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1 Introduction

The concept of the Intuitionistic Fuzzy Graph (IFG) was introduced by Anthony Shannon and the
author in 1994 in [5]. In recent years, the concept was essentially extended and it found different
applications.

Initially, following [2] we introduce for the first time definitions of Cartesian products over
Interval-Valued Intuitionistic Fuzzy Sets (IVIFSs), while in [2] similar definitions are given only
for the intuitionistic fuzzy sets (IFS) case.

Using these definitions, four definitions of Interval-Valued Intuitionistic Fuzzy Graphs
(IVIFGs) will be given. After this, four more general definitions of IVIFGs will be introduced
and some conditions for the correctness of these graphs will be discussed.

All definitions for IVIFSs are given in [2].
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2 Cartesian products over intuitionistic fuzzy sets
and interval-valued intuitionistic fuzzy sets

Let E1 and E2 be two universes and let

A = {〈x, µA(x), νA(x)〉|x ∈ E1},
B = {〈x, µB(y), νB(y)〉|y ∈ E2},

be two IFSs; A – over E1 and B – over E2.
Following [2], we define:

A×1 B = {〈〈x, y〉, µA(x).µB(y), νA(x).νB(y)〉|x ∈ E1&y ∈ E2},

A×2 B = {〈〈x, y〉, µA(x) + µB(y)− µA(x).µB(y), νA(x).νB(y)〉
|x ∈ E1&y ∈ E2},

A×3 B = {〈〈x, y〉, µA(x).µB(y), νA(x) + νB(y)− νA(x).νB(y)〉
|x ∈ E1&y ∈ E2},

A×4 B = {〈〈x, y〉,min(µA(x), µB(y)),max(νA(x).νB(y))〉|x ∈ E1&y ∈ E2}

A×5 B = {〈〈x, y〉,max(µA(x), µB(y)),min(νA(x).νB(y))〉|x ∈ E1&y ∈ E2}.

For the above two universes, let

A = {〈x,MA(x), NA(x)〉|x ∈ E1},
B = {〈y,MB(y), NB(y)〉|y ∈ E2},

be two IVIFSs; A – over E1 and B – over E2. Let each one of the intervals MA(x), NA(x),

MB(y), NB(y) have the form X = [inf A, supX]. Following the definition of an IVIFSs, we
suppose that for each x ∈ E1, y ∈ E2:

MA(x), NA(x),MB(y), NB(y) ⊆ [0, 1],

and
supMA(x) + supNA(x) ≤ 1, supMB(y) + supNB(y) ≤ 1.

Now, following [2], we define the following five Cartesian products over two IVIFSs and a
new (sixth) one:

A×1 B = {〈〈x, y〉, [infMA(x) infMB(y), supMA(x) supMB(y)],

[inf NA(x) inf NB(y), supNA(x) supNB(y)]〉|x ∈ E1&y ∈ E2},

A×2 B = {〈〈x, y〉, [infMA(x) + infMB(y)− infMA(x) infMB(y),

supMA(x) + supMB(y)− supMA(x) supMB(y)],

[inf NA(x) inf NB(y), supNA(x) supNB(y)]〉|x ∈ E1&y ∈ E2},
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A×3 B = {〈〈x, y〉, [infMA(x) infMB(y), supMA(x) supMB(y)],

[inf NA(x) + inf NB(y)− inf NA(x) inf NB(y),

supNA(x) + supNB(y)− supNA(x) supNB(y)]〉|x ∈ E1&y ∈ E2},

A×4 B = {〈〈x, y〉, [min(infMA(x), infMB(y)),min(supMA(x), supMB(y))],

[max(inf NA(x) inf NB(y)),max(supNA(x) supNB(y))]〉|x ∈ E1&y ∈ E2}

A×5 B = {〈〈x, y〉, [max(infMA(x), infMB(y)),max(supMA(x), supMB(y))],

[min(inf NA(x), inf NB(y)),min(supNA(x), supNB(y))]〉|x ∈ E1&y ∈ E2},

A×6 B = {〈〈x, y〉,
[
infMA(x)+infMB(y)

2
, supMA(x)+supMB(y)

2

]
,[

inf NA(x)+inf NB(y)
2

, supNA(x)+supNB(y)
2

]
〉|x ∈ E1&y ∈ E2}.

Theorem. A×1 B,A×2 B,A×3 B,A×4 B,A×5 B,A×6 B are IVIFSs.
Proof. We will prove that for every four real numbers a, b, c, d ∈ [0, 1], such that a ≤ c,

b ≤ d, c+ d ≤ 1, the inequality

c+ d− cd− a− b+ ab ≥ 0 (1)

holds. By a direct check we obtain that (1) is true for a = c, b = d, and for a = 0 and b = 0. In
all other cases we have the equality ab− cd = (a− c)b+(b− d)c. Therefore, (1) is equivalent to:

c− a+ (a− c)b+ d− b+ (b− d)c = (c− a)(1− b) + (d− b)(1− c) ≥ 0

From the validity of (1) it follows that

supMA(x) + supMB(y)− supMA(x) supMB(y),

≥ infMA(x) + infMB(y)− infMA(x) infMB(y).

On the other hand, for every four real numbers a, b, c, d ∈ [0, 1], such that a+b ≤ 1, c+d ≤ 1,
it is valid that

a+ c− ac+ bd ≤ a+ c− ac+ (1− a)(1− c) = 1,

i.e.,

supMA(x) + supMB(y)− supMA(x) supMB(y) + supNA(x) supNB(y) ≤ 1

and hence A×2 B is an IVIFS. For the four other products the checks are analogous. �

In [2], this Theorem has not been formulated and proved.

3 First four types of interval-valued
intuitionistic fuzzy graphs

Let us have a (fixed) set of vertices V . An (◦)-IFG G (over V) will be the ordered pair G =

(V ∗, A∗), where
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V ⊂ V ,

V ∗ = {〈v, µV (v), νV (v)〉|v ∈ V },

A ⊂ V × V,

A∗ = {〈〈x, y〉, µA(x, y), νA(x, y)〉|〈x, y〉 ∈ V × V }

and functions µV : V → [0, 1] and νV : V → [0, 1] define the degree of membership and
the degree of non-membership, respectively, of the element v ∈ V to the set V ; the functions
µA : E1×E2 → [0, 1] and νA : E1×E2 → [0, 1] define the degree of membership and the degree
of non-membership, respectively, of the element 〈x, y〉 ∈ E1 ×E2 to the set A ⊆ E1 ×E2; these
functions have the forms of the corresponding components of the ◦-Cartesian product over IFSs,
where ◦ ∈ {×1,×2, . . . ,×5} is an operation over IFSs, and for all 〈x, y〉 ∈ E1 × E2,

0 ≤ µV (x) + νV (x) ≤ 1,

0 ≤ µA(x, y) + νA(x, y) ≤ 1.

The above definition is old (see, e.g., [2]), while the following three types of IVIFGs are
introduced for the first time. Let us call the first definition (◦)-(IFS, IFS)-IFG.

Now, we introduce the following three new definitions.
Let us have a (fixed) set of vertices V . An (◦)-(IFS, IVIFS)-IFG G (over V) will be the

ordered pair G = (V ∗, A∗), where
V ⊂ V ,

V ∗ = {〈v, µV (v), νV (v)〉|v ∈ V },

A ⊂ V × V,

A∗ = {〈〈x, y〉,MA(x, y), NA(x, y)〉|〈x, y〉 ∈ V × V }

and functions µV : V → [0, 1] and νV : V → [0, 1] define the degree of membership and
the degree of non-membership, respectively, of the element v ∈ V to the set V ; the functions
MA : E1×E2 → P([0, 1]) andNA : E1×E2 → P([0, 1]) define the degree of membership and the
degree of non-membership, respectively, of the element 〈x, y〉 ∈ E1×E2 to the set A ⊆ E1×E2,
where for each set Z, P(Z) is the set of the subsets of Z; these functions have the forms of the
corresponding components of the ◦-Cartesian product over IVIFSs, where ◦ ∈ {×1,×2, . . . ,×5}
is an operation over IVIFSs, and for all 〈x, y〉 ∈ E1 × E2,

0 ≤ µV (x) + νV (x) ≤ 1,

0 ≤ supMA(x) + supNA(x) ≤ 1.

Let us have a (fixed) set of vertices V . An (◦)-(IVIFS, IFS)-IFG G (over V) will be the
ordered pair G = (V ∗, A∗), where
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V ⊂ V ,

V ∗ = {〈v,MV (v), NV (v)〉|v ∈ V },

A ⊂ V × V,

A∗ = {〈〈x, y〉, µA(x, y), νA(x, y)〉|〈x, y〉 ∈ V × V }

and functions MV : V → P([0, 1]) and NV : V → P([0, 1]) define the degree of membership
and the degree of non-membership, respectively, of the element v ∈ V to the set V ; functions
µA : E1×E2 → [0, 1] and νA : E1×E2 → [0, 1] define the degree of membership and the degree
of non-membership, respectively, of the element 〈x, y〉 ∈ E1 ×E2 to the set A ⊆ E1 ×E2; these
functions have the forms of the corresponding components of the ◦-Cartesian product over IFSs,
where ◦ ∈ {×1,×2, . . . ,×5} is an operation over IFSs, and for all 〈x, y〉 ∈ E1 × E2,

0 ≤ supMV (x) + supNV (x) ≤ 1,

0 ≤ µA(x, y) + νA(x, y) ≤ 1.

Let us have a (fixed) set of vertices V . An (◦)-(IVIFS, IVIFS)-IFG G (over V) will be the
ordered pair G = (V ∗, A∗), where

V ⊂ V ,

V ∗ = {〈v,MV (v), NV (v)〉|v ∈ V },

A ⊂ V × V,

A∗ = {〈〈x, y〉,MA(x, y), NA(x, y)〉|〈x, y〉 ∈ V × V }

and functions MV : V → P([0, 1]) and NV : V → P([0, 1]) define the degree of membership
and the degree of non-membership, respectively, of the element v ∈ V to the set V ; the functions
MA : E1×E2 → P([0, 1]) and νA : E1×E2 → P([0, 1]) define the degree of membership and the
degree of non-membership, respectively, of the element 〈x, y〉 ∈ E1×E2 to the set A ⊆ E1×E2;
these functions have the forms of the corresponding components of the ◦-Cartesian product over
IVIFSs, where ◦ ∈ {×1,×2, . . . ,×5} is an operation over IVIFSs, and for all 〈x, y〉 ∈ E1 × E2 :

0 ≤ supMV (x) + supNV (x) ≤ 1,

0 ≤ supMA(x, y) + supNA(x, y) ≤ 1.

As in [4] and by analogy with [2], we illustrate the last of the above definitions by an example
of a Berge’s graph (see Fig. 1; the labels of the vertices and arcs show the corresponding degrees).
Let the following Index Matrix (IM, see, e.g. [3]) giving M - and N -values be defined for its
A-values (for example, the data can be obtained as a result of some observations).
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Figure 1.

〈MA, NA〉 A B C

A 〈[0.4, 0.5], [0.3, 0.4]〉 〈[1.0, 1.0], [0.0, 0.0]〉 〈[0.0, 0.0], [1.0, 1.0]〉
B 〈[0.0, 0.0], [1.0, 1.0]〉 〈[0.2, 0.5], [0.0, 0.4]〉 〈[0.4, 0.5], [0.2, 0.3]〉
C 〈[0.4, 0.5], [0.1, 0.4]〉 〈[1.0, 1.0], [0.0, 0.0]〉 〈[0.1, 0.1], [0.7, 0.9]〉

Having in mind that each real number r can be represented as an interval [r, r], we see that
the first three types of graphs are partial cases of the fourth type.

4 Second four types of interval-valued
intuitionistic fuzzy graphs

The new graphs have similar to the above form, but without the condition for the forms of their
elements µG and νG, or MG and NG elements. So, their definitions are the following.

Let us have a (fixed) set of vertices V . An (IFS, IFS)-IFG G (over V) will be the ordered pair
G = (V ∗, A∗), where

V ⊂ V ,

V ∗ = {〈v, µV (v), νV (v)〉|v ∈ V },

A ⊂ V × V,

A∗ = {〈〈x, y〉, µA(x, y), νA(x, y)〉|〈x, y〉 ∈ V × V }
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and functions µV : V → [0, 1] and νV : V → [0, 1] define the degree of membership and
the degree of non-membership, respectively, of the element v ∈ V to the set V ; functions
µA : E1 × E2 → [0, 1] and νA : E1 × E2 → [0, 1] define the degree of membership and the
degree of non-membership, respectively, of the element 〈x, y〉 ∈ E1×E2 to the set A ⊆ E1×E2;
and for all 〈x, y〉 ∈ E1 × E2,

0 ≤ µV (x) + νV (x) ≤ 1,

0 ≤ µA(x, y) + νA(x, y) ≤ 1.

Let us have a (fixed) set of vertices V . An (IFS, IVIFS)-IFG G (over V) will be the ordered
pair G = (V ∗, A∗), where

V ⊂ V ,

V ∗ = {〈v, µV (v), νV (v)〉|v ∈ V },

A ⊂ V × V,

A∗ = {〈〈x, y〉,MA(x, y), NA(x, y)〉|〈x, y〉 ∈ V × V }

and functions µV : V → [0, 1] and νV : V → [0, 1] define the degree of membership and
the degree of non-membership, respectively, of the element v ∈ V to the set V ; functions
MA : E1 × E2 → P([0, 1]) and νA : E1 × E2 → P([0, 1]) define the degree of membership
and the degree of non-membership, respectively, of the element 〈x, y〉 ∈ E1 × E2 to the set
A ⊆ E1 × E2; and for all 〈x, y〉 ∈ E1 × E2,

0 ≤ µV (x) + νV (x) ≤ 1,

0 ≤ supMA(x) + supNA(x) ≤ 1.

Let us have a (fixed) set of vertices V . An (IVIFS, IFS)-IFG G (over V) will be the ordered
pair G = (V ∗, A∗), where

V ⊂ V ,

V ∗ = {〈v,MV (v), NV (v)〉|v ∈ V },

A ⊂ V × V,

A∗ = {〈〈x, y〉, µA(x, y), νA(x, y)〉|〈x, y〉 ∈ V × V }

and functions MV : V → P([0, 1]) and NV : V → P([0, 1]) define the degree of membership
and the degree of non-membership, respectively, of the element v ∈ V to the set V ; functions
µA : E1×E2 → [0, 1] and νA : E1×E2 → [0, 1] define the degree of membership and the degree
of non-membership, respectively, of the element 〈x, y〉 ∈ E1 × E2 to the set A ⊆ E1 × E2; and
for all 〈x, y〉 ∈ E1 × E2,

0 ≤ supMV (x) + supNV (x) ≤ 1,

0 ≤ µA(x, y) + νA(x, y) ≤ 1.

Let us have a (fixed) set of vertices V . An (IVIFS, IVIFS)-IFGG (over V) will be the ordered
pair G = (V ∗, A∗), where
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V ⊂ V ,

V ∗ = {〈v,MV (v), NV (v)〉|v ∈ V },

A ⊂ V × V,

A∗ = {〈〈x, y〉,MA(x, y), NA(x, y)〉|〈x, y〉 ∈ V × V }

and functions MV : V → P([0, 1]) and NV : V → P([0, 1]) define the degree of membership
and the degree of non-membership, respectively, of the element v ∈ V to the set V ; functions
MA : E1 × E2 → P([0, 1]) and νA : E1 × E2 → P([0, 1]) define the degree of membership
and the degree of non-membership, respectively, of the element 〈x, y〉 ∈ E1 × E2 to the set
A ⊆ E1 × E2; and for all 〈x, y〉 ∈ E1 × E2,

0 ≤ supMV (x) + supNV (x) ≤ 1,

0 ≤ supMA(x, y) + supNA(x, y) ≤ 1.

Obviously, the first four definitions are partial cases of the new four definitions, respectively.

5 Remarks on the eight types of interval-valued
intuitionistic fuzzy graphs

From [3], it is clear that in the general case, if V = {v1, v2, . . . , vn}, then the index matrix (IM)
of the first, second, fifth and sixth graphs can have the form

A =

v1 v2 · · · vn

v1 a1,1 a1,2 · · · a1,n

v2 a2,1 a2,2 · · · a2,n
...

...
... . . . ...

vn an,1 an,2 · · · an,n

where n is the cardinality of set V and

ai,j = 〈µi,j, νi,j〉 ∈ [0, 1]× [0, 1] (1 ≤ i, j ≤ n),

0 ≤ µi,j, νi,j ≤ 1,

while the third, fourth, seventh and eighth graphs can have the form of the same IM, but now

ai,j = 〈Mi,j, Ni,j〉 ⊆ [0, 1]× [0, 1] (1 ≤ i, j ≤ n),

0 ≤ supMi,j + supNi,j ≤ 1.

Now, we can represent each of the four types of graphs in IM-form as

G = [V ∗, V ∗, {ai,j}].
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Following the ideas from [3], it can be easily seen that the above IM can be modified to the
following form:

G = [V ∗I ∪ V
∗
, V
∗ ∪ V ∗O, {ai,j}],

where V ∗I , V
∗
O and V

∗
are respectively the sets of the input, output and internal vertices of the

graph. At least one arc leaves every vertex of the first type, but none enters; at least one arc enters
each vertex of the second type but none leaves it; every vertex of the third type has at least one
arc ending in it and at least one arc starting from it.

Obviously, the graph matrix (in the sense of IM) now will be of a smaller dimension than the
ordinary graph matrix. Moreover, it can be non-square, unlike the ordinary graph, matrices.

As in the ordinary case, the vertex vp ∈ V has a loop if and only if ap,p = 〈µp,p, νp,p〉 for the
vertex vp and µp,p > 0 (hence νp,p < 1).

Let us write below for brevity G instead of G∗ and V instead of V ∗.
Let the graphs G1 and G2 be given and let

Gs = [V ′s , V
′′
s , {asi,j}],

where s = 1, 2 and V ′s and V ′′s are the sets of the graph vertices (input and internal, and output
and internal, respectively).

Then, using the apparatus of the IMs, we construct the graph which is a union of the graphs
G1 and G2. The new graph has the description

G = G1 ∪G2 = [V ′1 ∪ V ′2 , V ′′1 ∪ V ′′2 , {ai,j}],

where ai,j is determined by the respective IM-formulas for operation ∪ from [3].
Analogously, we can construct a graph which is the intersection of the two given graphs G1

and G2. It would have the form

G = G1 ∩G2 = [V ′1 ∩ V ′2 , V ′′1 ∩ V ′′2 , {ai,j}],

where ai,j is determined by the respective IM-formulas for operation ∩ from [3].

6 Level operators over interval-valued intuitionistic fuzzy sets
and interval-valued intuitionistic fuzzy graphs

These operators are introduced over IFSs in the first paper in this area - [1], and a part of them,
over IVIFSs in [2]. First, we give the original definitions.

Let α, β ∈ [0, 1] be fixed numbers for which α + β ≤ 1 and let

N1
α(A) = {〈x,MA(A), NA(x)〉 | x ∈ E & infMA(x) ≥ α},

Nβ
1 (A) = {〈x,MA(A), NA(x)〉 | x ∈ E & supNA(x) ≤ β},

N1
α,β(A) = {〈x,MA(A), NA(x)〉 | x ∈ E & infMA(x) ≥ α & supNA(x) ≤ β},
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N2
α(A) = {〈x,MA(A), NA(x)〉 | x ∈ E & supMA(x) ≥ α},

Nβ
2 (A) = {〈x,MA(A), NA(x)〉 | x ∈ E & inf NA(x) ≤ β},

N2
α,β(A) = {〈x,MA(A), NA(x)〉 | x ∈ E & supMA(x) ≥ α & inf NA(x) ≤ β},

N3
α(A) = {〈x,MA(A), NA(x)〉 | x ∈ E & infMA(x) ≤ α},

Nβ
3 (A) = {〈x,MA(A), NA(x)〉 | x ∈ E & supNA(x) ≥ β},

N3
α,β(A) = {〈x,MA(A), NA(x)〉 | x ∈ E & infMA(x) ≤ α & supNA(x) ≥ β},

N4
α(A) = {〈x,MA(A), NA(x)〉 | x ∈ E & supMA(x) ≤ α},

Nβ
4 (A) = {〈x,MA(A), NA(x)〉 | x ∈ E & inf NA(x) ≥ β},

N4
α,β(A) = {〈x,MA(A), NA(x)〉 | x ∈ E & supMA(x) ≤ α & inf NA(x) ≥ β},

Now, we introduce four new operators

N5
α,β,γ,δ(A) = {〈x,MA(A), NA(x)〉 | x ∈ E & infMA(x) ≤ α & supMA(x) ≤ β

& inf NA(x) ≥ γ & supNA(x) ≥ δ},

N6
α,β,γ,δ(A) = {〈x,MA(A), NA(x)〉 | x ∈ E & infMA(x) ≤ α & supMA(x) ≥ β

& inf NA(x) ≥ γ & supNA(x) ≤ δ},

N7
α,β,γ,δ(A) = {〈x,MA(A), NA(x)〉 | x ∈ E & infMA(x) ≥ α & supMA(x) ≤ β

& inf NA(x) ≤ γ & supNA(x) ≥ δ},

N8
α,β,γ,δ(A) = {〈x,MA(A), NA(x)〉 | x ∈ E & infMA(x) ≥ α & supMA(x) ≥ β

& inf NA(x) ≤ γ & supNA(x) ≤ δ}.

We will call the above sets sets of (α, β)-level generated by A.
Each of these operators can be applied over each of the eight types of interval-valued intu-

itionistic fuzzy graphs, but for this aim, we must modify them, because on the one hand they must
be applied over V -elements, and on the other hand, must be applied over A-elements.

7 Conclusion

The introduced types of graphs will be object of further research. In near future, the author
plans to study the possibility for applying different interval-valued intuitionistic fuzzy operators
over these graphs. Also, different other types of graphs will be discussed (multigraphs, trees and
others) and their applications in different areas will be searched, especially the areas of artificial
intelligence, data mining and big data.
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