On the intuitionistic fuzzy form of the classical implication $(A \rightarrow B) \vee(B \rightarrow A)$

Lilija Atanassova
Institute of Information and Communication Technologies, Bulgarian Academy of Sciences
"Acad. G. Bonchev" Str., Bl. 2, Sofia-1113, Bulgaria
e-mail: l.c.atanassova@gmail.com

Abstract

The intuitionistic fuzzy implications that satisfy the well-known logical tautology $(A \rightarrow B) \vee(B \rightarrow A)$ are described. Some of the intuitionistic fuzzy implications satisfy the exprssion as intuitionistic fuzzy tautology and a part of them - as a tautology in intuitionistic fuzzy sense.

Keywords: Intuitionistic fuzzy implication, Intuitionistic fuzzy tautoloy, Tautology.
AMS Classification: 03E72.

1 Introduction

One of the well-known logical tautologies is

$$
\begin{equation*}
(A \rightarrow B) \vee(B \rightarrow A) . \tag{*}
\end{equation*}
$$

Here, we discuss its validity for the different cases of intuitionistic fuzzy implications. In [1], 138 of them were given, but after publishing of this book, their number had increased and in [2], 152 implications over intuitionistic fuzzy pairs were given. Three of them were introduced by P. Dworniczak in [3, 4, 5].

Below, we determine which of these 152 intuitionistic fuzzy implications satisfy (*) as a tautologies, which - as intuitionistic fuzzy tautologies and which - do not satisfy $\left({ }^{*}\right)$.

First, we mention that the definition and use of the concept of intuitionistic fuzzy pair is very suitable, because in all cases, as the present one, it can be used as a makeshift of both the elements of an intuitionistic fuzzy sets, and the intuitionistic fuzzy propositions. In [2] it is defined as follows: "The Intuitionistic Fuzzy Pair (IFP) is an object with the form $\langle a, b\rangle$, where $a, b \in[0,1]$ and $a+b \leq 1$, that is used as an evaluation of some object or process and which conponents (a and b) are interpreted as degrees of membership and non-membership, or degrees of validity and non-validity, or degree of correctness and non-correctness, etc.

2 Preliminaries

Below, we shall assume that for the two Intuitionistic Fuzzy Pairs (IFPs) A and B the equalities: $V(A)=\langle a, b\rangle, V(B)=\langle c, d\rangle,(a, b, c, d, a+b, c+d \in[0,1])$ hold.

For the needs of the discussion below, following the definition from [1], we shall define the notion of Intuitionistic Fuzzy Tautology (IFT) by:

$$
A \text { is an IFT, if and only if for } V(a)=\langle a, b\rangle \text { holds: } a \geq b,
$$

while A will be a tautology iff $a=1$ and $b=0$. As in the case of ordinary logics, A is a tautology, if $V(x)=\langle 1,0\rangle$.

For two IFPs A and B, the operation "disjunction" (V) is defined (see [2]) by:

$$
V(A \vee B)=\langle\max (a, c), \min (b, d)\rangle .
$$

For two IFPs A and B, the relation "equality" is defined (see [2]) by:

$$
V(A)=V(B) \text { if and only if } a=c \text { and } b=d
$$

As we mentioned above, the list with all 152 implications over IFPs is given in [2]. Here we introduce only three of them that we will use below as illustration:

$$
\begin{gathered}
A \rightarrow_{1} B=\langle\max (b, \min (a, c)), \min (a, d)\rangle, \\
A \rightarrow_{2} B=\langle\overline{\operatorname{sg}}(a-c), d \cdot \operatorname{sg}(a-c)\rangle
\end{gathered}
$$

and

$$
A \rightarrow_{12} B=\langle\max (b, c), 1-\max (b, c)\rangle .
$$

3 Main results

Here we formulate two theorems. For each of them, two checks (for the first implications in each list) are given: one positive - a case when the respective implication satisfies (*) and one negative - when the implication does not satisfy (*). All other checks are similar.

Theorem 1. Two IFPs A and B satisfy (${ }^{*}$) as IFTs for the intuitionistic fuzzy implications \rightarrow_{1}, $\rightarrow_{2}, \rightarrow_{3}, \rightarrow_{4}, \rightarrow_{5}, \rightarrow_{6}, \rightarrow_{8}, \rightarrow_{9}, \rightarrow_{11}, \rightarrow_{13}, \rightarrow_{14}, \rightarrow_{17}, \rightarrow_{18}, \rightarrow_{20}, \rightarrow_{21}, \rightarrow_{22}, \rightarrow_{23}, \rightarrow_{24}, \rightarrow_{27}$, $\rightarrow_{28}, \rightarrow_{29}, \rightarrow_{30}, \rightarrow_{31}, \rightarrow_{32}, \rightarrow_{33}, \rightarrow_{34}, \rightarrow_{35}, \rightarrow_{36}, \rightarrow_{37}, \rightarrow_{38}, \rightarrow_{40}, \rightarrow_{42}, \rightarrow_{44}, \rightarrow_{45}, \rightarrow_{61}, \rightarrow_{62}$, $\rightarrow_{63}, \rightarrow_{64}, \rightarrow_{65}, \rightarrow_{66}, \rightarrow_{68}, \rightarrow_{69}, \rightarrow_{71}, \rightarrow_{72}, \rightarrow_{74}, \rightarrow_{75}, \rightarrow_{76}, \rightarrow_{77}, \rightarrow_{79}, \rightarrow_{80}, \rightarrow_{81}, \rightarrow_{82}, \rightarrow_{83}$, $\rightarrow_{84}, \rightarrow_{85}, \rightarrow_{88}, \rightarrow_{89}, \rightarrow_{90}, \rightarrow_{100}, \rightarrow_{101}, \rightarrow_{102}, \rightarrow_{103}, \rightarrow_{104}, \rightarrow_{105}, \rightarrow_{109}, \rightarrow_{110}, \rightarrow_{111}, \rightarrow_{122}$, $\rightarrow_{113}, \rightarrow_{114}, \rightarrow_{115}, \rightarrow_{116}, \rightarrow_{117}, \rightarrow_{118}, \rightarrow_{124}, \rightarrow_{125}, \rightarrow_{126}, \rightarrow_{127}, \rightarrow_{128}, \rightarrow_{129}, \rightarrow_{130}, \rightarrow_{131}, \rightarrow_{132}$, $\rightarrow_{133}, \rightarrow_{139}, \rightarrow_{140}, \rightarrow_{141}, \rightarrow_{142}, \rightarrow_{143}, \rightarrow_{144}, \rightarrow_{145}, \rightarrow_{146}, \rightarrow_{147}, \rightarrow_{148}, \rightarrow_{149}, \rightarrow_{150}, \rightarrow_{151}, \rightarrow_{152}$, \rightarrow_{153}.

Proof. Let the IFPs A and B be given. Then for \rightarrow_{1} we obtain:

$$
\begin{gathered}
\left(A \rightarrow_{1} B\right) \vee\left(B \rightarrow_{1} A\right) \\
=\left(\langle a, b\rangle \rightarrow_{1}\langle c, d\rangle\right) \vee\left(\langle c, d\rangle \rightarrow_{1}\langle a, b\rangle\right) \\
=\langle\max (b, \min (a, c)), \min (a, d)\rangle \vee\langle\max (d, \min (c, a)), \min (c, b)\rangle \\
=\langle\max (b, d, \min (a, c)), \min (a, b, c, d)\rangle .
\end{gathered}
$$

Let

$$
X \equiv \max (b, d, \min (a, c))-\min (a, b, c, d) .
$$

Then

$$
X \geq \min (a, c)-\min (a, b, c, d) \geq 0
$$

Therefore, $\left(A \rightarrow_{1} B\right) \vee\left(B \rightarrow_{1} A\right)$ is an IFT.
Analogously, for \rightarrow_{12} we obtain:

$$
\begin{gathered}
\left(A \rightarrow_{12} B\right) \vee\left(B \rightarrow_{12} A\right) \\
\langle\max (b, c), 1-\max (b, c)\rangle \vee\langle\max (d, a), 1-\max (d, a)\rangle \\
\langle\max (a, b, c, d), \min (1-\max (b, c), 1-\max (d, a))\rangle \\
\langle\max (a, b, c, d), 1-\max (\max (b, c), \max (d, a))\rangle \\
\langle\max (a, b, c, d), 1-\max (a, b, c, d)\rangle .
\end{gathered}
$$

Obviously, if $a=b=c=d=0$,

$$
\max (a, b, c, d)=0<1=1-\max (a, b, c, d),
$$

i.e., $\left(A \rightarrow_{12} B\right) \vee\left(B \rightarrow_{12} A\right)$ is not an IFT.

Theorem 2. Two IFPs A and B satisfy (${ }^{*}$) as tautologies for the intuitionistic fuzzy implications

$$
\rightarrow_{2}, \rightarrow_{3}, \rightarrow_{8}, \rightarrow_{11}, \rightarrow_{20}, \rightarrow_{23}, \rightarrow_{31}, \rightarrow_{32}, \rightarrow_{34}, \rightarrow_{37}, \rightarrow_{40}, \rightarrow_{42}, \rightarrow_{62}, \rightarrow_{63}, \rightarrow_{65}, \rightarrow_{68}, \rightarrow_{74},
$$

$$
\rightarrow_{77}, \rightarrow_{83}, \rightarrow_{88} .
$$

Proof. Let the IFPs A and B be given. Then for \rightarrow_{1} we obtain (as above):

$$
\left(A \rightarrow_{1} B\right) \vee\left(B \rightarrow_{1} A\right)=\langle\max (b, d, \min (a, c)), \min (a, b, c, d)\rangle .
$$

Obviously, if $a=b=c=d=0$,

$$
\left(A \rightarrow_{1} B\right) \vee\left(B \rightarrow_{1} A\right)=\langle 0,0\rangle \neq\langle 1,0\rangle .
$$

Analogously, for \rightarrow_{2} we obtain:

$$
\begin{gathered}
\left(A \rightarrow_{2} B\right) \vee\left(B \rightarrow_{2} A\right) \\
\langle\overline{\mathbf{s g}}(a-c), d \cdot \operatorname{sg}(a-c)\rangle \vee\langle\overline{\mathbf{s g}}(c-a), b \cdot \operatorname{sg}(c-a)\rangle
\end{gathered}
$$

$$
\langle\max (\overline{\mathbf{s}}(a-c), \overline{\mathbf{s g}}(c-a)), \min (d \cdot \mathbf{s g}(a-c), b \cdot \mathbf{s g}(c-a))\rangle .
$$

If $a>c$, then $\overline{\operatorname{sg}}(a-c)=0, \overline{\operatorname{sg}}(c-a)=1, \operatorname{sg}(a-c)=1, \operatorname{sg}(c-a)=0$ and hence

$$
\left(A \rightarrow_{2} B\right) \vee\left(B \rightarrow_{2} A\right)=\langle 1,0\rangle .
$$

If $a=c$, then $\overline{\operatorname{sg}}(a-c)=1, \overline{\operatorname{sg}}(c-a)=1, \operatorname{sg}(a-c)=0, \operatorname{sg}(c-a)=0$ and hence

$$
\left(A \rightarrow_{2} B\right) \vee\left(B \rightarrow_{2} A\right)=\langle 1,0\rangle .
$$

Finally, if $a<c$, then $\overline{\operatorname{sg}}(a-c)=1, \overline{\operatorname{sg}}(c-a)=0, \operatorname{sg}(a-c)=0, \operatorname{sg}(c-a)=1$ and hence

$$
\left(A \rightarrow_{2} B\right) \vee\left(B \rightarrow_{2} A\right)=\langle 1,0\rangle .
$$

Therefore, $\left(A \rightarrow_{1} B\right) \vee\left(B \rightarrow_{1} A\right)$ is a tautology.

References

[1] Atanassov, K. On Intuitionistic Fuzzy Sets Theory, Springer, Berlin, 2012.
[2] Atanassov, K., E. Szmidt, J. Kacprzyk, On intuitionistic fuzzy pairs, Notes on Intuitionistic Fuzzy Sets, Vol. 19, 2013, No. 3, 1-12.
[3] Dworniczak, P. Some remarks about the L. Atanassova's paper "A new intuitionistic fuzzy implication", Cybernetics and Information Technologies, Vol. 10, 2010, No. 3, 3-9.
[4] Dworniczak, P. On one class of intuitionistic fuzzy implications, Cybernetics and Information Technologies, Vol. 10, 2010, No. 4, 13-21.
[5] Dworniczak, P. On some two-parametric intuitionistic fuzzy implications, Notes on Intuitionistic Fuzzy Sets, Vol. 17, 2011, No. 2, 8-16.

