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Abstract: A purchasing inventory model with shortages where carrying cost, shortage cost, setup
cost and demand quantity are considered as fuzzy numbers. The fuzzy parameters are transformed
into corresponding interval numbers and then the interval objective function has been transformed
into a classical multi-objective economic ordering quantity (EOQ) problem. To minimize the in-
terval objective function, the order relation that represent the decision maker’s preference between
interval objective functions have been defined by the right limit, left limit, center and half width
of an interval. Finally, the equivalent transformed problem has been solved by intuitionistic fuzzy
programming technique. The proposed method is illustrated with a numerical example and sen-
sitivity analysis has been done.
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1 Introduction
Inventory problems are common in manufacturing, maintenance service and business operations
in general. Often uncertainties may be associated with demand, various relevant costs, like,
carrying cost, shortage cost and setup cost. In conventional inventory models, uncertainties are
treated as randomness and are handled by probability theory. However, in certain situations,
uncertainties are due to fuzziness and in such cases the fuzzy set theory Zadeh [10], is applicable.
Usually researchers considered different parameters of an inventory model either as constant or
as dependent on time or probabilistic in nature for the development of the EOQ model. But, in
real life situations, these parameters may have little deviations from the exact value, which may
not follow any probability distribution. In these situations, if these parameters are treated as fuzzy
parameters, then it will be more realistic.

Recently fuzzy concept is introduced in the inventory problems by several researchers. Park
[5], Vujosevic [11] et al, Chang [4] et al, Lin [6] et al are proposed the EOQ model in the fuzzy
sense where inventory parameters are triangular fuzzy number.
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To deal with the ambiguous coefficients or parameters in an objective function, in mathemat-
ical programming inexact, fuzzy and interval programming techniques, Steuer [19], Tang [20],
Ishibuchi and Tanaka [8] have been proposed. The programming technique is more flexible and
allows to find the solutions which are more sufficient to the real problem. In fuzzy optimization
the degree of acceptance of objectives and constraints are considered here. Now a days different
modification and generalization form of fuzzy set theory have appeared. Intuitionistic fuzzy set
is one of the generalization form of fuzzy set. The concept of an IFS can be viewed as an alter-
native approach to define a fuzzy set in case where available information is not sufficient for the
definition of an imprecise concept by means of a conventional fuzzy sets

In this paper, we propose an inventory model with fuzzy inventory costs and fuzzy demand
rate. The said fuzzy parameters are then converted into appropriate interval numbers following
Grzegorzewski [13]. We propose a method to solve the EOQ inventory model using the concept
of interval arithmetic. We have constructed an equivalent multi-objective deterministic model
corresponding to the original problem with interval coefficients. To obtain the solution of this
equivalent problem, we have used Intuitionistic fuzzy programming technique where the degree
of acceptance and rejection of objectives are linear functions. Then this Intuitionistic fuzzy opti-
mization is converted in to crisp one. It gives the (α− β) Pareto optimal solutions.

The advantage of the intuitionistic fuzzy optimization technique is twofold: they give the
richest apparatus for formulation of optimization problems and, on the other hand, the solutions
of intuionistic fuzzy optimization problems can satisfy the objective(s) with bigger degree than
the analogous fuzzy optimization problem and the crisp one. In order to illustrate the solution
method, numerical examples are provided. Sensitivity of the decision variables is examined to
check the how far the output of the model is affected by changes or errors in its input parameters.

2 Intuitionistic fuzzy sets
Here we are to introduce first some relevant basic preliminaries, notations and definitions of IFS,
in particular the works of Atanassov [2, 3].

Definition 1 Let X = {x1, x2, . . . , xn} be a finite universal set. An Atanasson’s intuitionistic
fuzzy set (IFS) in a given universal set X is an expression A given by

A = {〈xi, µA(xi), νA(xi)〉 : xi ∈ X} (1)

where the functions
µA : X → [0, 1]

xi ∈ X → µA(xi) ∈ [0, 1]

and
νA : X → [0, 1]

xi ∈ X → νA(xi) ∈ [0, 1]

define the degree of membership and the degree of non-membership of an element xi ∈ X to the
set A ⊆ X , respectively, such that they satisfy the following condition: for every xi ∈ X

0 ≤ µA(x) + νA(x) ≤ 1.

Let
πA(xi) = 1− µA(x)− νA(x)
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which is called the Atanassov’s [3] intuitionistic index of an element xi in the set A. It is the
degree of indeterminacy membership of the element xi to the set A. Obviously,

0 ≤ πA(xi) ≤ 1

If an Atanassov’s IFS C in X has only an element, then C is written as follows

C = {〈xk, µC(xk), νC(xk)〉}

which is usually denoted by C = {〈µC(xk), νC(xk)〉} for short.

Definition 2 LetA andB be two Atanassov’s IFSs in the setX . A ⊂ B iff µA(xi) ≤ µB(xi) and
νA(xi) ≥ νB(xi); for any xi ∈ X .

Definition 3 LetA andB be two Atanassov’s IFSs in the setX . A = B iff µA(xi) = µB(xi) and
νA(xi) = νB(xi); for any xi ∈ X . Namely, A = B iff A ⊂ B and B ⊂ A.

Definition 4 Let A and B be two Atanassov’s IFSs in the set X . The intersection of A and B is
defined as follows:

A ∩B = {〈xi,min(µA(xi), µB(xi)),max(νA(xi), νB(xi))〉|xi ∈ X}.

Intuitionistic fuzzy optimization model: On the basis of intuitionistic fuzzy sets, an intu-
itionistic fuzzy optimization, the crisp transformation and the solution procedure is described by
Nayak and Pal [15, 16].

According to IFO theory, we are to maximize the degree of acceptance of the IF objective(s)
and constraints and to minimize the degree of rejection of IF objective(s) and constraints as

max
x∈<n
{µk(x)};

min
x
{νk(x)};

µk(x), νk(x) ≥ 0;
µk(x) ≥ νk(x);

0 ≤ µk(x) + νk(x) ≤ 1;


k = 1, 2, . . . , p+ q

where µk(x) denotes the degree of acceptance of x from the kth IFS and νk(x) denotes the degree
of rejection of x from the kth IFS. According to Atanassov property of IFS, the conjunction of
intuitionistic fuzzy objective(s) and constraints in a space of alternatives U is defined as

A ∩B = {〈x,min{µA(x), µB(x)},max{νA(x), νB(x)}〉 : x ∈ U}, (2)

which is defined as the intuitionistic fuzzy decision set (IFDS), where A denotes the integrated
intuitionistic fuzzy objective/ goals and B denotes integrated intuitionistic fuzzy constraint set
and they can be written as

A = {〈x, µA(x), νA(x)〉 : x ∈ U} = {〈x,
p

min
i=1

µi(x),
p

max
i=1

νi(x)〉 : x ∈ U} (3)

B = {〈x, µB(x), νB(x)〉 : x ∈ U} = {〈x,
q

min
j=1

µj(x),
q

max
j=1

νj(x)〉 : x ∈ U}. (4)
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Let the intuitionistic fuzzy decision set (2) be denoted by C, then min-aggregator is used for
conjunction and max operator for disjunction

C = A ∩B = {〈x, µC(x), νC(x)}〉|x ∈ U}, (5)

where, µC(x) = min{µA(x), µB(x)} =
p+q

min
k=1

µk(x) (6)

and νC(x) = max{νA(x), νB(x)} =
p+q

max
k=1

νk(x), (7)

where µC(x) denotes the degree of acceptance of IFDS and νC(x) denotes the degree of rejection
of IFDS. Therefore,

µC(x) ≤ µk(x), νC(x) ≥ νk(x); 1 ≤ k ≤ p+ q. (8)

The formula can be transformed to the following system

maxα, min β
α ≤ µk(x); k = 1, 2, . . . , p+ q
β ≥ νk(x); k = 1, 2, . . . , p+ q
α ≥ β; and α + β ≤ 1;α, β ≥ 0

where α denotes the minimal acceptable degree of objective(s) and constraints and β denotes the
maximal degree of rejection of objective(s) and constraints. The IFO model can be changed into
the following certainty (non-fuzzy) optimization model as:

max(α− β)
α ≤ µk(x); k = 1, 2, . . . , p+ q
β ≥ νk(x); k = 1, 2, . . . , p+ q
α ≥ β; and α + β ≤ 1;α, β ≥ 0

 (9)

which can be easily solved by some simplex methods.

3 Interval number
Let < be the set of all real numbers. An interval, Moore [17], may be expressed as

a = [aL, aR] = {x : aL ≤ x ≤ aR, aL ∈ <, aR ∈ <}, (10)

where aL and aR are called the lower and upper limits of the interval a, respectively.If aL = aR
then a = [aL, aR] is reduced to a real number a, where a = aL = aR . Alternatively an interval
a can be expressed in mean-width or center-radius form as a = 〈m(a), w(a)〉, where m(a) =
1
2
(aL + aR) and w(a) = 1

2
(aR − aL) are respectively the mid-point and half-width of the interval

a. The set of all interval numbers in < is denoted by I(<).
Basic interval arithmetic: Let a = [aL, aR] = 〈m(a), w(a)〉 and b = [bL, bR] = 〈m(b), w(b)〉

∈ I(<), then
a+ b = [aL + bL, aR + bR]; a+ b = 〈m(a) +m(b), w(a) + w(b)〉. (11)

The multiplication of an interval by a real number c 6= 0 is defined as
ca = [caL, caR]; if c ≥ 0 and ca = [caR, caL]; if c < 0.

ca = c〈m(a), w(a)〉 = 〈cm(a), |c|w(a)〉. (12)
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The difference of these two interval numbers is
a− b = [aL − bR, aR − bL]. (13)

The product of these two distinct interval numbers is given by

a.b = [min{aL.bL, aL.bR, aR.bL, aR.bR},max{aL.bL, aL.bR, aR.bL, aR.bR}] . (14)

The division of these two interval numbers with 0 6∈ B is given by

a/b =

[
min

{
aL
bL
,
aL
bR
,
aR
bL
,
aR
bR

}
,max

{
aL
bL
,
aL
bR
,
aR
bL
,
aR
bR

}]
. (15)

Comparison between interval numbers:
A brief comparison on different interval orders is given in [1, 14]. Let a = [aL, aR] =

〈m(a), w(a)〉, b = [bL, bR] = 〈m(b), w(b)〉 be two interval numbers within I(<).

Definition 5 Form(a) ≤ m(b) and w(a)+w(b) 6= 0, an acceptability index to the premise a ≺ b
is defined as follows [14]:

Ψ(a ≺ b) =
m(b)−m(a)

w(a) + w(b)
, (16)

which is the value judgement or satisfaction degree of the decision makers (DM) that the interval
a is not superior to b ( b is not inferior to a) in terms of value.

Thus, the max operator ”∨” for two intervals a and b is defined as follows [14]:

a ∨ b =


b, if Ψ(a ≤ b) > 0

a, if Ψ(a ≤ b) = 0 and w(a) < w(b) and DM is pessimistic
b, if Ψ(a ≤ b) = 0 and w(a) < w(b) and DM is optimistic.

(17)

Similarly, the min operator ”∧” for two intervals a and b is defined as follows [14]:

a ∧ b =


b, if Ψ(b ≤ a) > 0

a, if Ψ(b ≤ a) = 0 and w(a) > w(b) and DM is pessimistic
b, if Ψ(b ≤ ã) = 0 and w(a) > w(b) and DM is optimistic.

(18)

In the sequent discussions, the max operator ”∨” in equation (17) and the min operator ”∧” in
equation (18) are meant to be in the sense of equation (16) unless specially stated.

Optimization in interval environment: Now we defined a general objective function with
coefficients of the decision variables as interval numbers as

Minimize
{
Z(x) = A1x1 + A2x2 + . . .+ Anxn; x ∈ S

}
, (19)

where S is a feasible region of x and Ai is an interval number. Let the interval coefficient. Since
each interval coefficients Ai are interval number then Z(x) is of the form [ZL(x), ZR(x)] =
〈ZC(x), ZW (x)〉. The solution set of (19) can be obtained as the Pareto optimal solutions of the
multiobjective problem [8]

Minimize {ZR(x), ZC(x); x ∈ S} (20)
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3.1 Nearest interval approximation
In this section, we approximate a fuzzy number by a crisp number according to Grzegorzewski
[13]. For two arbitrary fuzzy numbers Ã and B̃ with α - cuts [AL(α), AR(α)] and [BL(α), BR(α)]

respectively, distance between Ã and B̃ is given by

d(Ã, B̃) =

√∫ 1

0

(AL(α)−BL(α))2dα +

∫ 1

0

(AR(α)−BR(α))2dα (21)

. For a given fuzzy number Ã we will try to find a closed interval Cd(Ã) which is the nearest to
the fuzzy number Ã with respect to metric d. Let (Cd(Ã))α = Cd(Ã) = [CL, CR],∀α ∈ (0, 1].
Now we are to minimize

d(Ã, Cd(Ã)) =

√∫ 1

0

(AL(α)− CL)2dα +

∫ 1

0

(AR(α)− CR)2dα (22)

with respect to CL and CR. In order to minimize d(Ã, Cd(Ã)) it suffices to minimize the function
D(CL, CR) = d2(Ã, Cd(Ã)).
Thus we have to find partial derivatives and then to solve ∂D(CL,CR)

∂CL
= 0 and ∂D(CL,CR)

∂CR
= 0 we

have

CL =

∫ 1

0

(AL(α)dα and CR =

∫ 1

0

(AR(α)dα (23)

Moreover, since ∣∣∣∣∣
∂2D(CL,CR)

∂C2
L

∂2D(CL,CR)
∂CL∂CR

∂2D(CL,CR)
∂CL∂CR

∂2D(CL,CR)

∂C2
R

∣∣∣∣∣ =

∣∣∣∣ 2 0
0 2

∣∣∣∣ = 4 > 0 (24)

and ∂2D(CL,CR)

∂C2
L

= 2 > 0, then CL and CR given by (23), actually, minimize D(CL, CR) and

simultaneously minimize d(Ã, Cd(Ã). Therefore, the interval

Cd(Ã) =

[∫ 1

0

(AL(α)dα,

∫ 1

0

(AR(α)dα

]
(25)

is the nearest interval approximation of fuzzy number Ã with respect to metric d. Let Ã =
(a1, a2, a3) be a fuzzy number. The α - level interval of Ã is defined as [AL(α), AR(α)]. When Ã
is a triangular fuzzy number(TFN) with the following membership function

µÃ(x) =


x−a1
a2−a1 ; if a1 ≤ x < a2
a3−x
a3−a2 ; if a2 < x < a3
0 ; otherwise.

(26)

Then for α ∈ (0, 1], we get the α-level interval of Ã as

[AL(α), AR(α)] = [a1 + (a2 − a1)α, a3 − (a3 − a2)α]
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and hence by nearest interval approximation method, the lower limit CL and upper limit CR of
the interval are

CL =

∫ 1

0

AL(α)dα =

∫ 1

0

[a1 + (a2 − a1)α]dα =
a1 + a2

2
,

CR =

∫ 1

0

AR(α)dα =

∫ 1

0

[a3 − (a3 − a2)α]dα =
a2 + a3

2
.

Therefore, the interval number considering Ã as a TFN is
[
a1+a2

2
, a3+a2

2

]
.

4 Model formulation
To develop the proposed EOQ model, the following notations and assumptions are used through-
out the paper.

(i) t1 the time of the inventory cycle when on hand inventory reaches to zero;

(ii) T − t1 is the duration of the inventory cycle when stock out occurs;

(iii) Q̃ lot size per cycle;

(iv) S̃ the order level to which the inventory is planned in the beginning of each scheduling
period;

(v) The demand rate D̃ per unit time is imprecise in nature i.e., D̃ = (d−4d1, d, d+4d2);

(vi) The inventory carrying cost or holding cost per unit per unit time, the shortage cost per
unit item per unit time, the ordering or setup cost per cycle are imprecise in nature i.e.,
C̃1 = (C1 −4C11, C1, C1 +4C12), C̃2 = (C1 −4C21, C2, C2 +4C22) and C̃3 = (C3 −
4C31, C3, C3 +4C32).

Assumptions: We have the following assumptions:

(i) Production rate or replenishment rate is infinite.

(ii) Lead time is zero.

(iii) The inventory planning horizon is infinite and the inventory system involves only one item
and one stocking point.

A typical behavior of the EOQ purchasing inventory model with uniform demand and with
shortage is depicted in Figure 1. In this model, we can easily observe that the inventory carrying
cost C1 as well as shortages cost C2 will be involved only when 0 ≤ S ≤ Q. In the above figure
the area of 4BCE represents the failure to meet the demand and the area of 4AOB represents
the inventory. Since Q is the lot size sufficient to meet the demand for time T , but (< Q i.e.
Ordering cost + Carrying S) amount of stock is planned in order to meet the demand for time t1
shortage of amount Q− S will arise for the entire remaining period T − t1.

In this model, each production cycle time T consists of two parts t1 and T − t1 where,

(i) t1 is the period during which the stock S decreases at the rate of D units per unit time and
reaches to zero and
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Figure 1: EOQ purchasing inventory model with shortage

(ii) T − t1 is the period during which shortages are occurred.

Therefore, the total average cost C(Q,S) is given by

C(Q,S) = Ordering cost + Carrying cost + Shortage cost

=
C3.D

Q
+

1

2
.
C1.S

2

Q
+

1

2
.
C2.(Q− S)2

Q
(27)

The purpose of the EOQ model is to find the optimal order quantity of inventory items at each
time such that the total average cost is minimal. Thus by using calculus, we optimize C(Q,S)
and we get optimum values of Q, S and C(Q,S).

In the crisp case the optimum values of Q and S for which the total average cost C(Q,S) in
(27) is minimum can be derived as

S∗ =

√
2.C2.C3.D

C1(C1 + C2)
, Q∗ =

√
2.C3(C1 + C2).D

C1.C2

.

4.1 Fuzzy EOQ model
We assume that the demand rate, holding cost, shortage cost, and set up cost are fuzzy numbers.
Then the equation (27) reduces to

C̃(Q,S) =
C̃3.D̃

Q
+

1

2
.
C̃1.S

2

Q
+

1

2
.
C̃2.(Q− S)2

Q
; where 0 ≤ S ≤ Q (28)

Now, we represent this fuzzy EOQ model to a deterministic form such that it can be easily
tackled. Following Grzegorzewski [13], the fuzzy numbers are transformed into interval numbers
as

D̃ = (d−∆d1, d, d+ ∆d2) ≡ [dL, dR]

C̃1 = (C1 −∆C11, C1, C1 + ∆C12) ≡ [C1L, C1R]

C̃2 = (C2 −∆C21, C2, C2 + ∆C22) ≡ [C2L, C2R]

C̃3 = (C3 −∆C31, C3, C3 + ∆C32) ≡ [C3L, C3R].

 (29)

Using (29) the expression (28) becomes

C̃(Q,S) = [fL, fR], (30)

where, fL =
C3L.dL
Q

+
1

2
.
C1L.S

2

Q
+

1

2
.
C2L.(Q− S)2

Q
(31)

and fR =
C3R.dR
Q

+
1

2
.
C1R.S

2

Q
+

1

2
.
C2R.(Q− S)2

Q
(32)
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Addition and other composition rules (seen in the section 3 in this paper) on interval numbers are
used in these equations. Hence, the proposed model can be stated as

Minimize {fL(S,Q), fR(S,Q)}. (33)

Generally, the multi-optimization problem (33), in the case of minimization problem, is formu-
lated in a conservative sense from (20) as

Minimize {fC(S,Q), fR(S,Q)} . (34)

subject to 0 ≤ S ≤ Q, where fC =
fL + fR

2

5 IF programming technique for solution
To solve multi-objective minimization problem given by (34), we have used the following IF
programming technique.

For each of the objective functions fC(S,Q), fR(S,Q), we first find the lower bounds LC , LR
(best values) and the upper bounds UC , UR (worst values), where LC , LR are the aspired level
achievement and UC , UR are the highest acceptable level achievement for the objectives fC(S,Q),
fR(S,Q) respectively and dk = Uk − Lk is the degradation allowance, or leeway, for objective
fk(S,Q), k = C,R. Once the aspiration levels and degradation allowance for each of the objec-
tive function has been specified, we formed a fuzzy model and then transform the fuzzy model
into a crisp model. The steps of intuitionistic fuzzy programming technique are as follows

Step 1: Solve the multi-objective cost function as a single objective cost function using one
objective at a time and ignoring all others.

Step 2: From the results of Step 1, determine the corresponding values for every objective at
each solution derived.

Step 3: From Step 2, we find for each objective, the best Lk and worst Uk values corre-
sponding to the set of solutions. The initial fuzzy model of (28) can then be stated as, in terms of
the aspiration levels for each objective, as follows: Find S and Q satisfying fk<̃Lk, k = C,R,
subject to the non negatively conditions.

Step 4: Define a membership function (µfk) and a non membership function (νfk) for each
objective function. A linear membership function is defined by as

µfk =


1, if fk ≤ Lk
1− fk−Lk

dk
, if Lk ≤ fk ≤ Uk

0, if fk ≥ Uk.

(35)

A linear non-membership function is defined by as

νfk =


0, if fk ≤ Lk
fk−Lk

dk
, if Lk ≤ fk ≤ Uk

1, if fk ≥ Uk.

, (36)

where dk = Uk − Lk is the tolerance of kth objective function fk(S,Q).
Step 5: Find an equivalent crisp model by using membership and non-membership function

for the initial fuzzy model.
Step 6: Solve the crisp model by appropriate mathematical programming algorithm. The

solution obtained in Step 6 will be the optimal compromise solution of the multi-objective mini-
mization problem given by (34).
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If we use the linear membership and non-membership function as defined in (35) and (36),
then an equivalent crisp (non-fuzzy) model for the intuitionistic fuzzy model can be formulated
from (9) as

max(α− β)
α ≤ µfk ; k = 1, 2
β ≥ νfk ; k = 1, 2
α ≥ β; and α + β ≤ 1;α, β ≥ 0

 (37)

which can be written in the form

max(α− β)

α ≤ 1− fR−LR

UR−LR
;

α ≤ 1− fC−LC

UC−LC
;

β ≥ fR−LR

UR−LR

β ≥ fC−LC

UC−LC
;

0 ≤ S ≤ Q; α ≥ β;
and α + β ≤ 1;α, β ≥ 0


(38)

5.1 Computational results
We consider inventory system with the following values of the parameter: C1 = 1.3, C2 = 6,
C3 = 500, D = 19000, 4d1 = 2000, 4d2 = 2000, 4C11 = 0.2, 4C12 = 0.2, 4C21 = 2,
4C22 = 2,4C31 = 200,4C32 = 200.

Considering the above fuzzy parameters as triangular fuzzy numbers (TFN), the nearest in-
terval approximation according to Grzegorzewski [13] are D̃ = [dL, dR] = [18000, 20000],
C̃1 = [C1L, C1R] = [1.2, 1.4], C̃2 = [C2L, C2R] = [5, 7], C̃3 = [C3L, C3R] = [400, 600].
Minimizing fR(S,Q), we get SR = 3779.6447 and QR = 4535.5737. With these values
of SR and QR, the values of the objective functions fR and fC , denoted by f ′R and f ′C , are
f ′R = 5291.5026 and f ′C = 4541.8731 respectively. Similarly minimizing fC(S,Q), we obtained
SC = 3483.5330 and QC = 4238.4146. With these values of SC and QC , the values of the objec-
tive functions fR and fC , denoted by f ′′R and f ′′C , are f ′′R = 5305.9848 and f ′′C = 4529.3564 respec-
tively. Then we calculate LR = min(f ′R, f

′′
R) = 5291.5026, UR = max(f ′R, f

′′
R) = 5305.9848,

LC = min(f ′C , f
′′
C) = 4529.3564, UC = max(f ′C , f

′′
C) = 4541.8731. Using the equation (38),

we formulate the following problem:

max(α− β)
14.482161αQ ≤ 5305.984783Q− 1200000− 0.7S2 − 3.5(Q− S)2;
12.516723αQ ≤ 4541.873084Q− 960000− 0.65S2 − 3(Q− S)2;

14.482161βQ ≥ 1200000 + 0.7S2 + 3.5(Q− S)2 − 5291.502622Q;
12.516723βQ ≥ 960000 + 0.65S2 + 3(Q− S)2 − 4529.356361Q;

0 ≤ S ≤ Q; α ≥ β;
and α + β ≤ 1;α, β ≥ 0


(39)

whereLR, UR, LC andUC are given above. The Pareto optimal solution of the problem is obtained
as follows:

f ∗L = 3769.8416, f ∗C = 4532.4780, f ∗R = 5295.1144,

S∗ = 3629.225, Q∗ = 4385.157(α = 0.7506033, β = .2493967)
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5.2 Sensitivity analysis

Based on the numerical example considered above, we now study sensitivity of S̃∗, Q̃∗, f ∗L, f
∗
C and

f ∗R to changes in the values of the system parameters C̃1, C̃2, C̃3 and D̃. The sensitivity analysis is
performed by changing mid value of each parameters by +50%,+25%,−25% and−50%; taking
one parameter at a time and keeping the remaining parameters unchanged. The results are shown
the following Table 1.

Table1: Effect of changes in the various parameters of the inventory model

Mid value % change %Change in
of the parameter S∗ Q∗ f ∗L f ∗C f ∗R

+50 −21.0704 −14.5081 +18.4864 +17.3903 +16.6099

m(C̃1) +25 −12.0290 −8.3750 +10.0875 +9.4113 +8.9299
−25 +17.2473 +12.3720 −12.5121 −11.4212 −10.6446
−50 +45.3200 +33.2239 −28.9133 −25.9490 −23.8385
+50 +6.8352 +0.7964 +4.4140 +3.3123 +2.5279

m(C̃2) +25 +1.6654 +1.6356 +2.2861 +1.8280 +1.5019
−25 +2.50 +2.5746 −3.7333 −2.8303 −2.1874
−50 −6.9004 +7.1070 −10.8398 −7.8066 −5.6471
+50 +20.0571 +19.9977 +26.7219 +17.7948 +18.9933

m(C̃3) +25 +10.3469 +10.2923 +14.0926 +11.6499 +9.9108
−25 −12.2150 −12.2584 −16.3410 −13.2067 −10.9753
−50 −25.9930 −26.0296 −36.1618 −28.7678 −23.5036
+50 +21.4307 +21.3706 +23.3410 +22.2366 +21.4504

m(D̃) +25 +10.7024 +10.7180 +12.2125 +11.6575 +11.2624
−25 −13.1791 −13.2220 −14.0663 −13.2449 −12.6601
−50 −28.3354 −28.3709 −30.8503 −28.9000 −27.5115

From the Table 1, it is seen that

(i) S̃∗ is fairly sensitive while Q̃∗, f ∗L, f
∗
C and f ∗R are moderately sensitive to changes in the

value of the carrying cost C̃1.

(ii) Each of S̃∗, Q̃∗, f ∗L, f
∗
C and f ∗R are not much sensitive to changes in the value of the shortage

cost C̃2.

(iii) Each of S̃∗, Q̃∗, f ∗L, f
∗
C and f ∗R are moderately sensitive to changes in the value of the setup

cost C̃3 and D̃.

6 Conclusion
In this paper, we have presented an inventory model with shortage, where carrying cost, shortage
cost, ordering or setup cost and demand are assumed as fuzzy numbers instead of crisp or prob-
abilistic in nature to make the inventory model more realistic. At first, we convert these fuzzy
numbers in to interval numbers and then using intuitionistic fuzzy optimization model a solution
procedure is given. In this approach, the degree of acceptance and the degree of rejection are
introduced together. These cannot be simply consider as a complement of each other and the sum
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of their value is less than or equal to 1. A numerical example illustrates the proposed methods.
Lastly, to study the effect of the determined quantities on changes of different parameters, a sen-
sitivity analysis is also presented.
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