Notes on Intuitionistic Fuzzy Sets Vol. 19, 2013, No. 4, 15–18

On the intuitionistic fuzzy form of the classical implication $(A \rightarrow B) \lor (B \rightarrow A)$

Lilija Atanassova

Institute of Information and Communication Technologies, Bulgarian Academy of Sciences "Acad. G. Bonchev" Str., Bl. 2, Sofia–1113, Bulgaria e-mail: l.c.atanassova@gmail.com

Abstract: The intuitionistic fuzzy implications that satisfy the well-known logical tautology $(A \rightarrow B) \lor (B \rightarrow A)$ are described. Some of the intuitionistic fuzzy implications satisfy the expression as intuitionistic fuzzy tautology and a part of them – as a tautology in intuitionistic fuzzy sense.

Keywords: Intuitionistic fuzzy implication, Intuitionistic fuzzy tautoloy, Tautology. **AMS Classification:** 03E72.

1 Introduction

One of the well-known logical tautologies is

$$(A \to B) \lor (B \to A). \tag{(*)}$$

Here, we discuss its validity for the different cases of intuitionistic fuzzy implications. In [1], 138 of them were given, but after publishing of this book, their number had increased and in [2], 152 implications over intuitionistic fuzzy pairs were given. Three of them were introduced by P. Dworniczak in [3, 4, 5].

Below, we determine which of these 152 intuitionistic fuzzy implications satisfy (*) as a tautologies, which – as intuitionistic fuzzy tautologies and which – do not satisfy (*).

First, we mention that the definition and use of the concept of intuitionistic fuzzy pair is very suitable, because in all cases, as the present one, it can be used as a makeshift of both the elements of an intuitionistic fuzzy sets, and the intuitionistic fuzzy propositions. In [2] it is defined as follows: "The Intuitionistic Fuzzy Pair (IFP) is an object with the form $\langle a, b \rangle$, where $a, b \in [0, 1]$ and $a + b \leq 1$, that is used as an evaluation of some object or process and which conponents (a and b) are interpreted as degrees of membership and non-membership, or degrees of validity and non-validity, or degree of correctness and non-correctness, etc.

2 Preliminaries

Below, we shall assume that for the two Intuitionistic Fuzzy Pairs (IFPs) A and B the equalities: $V(A) = \langle a, b \rangle, V(B) = \langle c, d \rangle, (a, b, c, d, a + b, c + d \in [0, 1])$ hold.

For the needs of the discussion below, following the definition from [1], we shall define the notion of Intuitionistic Fuzzy Tautology (IFT) by:

A is an IFT, if and only if for $V(a) = \langle a, b \rangle$ holds: $a \ge b$,

while A will be a tautology iff a = 1 and b = 0. As in the case of ordinary logics, A is a tautology, if $V(x) = \langle 1, 0 \rangle$.

For two IFPs A and B, the operation "disjunction" (\lor) is defined (see [2]) by:

$$V(A \lor B) = \langle \max(a, c), \min(b, d) \rangle.$$

For two IFPs A and B, the relation "equality" is defined (see [2]) by:

V(A) = V(B) if and only if a = c and b = d.

As we mentioned above, the list with all 152 implications over IFPs is given in [2]. Here we introduce only three of them that we will use below as illustration:

$$A \to_1 B = \langle \max(b, \min(a, c)), \min(a, d) \rangle,$$
$$A \to_2 B = \langle \overline{sg}(a - c), d.sg(a - c) \rangle$$

and

$$A \to_{12} B = \langle \max(b, c), 1 - \max(b, c) \rangle.$$

3 Main results

Here we formulate two theorems. For each of them, two checks (for the first implications in each list) are given: one positive – a case when the respective implication satisfies (*) and one negative – when the implication does not satisfy (*). All other checks are similar.

Theorem 1. Two IFPs A and B satisfy (*) as IFTs for the intuitionistic fuzzy implications \rightarrow_1 , \rightarrow_2 , \rightarrow_3 , \rightarrow_4 , \rightarrow_5 , \rightarrow_6 , \rightarrow_8 , \rightarrow_9 , \rightarrow_{11} , \rightarrow_{13} , \rightarrow_{14} , \rightarrow_{17} , \rightarrow_{18} , \rightarrow_{20} , \rightarrow_{21} , \rightarrow_{22} , \rightarrow_{23} , \rightarrow_{24} , \rightarrow_{27} , \rightarrow_{28} , \rightarrow_{29} , \rightarrow_{30} , \rightarrow_{31} , \rightarrow_{32} , \rightarrow_{33} , \rightarrow_{34} , \rightarrow_{35} , \rightarrow_{36} , \rightarrow_{37} , \rightarrow_{38} , \rightarrow_{40} , \rightarrow_{42} , \rightarrow_{44} , \rightarrow_{45} , \rightarrow_{61} , \rightarrow_{62} , \rightarrow_{63} , \rightarrow_{64} , \rightarrow_{65} , \rightarrow_{66} , \rightarrow_{68} , \rightarrow_{69} , \rightarrow_{71} , \rightarrow_{72} , \rightarrow_{74} , \rightarrow_{75} , \rightarrow_{76} , \rightarrow_{77} , \rightarrow_{79} , \rightarrow_{80} , \rightarrow_{81} , \rightarrow_{82} , \rightarrow_{83} , \rightarrow_{84} , \rightarrow_{85} , \rightarrow_{88} , \rightarrow_{89} , \rightarrow_{90} , \rightarrow_{100} , \rightarrow_{101} , \rightarrow_{102} , \rightarrow_{103} , \rightarrow_{104} , \rightarrow_{105} , \rightarrow_{109} , \rightarrow_{110} , \rightarrow_{111} , \rightarrow_{112} , \rightarrow_{113} , \rightarrow_{114} , \rightarrow_{115} , \rightarrow_{116} , \rightarrow_{117} , \rightarrow_{118} , \rightarrow_{124} , \rightarrow_{125} , \rightarrow_{126} , \rightarrow_{127} , \rightarrow_{128} , \rightarrow_{129} , \rightarrow_{130} , \rightarrow_{151} , \rightarrow_{152} , \rightarrow_{153} . *Proof.* Let the IFPs A and B be given. Then for \rightarrow_1 we obtain:

$$(A \to_1 B) \lor (B \to_1 A)$$

= $(\langle a, b \rangle \to_1 \langle c, d \rangle) \lor (\langle c, d \rangle \to_1 \langle a, b \rangle)$
= $\langle \max(b, \min(a, c)), \min(a, d) \rangle \lor \langle \max(d, \min(c, a)), \min(c, b) \rangle$
= $\langle \max(b, d, \min(a, c)), \min(a, b, c, d) \rangle.$

Let

$$X \equiv \max(b, d, \min(a, c)) - \min(a, b, c, d)$$

Then

$$X \ge \min(a, c) - \min(a, b, c, d) \ge 0.$$

Therefore, $(A \rightarrow_1 B) \lor (B \rightarrow_1 A)$ is an IFT. Analogously, for \rightarrow_{12} we obtain:

$$(A \to_{12} B) \lor (B \to_{12} A)$$
$$\langle \max(b, c), 1 - \max(b, c) \rangle \lor \langle \max(d, a), 1 - \max(d, a) \rangle$$
$$\langle \max(a, b, c, d), \min(1 - \max(b, c), 1 - \max(d, a)) \rangle$$
$$\langle \max(a, b, c, d), 1 - \max(\max(b, c), \max(d, a)) \rangle$$
$$\langle \max(a, b, c, d), 1 - \max(a, b, c, d) \rangle.$$

Obviously, if a = b = c = d = 0,

$$\max(a, b, c, d) = 0 < 1 = 1 - \max(a, b, c, d),$$

i.e., $(A \rightarrow_{12} B) \lor (B \rightarrow_{12} A)$ is not an IFT.

Theorem 2. Two IFPs A and B satisfy (*) as tautologies for the intuitionistic fuzzy implications \rightarrow_2 , \rightarrow_3 , \rightarrow_8 , \rightarrow_{11} , \rightarrow_{20} , \rightarrow_{23} , \rightarrow_{31} , \rightarrow_{32} , \rightarrow_{34} , \rightarrow_{37} , \rightarrow_{40} , \rightarrow_{42} , \rightarrow_{62} , \rightarrow_{63} , \rightarrow_{65} , \rightarrow_{68} , \rightarrow_{74} , \rightarrow_{77} , \rightarrow_{83} , \rightarrow_{88} .

Proof. Let the IFPs A and B be given. Then for \rightarrow_1 we obtain (as above):

$$(A \to_1 B) \lor (B \to_1 A) = \langle \max(b, d, \min(a, c)), \min(a, b, c, d) \rangle$$

Obviously, if a = b = c = d = 0,

$$(A \to_1 B) \lor (B \to_1 A) = \langle 0, 0 \rangle \neq \langle 1, 0 \rangle.$$

Analogously, for \rightarrow_2 we obtain:

$$(A \to_2 B) \lor (B \to_2 A)$$
$$\langle \overline{sg}(a-c), d.sg(a-c) \rangle \lor \langle \overline{sg}(c-a), b.sg(c-a) \rangle$$

 $\langle \max(\overline{\mathbf{sg}}(a-c), \overline{\mathbf{sg}}(c-a)), \min(d.\mathbf{sg}(a-c), b.\mathbf{sg}(c-a)) \rangle.$

If a > c, then $\overline{sg}(a - c) = 0$, $\overline{sg}(c - a) = 1$, sg(a - c) = 1, sg(c - a) = 0 and hence

 $(A \to_2 B) \lor (B \to_2 A) = \langle 1, 0 \rangle.$

If a = c, then $\overline{sg}(a - c) = 1$, $\overline{sg}(c - a) = 1$, sg(a - c) = 0, sg(c - a) = 0 and hence

$$(A \to_2 B) \lor (B \to_2 A) = \langle 1, 0 \rangle.$$

Finally, if a < c, then $\overline{sg}(a - c) = 1$, $\overline{sg}(c - a) = 0$, sg(a - c) = 0, sg(c - a) = 1 and hence

$$(A \to_2 B) \lor (B \to_2 A) = \langle 1, 0 \rangle.$$

Therefore, $(A \rightarrow_1 B) \lor (B \rightarrow_1 A)$ is a tautology.

References

- [1] Atanassov, K. On Intuitionistic Fuzzy Sets Theory, Springer, Berlin, 2012.
- [2] Atanassov, K., E. Szmidt, J. Kacprzyk, On intuitionistic fuzzy pairs, *Notes on Intuitionistic Fuzzy Sets*, Vol. 19, 2013, No. 3, 1–12.
- [3] Dworniczak, P. Some remarks about the L. Atanassova's paper "A new intuitionistic fuzzy implication", *Cybernetics and Information Technologies*, Vol. 10, 2010, No. 3, 3–9.
- [4] Dworniczak, P. On one class of intuitionistic fuzzy implications, *Cybernetics and Information Technologies*, Vol. 10, 2010, No. 4, 13–21.
- [5] Dworniczak, P. On some two-parametric intuitionistic fuzzy implications, *Notes on Intuitionistic Fuzzy Sets*, Vol. 17, 2011, No. 2, 8–16.