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Abstract: Let us denote by u = (uy,...,u,) a vector of membership degrees (compat-
ibility degrees) of a subject or an element z from the finite set X to one of n classes. Let
it hold 0 < u; < 1 for all ¢, another restrictions such as Y u; = 1 are not given. In this

case the vector z contains inherently not only the uncertair:ty about the possible final crisp
classification of the element 2z into one of n classes but also, to some extent, a contradiction
among its components. Both categories - uncertainty and contradiction - should be treated
separately. In the article properties of the measure of contradiction are studied and formulas
for the evaluation of the contradiction for a given vector u are proposed. The case n = 2 is
closely related to intuitionistic fuzzy sets [1] and to the intuitionistic fuzzy logic [2].
Keywords: fuzzy partition, intuitionistic fuzzy sets, measures of contradiction, intuitionis-
tic fuzzy logic, many valued logic

Introduction
As the result of the fuzzy partition procedure [3] we get for each element z of a finite
universum X a vector u = (uy,...,u,) where u; denotes the membership degree (compat-

ibility degree) of z to a class i, 1 <3 < n. It is supposed that 0 < u; < 1 for all 7 and
Zu; = 1. By normalizing an arbitrary vector v/, the latter condition ) u; = 1 can be
1 1

always attained. Doing this, we are eliminating a possible contradiction which may exist
in the original n-tuple (u},...,u}) before the normalizing operation. Hence the condition
3. u; = 1 will not be considered in the sequel.

i

Measures of Contradiction
The measure of contradiction of a vector u will be formalized as a function denoted by C
which fulfils some properties. First let us introduce some notations. u = (uy,...,%,) denotes
n

a vector represented by elements from [0, 1]". Let us denote for short 3 u; = S(u1,...,un) =
1

S(u) and s denotes the value of S for some u.
C is defined on [0,1]" with values in R* = {y € R : y > 0}. C fulfils the following
properties:

P1. C is continuous on [0,1],
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P2. C is symmetric in its arguments,

P3. C™" 1 (uy,...,upn,0) = C™(u1,...,un),
P4. C(ua,...,un) < C(1,...,1),

P5. C(uy,...,u,) 2 C(1,0,...,0),

P6. S(u?) = S(ul) = C(u?) = C(ul),
P7. S(u?) > S(u!) > 1 = C(u?) > C(ul),
P8. 1> §(u?) > S(u!) = C(u?) > C(u}).

It is necessary to distinguish between P7 and P8 for the values of S(u) smaller or greater
than 1 because writing simply S(u?) > §(u!) = C(u?) > C(u!) is in contradiction with P5
as soon as u? = (1,0,...,0) and S(u') < 1. P8 together with P5 leads to the

Corollary S(u) £ 1= C(u) = C(1,0,...,0). It means C(u) is constant for all u such that
S(u) < 1. P4 is a direct consequence of P7 and P8.

Theorem 1: C has the following form

C fS@) ... S(w)>1
C(“)”{ f(l)g IOES (1)

where f is a continuous, strictly monotone increasing function on [1,n], f:[l,n] —» R*.
Proof (a) Let C be given as in (1). Then P1-P8 can be easily verified.

(b) Let C has properties P1-P8. f can be constructed as follows. For s € [1,2] we put
f(s)=C(1,s-1,0,...,0). By P6 for s = S(u) we can write C(z) = C(uq,...,u,) = C(1,s8-
1,0,...,0) = f(s) = f(S(u)), hence the desired form of (1). f is by P7 stnctly monotone in-
creasing on [1,2]. fis by P1 also continuous on [1, 2]. Similarly for s € [2,3],...,s € [n—1,n].
For s € [0, 1] according to Corollary 1 we have C(u) = C(1,0,...,0)and C(1,0,...,0) = f(1)
as already defined for the case s € [1,2]. Hence we have C(u) = f(1) and this is the form

(1). QED.
Hence choosing f as identity mapping the simlest form of C is
_fSw)=u ... S(w)>1
C(“)"{ 1 ... Sw<1 (2)
or

-1 ... Su)>1
C(u)={Z 0 ... Sgugg (3)

where (3) seems to be more natural because of its value 0 for C(1,0,...,0).

The above properties P1-P8 are related to such a kind of crisp classification, for which
it holds that the classified element does not need to belong to any of the n classes ,i.e.,
u = (0,...,0) does not mean any contradiction.

Another possibility is the crisp classification, for which 1t holds that the classified element
must necessarily belong to one of the n' classes. If not then we have a contradiction. In this
case u = (0,...,0) means the same contradiction as u = (1,...,1). A generalization for the
fuzzy case is as follows: the vector u such that S(u) = 1 does not mean any contradiction,
any deviation from this state leads to a contradiction.

In the case of intuitionistic fuzzy sets we have n = 2 properties which are mutually
complementary. Hence it means that any deviation from the state S(u) = 1 leads to a
contradiction.
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In the case of intuitionistic fuzzy sets we have n = 2 properties which are mutually
complementary hence it means that every deviation from the state S(u) = 1 leads to a
contradiction.

For the second type of the classification some of the Properties P1-P8 must be changed.

P1. C is continuous on [0,1]".
P2. C is symmetric in its arguments.

The extension of v = (uj,...,u,) by a component u,4; = 0 did not mean by the
former P3 any further contradiction because the classified element did not need to
belong to any of the classes. This does not hold any more for the second type of the
classification. Instead of P3 we write a new property

P3 C(0,0,...,0) = C(1,1,...,1).

P4. C(uy,...,un) < C(1,...,1).

P5. Clua,...,un) > C(1,0,...,0).

P6. S(u?) = S(ul) = C(u?) = C(ub).

P7. S(u2) > S(ul) > 1= C(u?) > C(ud).
P8. 12> S(u?) > S(ul) = C(u?) < C(ul).

Theorem 2: C has the following form

_ f(S(u)) S(u)Zl
C(u)—{ g9(S(m)) ... S(u)<1 (4)

where f is a continuous, strictly monotone increasing function on [1,%], g is a continuous,
strictly monotone decreasing function on [0,1], f(1) = g(1) and f(n) = g(0).

The proof is analog to Theorem 1.

A simple form for C is

_ S(u) ... 1<S5(m)<n
C(“)"{ —(n-1S@W)+n ... 0<S)<1 (%)
or
Clu) = S(u)-1 ... 1<S@w)<n 6)
—(n-1DS(uw)+(n-1) ... 0<S)<1
In the case of n =2 (4) and (5) are
_ g Fuy ... 1<u;+u<2
C(u)—{-ﬁl—UQ+2 DS’U,]-{-’UQSI (7)
or
C(u)— U+ ug~1 ... 1<u;+u<2 (8)
- l—ul-—ug 0SU1+U2$1

In the case of an intuitionistic fuzzy set A u; and u, are denoted as u; = p4(z), ue = va(z),
z € X, cf. [4] and it holds pa(z) + va(z) < 1. According to (8) we can write C(u”*) =
1—pa(z)—va(z). We see that C(u®) is identical with the intuitionistic index of the element
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z. Hence we can understand the intuitionistic index actually as a measure of contradiction.
For pa(z) = va(z) = 0 we get the maximal contradiction.

C(u®) is a measure of contradiction for an element € X, we can also speak about a local
measure of contradiction. If the contradiction for the whole set X is considered, we need a
global measure of contradiction. In analogy with local and global measures of uncertainty
(entropy) c.f. [5,6], global measures can be constructed from local measures e.g. by adding
the values C'(u®) over all z € X.

Contradiction Measures and Intuitionistic Fuzzy Logic

A valuation function V assigns to each propositional form A a pair < u(4),v(4) >,
0 < pu(A),7(A) £1, u(A)+7(A) < 1. The valuations of the operations -A, AAB,AV B are
given by valuations of their constituents cf. [2]. Using the results of Sec.2 we can define the
contradiction in A by C(A) =1 — u(A) — v(A). Using the valuations for ~A,AA B,AV B
as in [2], we can derive

C(AVT) =0, C(AVF)=C(4), C(A)=C(-4), ©
C(ANT)=C(A), C(AANF)=0,

For a set of propositional forms {A;,..., An} let Ar be the A; with the lowest value of ¥
and Ay be the A; with the highest value of x. Then we have

C(AL) > C(ALV ...V An) > C(AR). (10)

Let A} be the A; with the lowest value of 4 and A be the A; with the highest value of 7.
Then we have

C(AL) > C(A1 A ... ANAp) > C(AR). (11)
From (10) and (11) we have
maxC(A;) > C(A1V ...V AR),C(A1 A ... A Ap) > min C(4;). (12)
Bliography

[1] Atanassov, K.: Intuitionistic fuzzy sets. Fuzzy Sets and Systems 20, (1986) 87-96.

[2] Atanassov, K., Gargov, G.: Elements of intuitionistic fuzzy logic. Part I. Fuzzy Sets and
Systems 95, (1998) 39-52.

[3] Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum
Press, 1981.

[4] Burillo, P., Bustince, H..: Entropy on intuitionistic fuzzy sets and on interval-valued fuzzy
sets. Fuzzy Sets and Systems 78, (1996) 305-316.

[5] Sustal, J.G.: On the uncertainty of fuzzy classifications. In: Gupta M.M.,Sanchez E.
(eds.): Approximate Reasoning and Decisiob Analysis. North-Holland (1982) 125-129.
[6] Sustal, J.G.: On measures of cluster validity. In: Albrycht J., Wisniewski H.(eds.):
Proceedings of the Polish Symposium on Interval and Fuzzy Mathematics, Poznan (1985),

209-211.

34



