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1 Introduction

The concept of fuzzy set was introduced by L. A. Zadeh [16]. Basic definition and propositions
of interval-valued fuzzy vector space is introduced by S. Mondal [11]. In 1977, A. K. Katsaras
and D. B. Liu [7], apply the concept of fuzzy set theory in elementary theory of vector spaces
and introduced fuzzy vector spaces and fuzzy topological vector spaces. In 1983, K. Atanassov
extended the notion of fuzzy sets to intuitionistic fuzzy sets [1]. In 2017, M. Chiney and S.
K. Samanta [3], introduced a notion of intuitionistic fuzzy vector space and intuitionistic fuzzy
basis. R. Pradhan and M. Pal [13,14], discussed about intuitionistic fuzzy linear transformations.
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Also they developed a system of intuitionistic fuzzy linear equations and tolerable solution of
an unsolved system. In 2007, S. B. Hosseini et al. [5], defined the concept of intuitionistic fuzzy
metric and normed spaces and prove several theorms about completeness and compactness. Using
level subsets and image µ, R. Kumar [8], redefined fuzzy subspaces and fuzzy cosets.
In 1991, D.S. Malik and J.N. Mordeson [10] characterize the conditions about fuzzy subspace of
a vector space and introduce the concept of fuzzy freeness of a fuzzy subset of a vector space.
In 1993, J.N.Mordeson [12] gives the conditions to have a basis over a fuzzy subfield. In 1990,
P.Lubzonok [9] defined the fuzzy dimension for all fuzzy vector spaces as a non negative real
number or infinity and proved some theorems based on fuzzy finite dimension in vector spaces.
F.G.Shi and C.E. Huang [15] redefine the fuzzy dimension of fuzzy vector spaces. In 2012, the
same authors [6] consider the direct sum of fuzzy dimension of fuzzy vector spaces. In 2001,
M. Gehrke et al. [4] concerned with the basics of a theory for such ’interval-valued’ fuzzy sets.
Using lattice theory, they build the concept of the interval-valued fuzzy set theory.

2 Preliminaries

The following preliminary concepts are studied to develop the basic properties of interval-valued
intuitionistic fuzzy vector spaces.

Definition 2.1. Interval-valued Fuzzy Set [11]: An interval-valued fuzzy set (IV FS) A on the
universe U 6= φ is given by A ={(u,A(u)) : u ∈ U}, where A(u)= [A(u), A(u)] ∈ L([0, 1])

being L([0, 1])={x=[x, x] : [x, x] ∈ [0, 1]2 and x ≤ x}.
Obviously, A(u) = [A(u), A(u)] is the membership degree and A(u), A(u) are the lower and the
upper limits of the membership degree of u ∈ U . Let I be the set of all real numbers lying between
0 and 1. That is, I = {x : 0 ≤ x ≤ 1}. Also let D[0, 1] be the interval [0, 1] which can be written
as D = {[a, b] : a ≤ b; a, b ∈ I}.

Definition 2.2. Interval-valued fuzzy vector [11]: An interval-valued fuzzy vector is an n-tuple of
elements from an interval-valued fuzzy algebra. That is, an IVFV is of the form (x1, x2, . . . , xn),
where each element xi ∈ F , i = 1, 2, . . . , n.

Definition 2.3. Interval-valued fuzzy vector space [11]: An interval-valued fuzzy vector space
(IVFVS) is a pair (E,A(x)) where E is a vector space in crisp sense and A : E → D[0, 1]

with the property, that for all a, b ∈ F and x, y ∈ E, we have A(ax + by) ≥ A(x) ∧ A(y) and
A(ax+ by) ≥ A(x) ∧ A(y).

Definition 2.4. Interval-valued intuitionistic fuzzy set [2]: Let D[0, 1] be the set of closed subin-
tervals of the interval [0, 1] and X( 6= φ) be a given set. An interval-valued intuitionistic fuzzy set
in X is defined as, A = {〈x, µA(x), νA(x)〉 |x ∈ X}, where µA : X → D[0, 1], νA : X → D[0, 1]

with the condition 0 ≤ sup(µA(x)) + sup(νA(x)) ≤ 1 for any x ∈ X . The intervals µA(x) and
νA(x) denotes the degree of belongingness and the degree of nonbelongingness of the element x
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to the set A. Thus for each x ∈ X, µA(x) and νA(x) are closed intervals and their lower and
upper end points are denoted by µAL

(x), µAU
(x), νAL

(x) and νAU
(x). We can denote by:

A = {〈x, [µAL
(x), µAU

(x)], [νAL
(x), νAU

(x)]〉 |x ∈ X},

where 0 ≤ µAU
(x) + νAU

(x) ≤ 1, µAL
(x) ≥ 0, νAL

(x) ≥ 0. For each element x we can compute
the unknown degree (hesitancy degree) of an intuitionistic fuzzy interval of x ∈ X in A defined as
follows:

πA(x) = 1− µA(x)− νA(x) = [1− µAU
(x)− νAU

(x), 1− µAL
(x)− νAL

(x)]

Especially, if µA(x) = µAU
(x) = µAL

(x) and νA(x) = νAU
(x) = νAL

(x), then the given
IVIFS A is reduced to an ordinary intuitionistic fuzzy set. For two IVIFSs

A = {〈x, [µAL
(x), µAU

(x)], [νAL
(x), νAU

(x)]〉 |x ∈ X}

and
B = {〈x, [µBL

(x), µBU
(x)], [νBL

(x), νBU
(x)]〉 |x ∈ X}

the following two relations are defined:

1. A ⊆ B if and only if

(a) µAU
(x) ≤ µBU

(x),

(b) µAL
(x) ≤ µBL

(x),

(c) νAU
(x) ≥ νBU

(x),

(d) νAL
(x) ≥ νBL

(x), for any x ∈ X .

2. A = B if and only if

(a) µAU
(x) = µBU

(x),

(b) µAL
(x) = µBL

(x),

(c) νAU
(x) = νBU

(x),

(d) νAL
(x) = νBL

(x), for any x ∈ X .

3 Interval-valued intuitionistic fuzzy vector space

In this section, we introduce and study the concept of interval-valued intuitionistic fuzzy vector
space and its properties.

Definition 3.1. Interval-valued Intuitionistic Fuzzy Vector Space: The mathematical system of
interval-valued intuitionistic fuzzy algebra is defined with two binary operations “+” and “.” on
the set Ṽ , satisfying the following properties:
Let xL, yL and xU , yU be the lower and upper end points of membership and non-membership
degrees, respectively.
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1. Idempotence : [xL, xU ] + [xL, xU ] = max{[xL, xU ], [xL, xU ]} = [xL, xU ]

2. Commutativity : [xL, xU ] + [yL, yU ] = [yL, yU ] + [xL, xU ]

3. Associativity : [xL, xU ] + ([yL, yU ] + [zL, zU ]) = ([xL, xU ] + [yL, yU ]) + [zL, zU ]

4. Absorption :

(a) [xL, xU ] + ([xL, xU ].[yL, yU ]) = [xL, xU ],

(b) [xL, xU ].([xL, xU ] + [yL, yU ]) = [xL, xU ].

5. Universal bounds:

(a) [xL, xU ] + φ = [xL, xU ],

(b) [xL, xU ] + I = I,

(c) [xL, xU ].φ = φ,

(d) [xL, xU ].I = [xL, xU ].

where φ = 〈[0, 0], [1, 1]〉 is the zero element and I = 〈[1, 1], [0, 0]〉 is the identity element. With
these properties, we can define an interval-valued intuitionistic fuzzy vector space. The triplet
(V, [µL(x), µU(x)], [νL(x), νU(x)]) = Ṽ is called interval-valued intuitionistic fuzzy vector space
where V is a vector space and αµU : Ṽ → D[0, 1], ανU : Ṽ → D[0, 1], µL ≥ 0 and νL ≥ 0 with
the property that for all α, β ∈ Ṽ and x, y ∈ F , then

1. [(αµL1
+ βµL1

), (αµU1
+ βµU1

)] ∈ Ṽ

2. [(ανL1
+ βνL1

), (ανU1
+ βνU1

)] ∈ Ṽ

3. {〈[((αL ∧ µL), (αU ∧ µU)), (((1− αL) ∨ νL, (1− αU) ∨ νU))]〉} ∈ Ṽ

where
µL1 + µL2 = µL1 ∨ µL2 ,

µU1 + µU2 = µU1 ∨ µU2 ,

νL1 + νL2 = νL1 ∧ νL2 ,

νU1 + νU2 = νU1 ∧ νU2 .

Example 3.2. Let Ṽ3 be the set of triplet over F . For α = {α1, α2, α3} and β = {β1, β2, β3}. Let
A1 = {〈α1, [0.1, 0.2], [0.5, 0.6]〉 , 〈α2, [0.1, 0.2], [0.7, 0.6]〉 , 〈α3, [0.5, 0.6], [0.3, 0.4]〉} and A2 =

{〈β1, [0.5, 0.6], [0.3, 0.4]〉 , 〈β2, [0.3, 0.4], [0.7, 0.6]〉 , 〈β3, [1, 1], [0, 0]〉}. Here A1 + A2 ∈ Ṽ3 and
xA1 ∈ Ṽ3 where x = {〈x, [0.5, 0.6], [0.3, 0.4]〉}. Therefore, Ṽ3 is an interval-valued intuitionistic
fuzzy vector space.

Definition 3.3. Transpose: Let Ṽ t = {[αL, αU ]t/[αL, αU ] ∈ Ṽ } where [αL, αU ]t is the transpose
of an interval-valued intuitionistic fuzzy vector [αL, αU ]
For [αL, αU ],[βL, βU ] ∈ Ṽ t and [xL, xU ] ∈ F , then
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1. ([xL, xU ].[αL, αU ]
t)t = [xL, xU ].[αL, αU ],

2. ([αL, αU ]
t + [βL, βU ]

t)t = [αL, αU ] + [βL, βU ].

Definition 3.4. IVIF Subspace: Let W̃ be a subset of Ṽ and [φL, φU ],[IL, IU ] ∈ W̃ . A subset
W̃ of Ṽ is said to be an IVIF subspace of Ṽ , if for any [αL, αU ], [βL, βU ] ∈ W̃ and [αL, αU ] +

[βL, βU ] ∈ W̃ .

Definition 3.5. IVIF Span of S̃: A linear combination of elements of the interval-valued in-
tuitionistic fuzzy set of interval-valued intuitionistic fuzzy vector S̃ is a finite sum

∑
[xLi

, xUi
]

[αLi
, αUi

] where [xLi
, xUi

] and [αLi
, αUi

] ∈ I . The set of all linear combinations of S̃ is called the
IVIF span of S̃ and is denoted by

〈
S̃
〉

.

Definition 3.6. IVIF spanning set: Let S̃ and W̃ be two intuitionistic fuzzy subsets of Ṽ . If〈
S̃
〉
= W̃ , then S̃ is called an IVIF spanning set or set of IVIF generators for W̃ .

If W̃ is an IVIF intuitionistic fuzzy subspace of Ṽ then
〈
W̃

〉
= W̃ .

Definition 3.7. IVIF Basis: An IVIF spanning set for W̃ is called an IVIF basis for an IVIF
subspace W̃ of Ṽ which one have minimum cardinality.

Definition 3.8. Linearly dependence: An IVIF set S̃ of vectors over an interval-valued intuition-
istic fuzzy algebra F, is linearly dependent if at least one element of S̃ is a linear combination of
the other element of S̃. Otherwise, it is called linearly independent.

Proposition 3.9. Let A and B be the set of interval-valued intuitionistic fuzzy vectors.

1. The set consisting of the zero vector is linearly dependent.

2. If A ⊂ B and if A is linearly dependent, then B is also linearly dependent.

3. If A ⊂ B and if B is linearly independent, then A is also linearly independent.

Proof. To prove (1): Let S̃ = {α1, α2, . . . , αr−1, φ, αr+1, . . . , αn}, where α′is are interval-valued
intuitionistic fuzzy vectors for all i ∈ {1, 2, . . . , r − 1, r + 1, . . . , n} and φ be the interval-valued
intuitionistic fuzzy zero vector. It can be written as

φ = φ · α1 + φ · α2 + · · ·+ φ · αr+1 + · · ·+ φ · αn
= 〈[(0, 0), (1, 1)] · [(µL1 , µU1), (νL1 , νU1)]〉+ 〈[(0, 0), (1, 1)] · [(µL2 , µU2), (νL2 , νU2)]〉+ . . .

+ 〈[(0, 0), (1, 1)] · [(µLn , µUn), (νLn , νUn)]〉
= 〈[(0, 0), (1, 1)]〉 .

Hence φ is a linear combination of the other vectors in S. Thus S is linearly dependent.

To prove (2): LetA = {[αL1 , αU1 ], [αL2 , αU2 ], . . . , [αLr , αUr ]} andB = {[αL1 , αU1 ], [αL2 , αU2 ], . . . ,

[αLr , αUr ], [αLr+1 , αUr+1 ], . . . , [αLn , αUn ]}where n > r; r, n ∈ N (natural numbers) and [αLi
, αUi

]’s
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are all interval-valued intuitionistic fuzzy vectors for all i ∈ {1, 2, . . . , n}; that is [αLi
, αUi

] ∈ Ṽ .
Also since A is linearly dependent, there exists a vector [αLj

, αUj
] ∈ A such that

[αLj
, αUj

] = [xL1 , xU1 ] · [αL1 , αU1 ] + [xL2 , xU2 ] · [αL2 , αU2 ] + · · ·
+ [xLj−1

, xUj−1
] · [αLj−1

, αUj−1
] + [xLj+1

, xUj+1
] · [αLj+1

, αUj+1
] + · · ·

+ [xLr , xUr ] · [αLr , αUr ],

where [xLi
, xUi

] ∈ F for all i ∈ {1, 2, . . . , n} This implies that,

[αLj
, αUj

] = [xL1 , xU1 ] · [αL1 , αU1 ] + [xL2 , xU2 ] · [αL2 , αU2 ] + . . . .

+ [xLj−1
, xUj−1

] · [αLj−1
, αUj−1

] + [xLj+1
, xUj+1

] · [αLj+1
, αUj+1

] + . . .

+ [xLr , xUr ] · [αLr , αUr ] + [φLr+1 , φUr+1 ] · [αLr+1 , αUr+1 ] + . . .

+ [φLn , φUn ] · [αLn , αUn ].

Hence B is linearly dependent.

To prove (3): Given that A ⊂ B and B is linearly independent, then A is also linearly inde-
pendent. Assume that A is linearly dependent. Using the above proof, we get that B is linearly
dependent. This is a contradiction by our assumption.
Hence A is linearly independent. �

Definition 3.10. IVIF Standard Basis: An IVIF basis B over the interval-valued intuitionistic
fuzzy algebra F is an IVIF standard basis if [αLi

, αUi
] =

∑
[xLij

, xUij
][αLj

, αUj
] for [αLi

, αUi
],

[αLj
, αUj

] ∈ B and [xLij
, xUij

] ∈ F

Theorem 3.11. Any finitely generated IVIF subspace over F has a unique IVIF standard basis.

Proof. Assume that B and B′ are two interval-valued intuitionistic fuzzy bases with |B| = |B′|.
Since B′ is an IVIF basis, each element of B can be expressed as a linear combination of the
element of B′.

Therefore, each element [βLi
, βUi

] of B must be multiple of some element [β′Li
, β′Uj

] ∈ B′.
Thus [βLi

, βUi
] ≤ [β′Lj

, β′Uj
], similarly,

[β′Lj
, β′Uj

] ≤ [βLi
, βUi

]

⇒ [βLi
, βUi

] = [β′Lj
, β′Uj

],

also we have |B| = |B′|. Thus, B = B′.
Hence the interval-valued intuitionistic fuzzy basis is unique. �

Theorem 3.12. Over the interval-valued intuitionistic fuzzy algebra F, any two IVIF bases for a
finitely generated IVIF subspace of IVIFVS have the same cardinality.

Proof. Let S̃ be the set of IVIF vectors, each of whose entries is equal to some entry of an IVIF
vector of any finite IVIF basis B. This implies that S̃ is a finite set.
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Case (1): B is not an IVIF standard basis.
⇒ [βLi

, βUi
] =

∑
[xLij

, xUij
][βLj

, βUj
] for some [βLi

, βUi
] ∈ B and [xLij

, xUij
] ∈ F with

[βLi
, βUi

] 6= [xLii
, xUii

][βLi
, βUi

]. That is, [βLi
, βUi

] 6= min[xLii
, xUii

][βLi
, βUi

]. Therefore,
[xLii

, xUii
][βLi

, βUi
] < [βLi

, βUi
]. Let B1 be the set obtained from B by replacing [βLi

, βUi
]

by [xLii
, xUii

][βLi
, βUi

]. Then
|B| = |B1|

⇒ 〈B〉 = 〈B1〉 .

Also B1 is minimal set and all the IVIF vectors of B1 becomes an IVIF standard basis, then
B1 is the required IVIF standard basis with the same cardinality as B.

If B1 is not IVIF standard basis, then repeat the process of replacing B1 by an IVIF basis B2

and proceed.
Therefore, after replacing IVIF bases of the form B by the form Bi, the process must be

terminated after some finite number of steps, which happen only if we obtained an IVIF standard
basis Bi with the same cardinality as B. This proves that, for any finite IVIF basis, there exists
an IVIF standard basis with the same cardinality.
Case (2): Let B be an IVIF standard basis. Also, if possible, let B1 be an IVIF basis of S̃ such
that |B| 6= |B1|, then either |B1| > |B| or |B1| < |B|.

Now |B1| > |B| contradicts the definition of IVIF basis that B1 is a minimal spanning set of
S̃. Also if |B1| < |B|, then there exists an IVIF standard basis, by using Case (1), the cardinality
of B is equal to B1. This is a contradiction that B is an unique IVIF standard basis.

Hence |B| = |B1|. �

Theorem 3.13. Let S̃ be a finitely generated IVIF subspace of Ṽn and let {[eL1 , eU1 ], ..., [eLn , eUn ]}
be the IVIF standard basis for S̃. Then, for any IVIF vector [αL, αU ] ∈ Ṽn can be expressed
uniquely as a linear combination of IVIF vectors of the IVIF standard basis.

Proof. Let {[eL1 , eU1 ], . . . , [eLn , eUn ]} be the IVIF standard basis for S̃ and [αL, αU ] be any IVIF
vector of Ṽn. Consider, [αL, αU ] =

∑
n
k=1[xLj

, xUj
][eLj

, eUj
], where [xLj

, xUj
] ∈ F .

In this expression, the co-efficients [xLj
, xUj

]’s are not unique.
If we write this in the matrix form as

[αL, αU ] = ([xL1 , xU1 ], [xL2 , xU2 ], . . . , [xLn , xUn ]).E,

where E is the matrix whose rows are the IVIF basis vectors, then [αL, αU ] = [pL, pU ] · E has a
solution [pL, pU ] = ([xL1 , xU1 ], [xL2 , xU2 ], . . . , [xLn , xUn ]).

Also it can be shown that this equation has a unique maximal solution, say, ([pL1 , pU1 ], [pL2 , pU2 ],

. . . , [pLn , pUn ]). Then [αL, αU ] =
∑

n
j=1[pLj

, pUj
][eLj

, eUj
] with [pLj

, pUj
] ∈ F is the unique rep-

resentation of the IVIF vector [αL, αU ]. �

Theorem 3.14. Let S̃ be an IVIF vector space over F, and a linear IVIF span of the IVIF vectors
[αL1 , αU1 ], . . . , [αLn , αUn ]. If some [αLi

, αUi
] is a linear combination of [αL1 , αU1 ], [αL2 , αU2 ], . . . ,

[αLi−1
, αUi−1

], [αLi+1
, αUi+1

], . . . , [αLn , αUn ] then the IVIF vectors [αL1 , αU1 ], . . . , [αLn , αUn ] also
spans S̃.
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Proof. Let W̃ = {[αL1 , αU1 ], . . . , [αLn , αUn ]} such that S̃ =
〈
W̃

〉
.

Since [αLi
, αUi

] is a linear combination of [αL1 , αU1 ], [αL2 , αU2 ], . . . , [αLi−1
, αUi−1

], [αLi+1
,

αUi+1
], . . . , [αLn , αUn ], then there exist [xLj

, xUj
]’s for j ∈ {1, 2, . . . , i − 1, i + 1, . . . , n} and

[xLj
, xUj

] ∈ F such that [αLi
, αUi

] =
∑

n
j=1,j 6=i[xLj

, xUj
][αLj

, αUj
].

Since S̃ =
〈
W̃

〉
, any vector [βL, βU ] ∈ S̃ can be expressed as:

[βL, βU ] = [yL1 , yU1 ][αL1 , αU1 ] + [yL2 , yU2 ][αL2 , αU2 ] + . . .

+ [yLi−1
, yUi−1

][αLi−1
, αUi−1

] + [yLi+1
, yUi+1

][αLi+1
, αUi+1

] + . . .

+ [yLn , yUn ][αLn , αUn ]

=
∑

n
j=1,j 6=i[[yLj

, yUj
][αLj

, αUj
] + [yLi

, yUi
][αLi

, αUi
]

=
∑

n
j=1,j 6=i[[yLj

, yUj
][αLj

, αUj
] + [yLi

, yUi
]
∑

n
j=1,j 6=i[xLj

, xUj
][αLj

, αUj
]

=
∑

n
j=1,j 6=i[x

′
Lj
, x′Uj

][αLj
, αUj

],

where [x′Lj
, x′Uj

] = [yLj
, yUj

] + [yLi
, yUi

][xLj
, xUj

] for j ∈ {1, 2, . . . , i − 1, i + 1, . . . , n} are
elements in F .

Since [βL, βU ] is an arbitrary vector in S̃, we have S̃ =
〈
W̃ − [αLi

, αUi
]
〉

. Thus, the vectors

[αL1 , αU1 ], [αL2 , αU2 ], . . . , [αLi−1
, αUi−1

], [αLi+1
, αUi+1

], . . . , [αLn , αUn ] spans S̃. �

Definition 3.15. Dimension of S̃: The dimension of the finitely generated subspace S̃ of an IVIF
vector space Ṽn over the interval-valued intuitionistic fuzzy algebra F denoted by dim(S̃) is
defined to be the cardinality of the IVIF standard basis of S̃.

Example 3.16. The set {(([1, 1], [0, 0]), ([0, 0], [1, 1])), (([0, 0], [1, 1]), ([1, 1], [0, 0]))} forms the
basis for Ṽ2. Thus dim(Ṽ2) = 2.

Theorem 3.17. Let S̃ be an IVIF vector space overF of dimension n and let [αL1 , αU1 ], [αL2 , αU2 ],

. . . , [αLm , αUm], (m < n) be linearly independent IVIF vectors in S̃. Then, there exists a basis
for S̃, containing [αL1 , αU1 ], [αL2 , αU2 ], . . . , [αLm , αUm ].

Proof. Let [βL1 , βU1 ], [βL2 , βU2 ], . . . , [βLn , βUn ] be the unique IVIF standard basis for S̃. Then the
set W̃ = {[αL1 , αU1 ], [αL2 , αU2 ], . . . , [αLm , αUm ], [βL1 , βU1 ], [βL2 , βU2 ], . . . , [βLn , βUn ]}
is a linearly dependent subset of S̃.

Therefore, [βLi
, βUi

] for some i ∈ {1, 2, . . . , n} is a linear combination of the vectors in W̃ .
Since S̃ is a linear span of W̃ . By Theorem 3.13, W̃ − {[βLi

, βUi
]} also spans S̃.

If the set W̃ = {[βLi
, βUi

]} is a minimal set, then we have a basis for S̃ as required. Otherwise,
we continue the process upto m-th iteration until we get a basis containing [αL1 , αU1 ], [αL2 , αU2 ],

. . . , [αLm , αUm ]. �

Theorem 3.18. Any set of (n+ 1) vectors in Ṽn is linearly dependent.

Proof. If the set (n + 1) vectors in Ṽn is linearly independent, then by Theorem 3.13, we can
find a basis for Ṽn containing the set. That is (n + 1) vectors. Which is a contradiction by our
assumption. Every IVIF basis for Ṽn must contain n vectors. Thus any set of (n + 1) vectors in
Ṽn is linearly dependent. �
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