
join v and meet A. L will stay for the bounded chain L =(L, v, A,0,1). Obviously L is a complete

Brouwerian and a complete dually Brouwerian lattice, if we define

1 ifa<b
aab={ ? , (1.1
b a>b
b ifa<b
b= . .
ae {0 azb (12)

Let BL be a fixed complete Brouwerian lattice (with underlying lattice L ). The « -operation
has some useful properties, which we shall list now and apply in the proof of the next statements.

If a,be L then
1) an(aab)<b [T]and av(aab)2b; 1.3)
1) aa(anb)2b [T]and aa(avb)=1. (1.4)

If a,b,d € L then

aa(bvd)zaab aswell as aa(bvd)zaad [7]. (1.5)



Dually, any fixed complete dually Brouwerian lattice (with underlying lattice L) has the
following properties concerning the & -operation, which we shall list now and apply in the proof of the
next statements.

If a,be L then
1) av(acb)=b and an(aeb)<b; (1.6)
i) ac(avb)<b and ag(anb)=0; 1.7

If a,b,d € L then
ac(brnd)<ach aswell as ac(bnd)<ased. (1.8)

Definition 1.1. If L is a complete Brouwerian lattice and £ =@ 1is a crisp set, AC E, a fuzzy
set 4 on E is

A= {(x, ,uA(x))/ xe E},
where the function x4 : E — L defines the degree of membership of the elements xe £ .

Definition 1.2. Let L is a complete Brouwerian and complete dually Brouwerian lattice and
E#@ isacrisp set, A< E . An intuitionistic fuzzy set (IFS) A on E is

A={(x, g (0),v 4(x)) x € E},

where the function x4 :E — L defines the degree of membership and the function v, : E — L defines

the degree of non-membership respectively of the elements xe £ and for any isotonic mapping
@:L—[0]1] wehave 0<o(u(x))+oW(x)) <1 foreach xeE.

Remarks 1.3. 1. In what follows we shall write 4 for the fuzzy set 4 = {(x, 4 (x))/ xe E} and
also A for the IFS A ={(x, u,4(x),v4(x))/ x € E}, when there is no danger of confusion.

2. The class of all fuzzy sets over the universe £ with L as a complete Brouwerian lattice is
denoted by 4(E) .

3. The class of all intuitionistic fuzzy sets over the universe £ with L as a complete
Brouwerian and complete dually Brouwerian lattice is denoted by <£2(E). For L=[0,1] (cf. [1])
requirement in Definition 1.2 is 0 < g y(x) +v4(x)<1.

2. Intuitionistic Fuzzy Relations

The next results are valid for a complete Brouwerian or/and a complete dually Brouwerian
lattice. We need completeness of the lattice in order to be able to define various compositions of
relations, resp. matrix multiplications. The main part of exposition is organized for the bounded chain
L=(L,v, A 0,1) because of several different reasons: L=(L, v, A,0,1) is both complete Brouwerian

and complete dually Brouwerian lattice; computations for fuzzy linear systems of equations and
inequalities as well as for relational, resp. matrix equations and inclusions is simple; L =(Z, v, A,0,1)
is a suitable structure for intuitionistic fuzzy sets; L = (L, v, A, 0, 1) is suitable for various applications.
Definition 2.1. A fuzzy relation between two nonempty sets X and Y is a fuzzy set R of
X xY . An intutionistic fuzzy relation between two nonempty sets X and Y is an intutionistic fuzzy
set R of X xY . X xY is called the support of the (intutionistic) fuzzy relation R .
Definition 2.1 means that the fuzzy relation R € £(X x¥) is described as

R ={(oy), ur(x,3)): (x,y) € X xY, g : X x¥ > L},
resp. R e 29X xY), is given as
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R ={((x,y),,uR(x,y),vR(x,y)):(x,y)eXxY,,uR X xY > L, vy :XxY—)L}.

In what follows we shall study fuzzy relations and intutionistic fuzzy relations. If the notion or
statement is valid for intutionistic fuzzy relation and for fuzzy relation, we write this as (intutionistic)
fuzzy relation. In order to simplify the exposition we shall omitt the overbar and write R for the

(intutionistic) fuzzy relation R . The attention is paid on composite intuitionistic fuzzy relational
equations, bearing in mind the classical results for composite fuzzy relational equations [4, 6, 7, 8].

Definition 2.2. The fuzzy relation R™!e (Y xX) is called inverse or transpose of
Re4(XxY), if RV y,x)=R(x,y) for any (y,x)e¥ xX. The intutionistic fuzzy relation

Rl'ey xX) is called inverse or transpose of R € 29(X xY), if R™(y,x)=R(x, y) for any
(y,x)e¥ xX .

Obviously if R™! e 4(¥ x X) is the inverse of R e 4(X x¥) then
R7(y,%) =R(x,y) ff 41 (9,%) = pp(x,y) forany (n.x)e¥ xX .
If R™' e 49(Y x X) is the inverse of R € £9(X xY), then

R™\(,%) = R(x,p) iff 4, (29 = pp(x,y) and vy (7,%) = vp(x,y) forany (y,x)e¥ xX .

Definition 2.3.
i) Let R, S € 4(X xY) be two fuzzy relations.
RcS & up(x,y)<ug(xy) forany (x,y)e X x¥ ; (2.19)

ii) Let R, S € 247(X xY) be two intutionistic fuzzy relations.

RcS o ur(xy)<ug(x,y) and vg(x,y) 2vg(x,y) forany (x,y)e X x¥ ;  (2.1ii)
iii) Let R, S be two (intutionistic) fuzzy relations over the same support X xY .

R=S & upp(x,y)=pus(xy) (and vg(x,y)=vg(x,y)) forany (x,y)e X x¥ . (2.lii1)

Definition 2.4. The (intutionistic) fuzzy relations R over the support X xY and S over the
support ¥ xZ with pry (X xY)=pn (¥ xZ) =Y are called conformable for composition.

Definition 2.5. Let R e £(X xY) and S € £4(¥ xZ) be two fuzzy conformable relations. The
fuzzy relation

1) ReS € £(X xZ) is called «-composition and is defined by
(ReS)(x,2) = \y R(x, ) AS(3,2)), (x,2)EXXZ . (2.21)
yeY
i) RoS e £(X xZ) is called o-composition and is defined by
Re8S)(x,2) = A (RO, )VS(},2), (x,2)eX xZ . (2.211)
yeY

1i1) RaS € £(X xZ) is called a -composition and is defined by

(RaS)(x,2) = A R(x,»)aS(y,2)), (x,2)e X xZ. (2.2i11)
yeY

iv) RsS € £(X x Z) is called & -composition and is defined by
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(RsS)(x,2) = \/ (R(x,)e8(),2)), (x,2)e X XZ . (2.21v)
yeY

Definition 2.6. Let R € £7(X xY) and S € £7(Y xZ) be two conformable intuitionistic fuzzy
relations. The intuitionistic fuzzy relation

i)

R*Se«9(X x2) is called *-composition and is defined as
RxS= {((x,z), Hres (%,2), VRes (x,z)) (x,2)eReSA(x,2)€ER>- S},

with the degree of membership function up.s =pp.s and the degree of non-
membership function vz, =vp.g of the elements (x,z)e X xZ .

R®S e .£9(X xZ) is called ® -composition and is defined as
R®S= {((x,z), Hres (%,2), VReS (x,z)) ‘(x,z2)eRaSA(x,z)eRe S},

with the degree of membership function prggs =ugr,s and the degree of non-

membership function vzgg =vg,s of the elements (x,z)e X xZ .

According to Definition 2.6 it is more convinient to write

R*S:

(ReS,RoS) and R®S=(RaS,ReS).

For other kind of compositions cf. [1, 2].
Theorem 2.7. Let R € £(X xY) and S € £L(Y xZ) be two fuzzy conformable relations. Then:

1)
ii)
iii)

v)

ScRlaReS) [7];
SoRe(R:S);
R cSa®e$) [7];

R 1oSe®-5).

Proof.i) [7] Let T=R.S, Te£(XxZ) and P=R™'aT, P e £4(¥ xZ) . From Definition 2.2,
Definition 2.5 (i), (iii) we obtain

P(,2)= A R\ (p.x)aT(x,2) = A R(x,p)a(ReS)(x,2))=

xeX xeX

R(x,y)a\/ (R0 ASCE, z)))J =
tey

R(x, y)a[(R(x,y) /\S(y,z))v[ v (RxDASE, z)D] .

teY, t#y

Bearing in mind (1.5) and then (1.4) we obtain
P22 A (R 2R, AS(K,2))), R, y)aR(x,y) AS(»,2)) 2 S(v,2),

xeX

hence Sc R 1a(R.S).

fi)Let T=R-S,TeL(XxZ)and P=R™'¢T, Pe £ xZ) . From Definition 2.2, Definition
2.5 (ii), (iv) we obtain
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PO,D = v R 0,9057(x,2) = \/ REu )RS, 2) =
xeX xeX

= v/ | R(x,»)e A(R(x,t)vS(t,z))H:

xeX teY

xeX tel, t#y

= v |R(x, )| (R(x, y)vS(y,z))/{ A (R(x,t)vS(t,z))m.

According to (1.8) and then (1.7) we have

P, 0 < v R(x,»)e R, y)vS(,2), R(x, » & (R, »)vS(1,2)) < S(1,2), ie.
xeX

SoReR.S).
ii) The proof is analogous to the proof of Theorem 2.7 (i).

iv) The proof is analogous to the proof of Theorem 2.7 (ii). U
Corollary 2.8. Let R € £4(X xY) and S € £(Y xZ) be two fuzzy conformable relations. Then:

i) R'eRoS)cScRa(R:S);

i) Se(RoS) ' c R cSaR.S)™!.
Proof. i) Follows from Theorem 2.7 (i), (ii).

ii) Follows from Theorem 2.7 (iii), (iv). O

Corollary 2.9. Let R e £9(X xY) and S e .£9(Y xZ) be two conformable intuitionistic fuzzy
relations. Then: ~

i) ScRI'®R*S);
ii) Rlcseo®*s)™t.
Proof. i) According to Theorem 2.7 (i) we have ug < u

R 1o (ReS)
hence ug < )

and bearing in mind (2.1i),

According to

Definition 2.6 (i), Hp H

“La(res) ~ HR1@(R*S) a(reS)  Prl@R*S)’
Theorem 2.7 (ii) we have vg 2 v, (Ros) 3nd bearing in mind Definition 2.6 (i) V-1, .5y = Vr-i@(res)

hence vg 2 VRA@(RsS) - According to (2.1ii) we have SCR ®(R*S).

il) Follows from Theorem 2.7 (iii), (iv) and Definition 2.6, bearing in mind that

HR S Bgg(Ros)? = somusy) and vp ZVSa(RoS)_l =V segresy ™ Now from Definition 2.3 (ii) we

have R™! c S®(R=S)'. 0
Theorem 2.10. Let R € £(X xY) and T € £(X xZ) be two fuzzy relations. Then:
i) Re(R7'aD)cT [7];
ii) R.(R'eT)2T;
iii) Re(R'aT)cT cR-(R7'eT).

Proof.i) [7] Let Re(R™'aT)= 8, S e £4(X xZ). Then
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S(x,2)= v (R(x,y) /\(R_laT)(y,Z)) = Vv [R(x,y)/\( A R(t,y)aT(f,Z))) =
yet yeY teX

= Vv [ReENAREaTED)IA A (RE)T(,2)].
ye¥ teX, t#x
The last expression means that

S(x,2)< v/ (R(x, ¥)A (R(x, »a T(x,z))),
yel

hence from (1.3) we have
S(x,2) <T(x,2),i.e. Re(RlaT)cT.
ii)Let Ro(R'eT) =S, S € £(X xZ). Then

S = A R VR 6TY(0,2) = /\[R(m)v(vR(t,y)aTa,z))J=
yeY yeY teX

= A | ROV VREVET(x,D)V v (RE )T, z))J .
yel teX, t#x
The last expression means that

S(x,2)2 A (R Y)v(R(Xx,»ET(x,2)),
yey

hence from (1.6) we have
S(x,2)2T(x,2), ie. Ro(R ' eT)oT.
iii) Follows from Theorem 2.10 (i) and (ii). O

Corrolary 2.11. Let R e £9(X xY) and T € £9(X xZ) be two intuitionistic fuzzy relations.
Then ToR*(R™'®T).

Proof. Follows from Theorem 2.10, bearing in mind that u; > HRe(RaT) = Hpur-ler) and
VT SV Ro(R £ T) =V pur-loT)" 0

Theorem 2.12. Let Q € £(Y xZ) and T € £(X xZ) be two fuzzy relations. Then:

) (©@aT™he0ocT [7);

ii) ©eT™He0oT. O

The proof is analogous to the proof of Theorem 2.9.

Corollary 2.13. Let Q e £49(Y xZ) and T € £9(X xZ) be two intuitionistic fuzzy relations.
Then T 2(Q®T H)*Q.

Proof. Follows from the facts that
HT 2 B a1l = Higarlyg 39 VT 2 Hpertior =Y pgripg U

Theorem 2.14. [7] Let R e £L(X xY) and T € £(X xZ) be two fuzzy relations, 2, be the set of
Jfuzzy relations Q € L(Y xZ) suchthat ReQ =T . Then:
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i) 2, 2@ iff R'aTez,;

ii) if 2,9 then RYaT isthe greatest element in 2, .

Proof. i) If 2, # then there exists at least one fuzzy relation Qe £(¥Y xZ) such that
ReQ =T . From Theorem 2.7 (i) we have OcR'a(ReQ)=R'aT. Since QcR'aT we have
ReQcReR71aT), i.e. TcRe(R'aT). But from Theorem 2.10 (i) we have Re(R'aT)cT,
hence Ro(R'laT) =T andthus R 'aT belongs to 2, .

ii) If 2, # then according to the proof of Theorem 2.14 (i), Q cR'aReQ)=R'aT.
Since R'aT belongs to 2, , it is the greatest element in 2, . [

Theorem 2.15. [7] Let R € £(X xY) and T € 4(X xZ) be two fuzzy relations, 2, be the set of
fuzzy relations Q € £(Y xZ) such that R-Q =T . Then:

i) 2, 2@ iff R 'eTez2,;

i) if 2, #@ then R™ &T is the least element in 2,.0)

The proof is analogous to those of Theorem 2.14.

Theorem 2.14 gives an easy way to check whether the relational equation R«Q =7 is solvable
for the unknown relation Q and if it is solvable — to find the greatest solution. Theorem 2.15 gives an
easy way to check whether the relational equation R-Q =T is solvable for the unknown relation Q
and if it is solvable — to find the least solution.

The next theorem is the main result for composite intuitionistic fuzzy relational equations. As
mentioned in [9], this was an open problem up to now.

Theorem 2.16. Let R € £7(X xY) and T € £9(X xZ) be two intuitionistic fuzzy relations, 2,
be the set of intuitionistic fuzzy relations Q € £9(Y x Z) such that R+*Q =T . Then:

i) 2, #@ iff R'®Tez,;
i) if 2, +Q then R™'®T e 2, is the greatest element in 2,.

Proof. Follows from Theorem 2.14 and 2.15. 0

3. Intuitionistic Fuzzy Relations and Matrices
If the relation is over finite support, we can ﬂresent it by a finite matrix and vice versa.

Let I,J =@ be finite sets of indices, a:7xJ - L be amap and I’ ={a:IxJ — L} be the
set of all maps from I xJ to L. Any map from the set I/ defines a matrix over L as follows:

Definition 3.1. A=(a;;)mxn, m=|I|, n=|J| is called a matrix over L if there exists a map
aeI!* | such that a;; =a(,j) foreach iel and-each jeJ.

Definition 3.2. The matrix 4’ = (a ji Jnxm 18 the transpose of A= (a,- mxn -

First we consider various kinds of matrix multiplication.

Definition 3.3. Let 4=(a;)eL’** and B=(4,)eL**’ be given conformable finite matrices

over L.
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i) The matrix C=A4eB =(c;)eL'*/ is called o -product (or only product, if there is no
danger of confusion) of the matrices 4 and B if
] .
¢y = k\_/l(a,-k nby) foreach iel, jeJ. (3.31)
i) The matrix C = Ao B =(c;) € ' is called o-product of A and B if
I] L y
¢y =k/=\l(a,-k vby) foreach iel, jeJ. (3.311)
ii) The matrix C =4a B =(c;) € ' is called a -product of the matrices 4 and B if
|

cij = k/=\1(a,~k aby) foreach iel, jeJ. (3.3111)

iv) The matrix C =A4¢B =(c¢;) € L' is called & -product of the matrices 4 and B if

Cij

= Vv (ay eby) foreach iel, jeJ. (3.31v)
k=1 ,

v) The pair (4B, AoB)=A*B is called *-product of the matrices 4 and B .

vi) ‘The pair (4a B, A¢B) = A® B is called ®-product of the matrices 4 and B .

Example. Let 4 and B be the conformable finite matrices:

02 05 01 07 0.1
A=(' ’ ‘),B= 05 08
0.7 06 09
09 04
i) The e-product of the matrices 4 and B is the matrixC = 4+ B, with elements

computed according to (3.3i):
_(02A07)V(0.5/0.5)v(0.110.9) (02A0.1)v(0.5A08)v(0.1A0.4)) (05 0.5
“L(0.7/A07) v (0.6 A0.5)v(0.9A0.9) (0.7A0.1)v(0.6A08)v(0.9A04)) (0.9 06)
i) The o-product of the matrices 4 and B is the matrix C=A40cB, with elements
computed according to (3.3ii):
C= 02v0.7)A(0.5v05)A(0.1v0.9) (02v0.DA(0.5v0.8)A(0.1v04)) (05 0.2
L7V A06V05)A®0.9v0.9) (0.7v0.1)A(0.6v0.8)A0.9v04)) (06 0.7)
iii) The «-product of the matrices 4 and B is the matrix C =A4AaB with elements
computed according to (3.31i1):
o (02207 A (05205 A (0.120.9) 02a0.) A(05a0.8) A (0.120.4)) (1 01
07207 A(0.620.5) A (0.92:0.9) (0.720.)) A(0.6a0.8) A(0.920.4)] (05 0.1)°
iv) The ¢ -product of the matrices 4 and B is the matrix C =4¢B with elements
computed according to (3.31v):
_((02£0.7)v(0.550.5)v(0.1£0.9) (0.260.1)v(0.560.8)v(0.150.4)) (0.9 038
“(0.7£0.7)v(0.6£0.5) v (0.9£0.9) (0.7£0.1)v(0.660.8)v(0.9504)) (0 08)

V) The *-product of the matrices 4 and B is the pair (4e B, 4¢B), cf. (3.3v):
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05 05 05 0.2
A*B= , .
09 06)°(06 0.7

vi) The ®-product of the matrices 4 and B is, cf. (3.3vi):

((1 o.1j (0.9 o.sD
A®B= i .
05 01)°’L0 08

Definition 3.4. Let 4=g, ;)

mxn

and B= (b,- j)mxn be finite fuzzy matrices of the same type.

We say that
1) A< B iftherelation a;; <b,;; holds forany 7,7, 1<i<m, 1< j<n;
i) A=B iftherelation a,;; =b;; holds forany 7,7, 1<i<m, 1< j<n

The next properties concern conformable matrices.

Theorem 3.5. For every pair of conformable finite fuzzy matrices A=(a and

Do
B= (b,- j )pxn we have:
i) A'e(AoB)<SB<A'a(4+B);
ii) Be(4oB)' < A' <Ba(4+B)".
Proof. i) Follows from Corollary 2.8 (i):
Let us denote byD=4"'a(d4+B), D=[d,;). Bearing in mind the matrix multiplication
operations (cf. Definition 3.3), from 4’ a(4+B)=D = (dij) we obtain forany i, j, 1<i<p,1<j<n:
d,-j = /]: (ak,- a \t/(ak, /\bt]-)) = /;(aki a [(aki /\b,»]-)v[t’zﬁ(ak, /\b,j)jD .

According to (1.4) we have

d,-j 2 /I\c (ak,- a (ak,» /\b,-j»,

following (1.5) we obtain
ay; o lag; /\bij)Zbij,

hence d;; 2 A lay; a lay; Ay, ) 28,;,ie. B<A'a(4+B).
k

Now let us denote by D= (d,. j)= A" &(A4-B) . Bearing in mind the matrix multiplication
operations (cf. Definition. 3.3), from 4’ s(4-B)=D= (d,-j) we obtain forany i, j, 1<i<p,1<j<n:

dij =v (ak,- & /\(ak, vb,j)) =V [ak,- & ((aki vb,»j)/\( A '(ak, vb,]-)]D .
k t k Lt
According to (1.8) and then (1.7) we have
1] =

d- ‘ <V(aki€ (aki Vbl_]»3 akig (ak, Vb,J)Sb,J,le AtE(ADB)SB D
k

Theorem 3.6. For every pair of fuzzy matrices A= (a ’ and C = (ci ]-) we have:

IJ)mx mxn
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1) If B, is the set of the matrices such that A« B=C then B, #@ iff A" aC e B,
ii) if B, & then A'aC is the greatest element in B, ;

1i1) If B, is the set of the matrices such that A-B=C then B, #Q iff A'¢CeB,;
iv) if B, #& then A'&C is the least element in B, .

Proof. 1), ii) follow from Theorem 2.14; ii1), iv) follow from Theorem 2.15. O3
Theorem 3.7. Let A= (ai j)mxp and C = (Ci j )mxn be two fuzzy matrices, B, be the set of the

matrices such that AxB=C. Then:

N —

i) B, 20 iff A'®CeB,;
iv) if By #@ then A™'®C is the greatest element in B.,.

Proof. Follows from Theorem 2.16. O
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