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Abstract: Fono et al. [10] determined some classes of difference and symmetric difference oper-
ations for fuzzy sets using fuzzy implication operators. Intuitionistic fuzzy sets are known to be
generalizations of fuzzy sets. So, in this paper, we propose new difference and symmetric differ-
ence operations for intuitionistic fuzzy sets based on intuitionistic fuzzy R-implication operators
and standard intuitionistic fuzzy negation operator. We establish that some common properties of
the difference operations for fuzzy sets established earlier by Fono et al. in [10] and for crisp sets
are preserved by the new obtained operations for intuitionistic fuzzy sets. We display a specific
property satisfied by difference operation in crisp and fuzzy cases and violated in intuitionistic
fuzzy case. The proposed difference and symmetric difference operations for intuitionistic fuzzy
sets generalize the case for fuzzy sets. This strength provides a more dynamic perspective into
the studies and applications of these operations.
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1 Introduction

The framework of fuzzy set provides us with tools to handle problems in which the source of
vagueness is the ambiguity in criteria of class membership rather than randomness [20]. In this
framework, any element of a universal crisp set is allowed to belong to a subset partially with
a membership grade usually between 0 and 1 assigned to it. Furthermore, the sum of the mem-
bership grade and non-membership grade of an element is always 1. But in reality, this case is
not always true because there may be some hesitation degree [9] and this led to the introduction
of intuitionistic fuzzy sets as generalization of fuzzy sets by Atanassov [1] in which the degree
of hesitation is accounted for, so that the sum of the membership grade, non-membership grade
of an element and its degree of hesitation is always 1. Throughout this paper, we consider that
definition of an intuitionistic fuzzy set.

Since intuitionistic fuzzy set theory is a generalization of the fuzzy set theory, a rigorous study
was needful to be able to establish workable results when concepts under crisp sets and fuzzy sets
are transferred. A new set of definitions for set operations needed to be proposed for this field.
Many standard operations (such as inclusion, intersection, union, complement, etc) [2,7,9,11,12]
have been unanimously agreed upon to serve as usual operations on intuitionistic fuzzy sets.
Meanwhile, the need to study these operations in a more mathematical framework which allows
for generalization has motivated many scholars [3–6, 11–13, 17–19] among others to undertake
studies in intuitionistic fuzzy operators and generators. Of these operators which are germane
to establishing results in our current research include intuitionistic fuzzy t-norms, t-conorms,
R-implications, co-implications and negations. Cornelis et al. [5, 6] and Atanassov [3] have es-
tablished many results in the study of intuitionistic fuzzy implications, co-implications, negations
and their properties. Some of these results have provided in great measure some required mathe-
matical background for our current study.

Fono et al. [10] have proposed two classes of difference operations for fuzzy sets and two
classes of symmetric difference for fuzzy sets using the fuzzy implication operators. They estab-
lished that these difference and symmetric difference operations for fuzzy sets of type 1 and 2
preserve the classical properties of difference and symmetric difference operations for crisp sets.
Inspired by their work on fuzzy sets, we introduce new definitions for difference and symmet-
ric difference for intuitionistic fuzzy sets by means of intuitionistic fuzzy R-implications and we
study their properties.

Huawen [15] defined three difference operations for intuitionistic fuzzy sets, one based on
the intuitionistic fuzzy t-norm TM = (min,max) and the remaining based on any decreasing
intuitionistic fuzzy generators as follows: For any two intuitionistic fuzzy sets A and B of X,
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A−1 B = {〈x, µA(x) ∧ νB(x), νA(x) ∨ µB(x)〉 | x ∈ X}, (1)

A−2 B = {〈x, µA(x) ∧ ϕ(1− νB(x)), νA(x) ∨ (1− ϕ(µB(x)))〉 | x ∈ X}, (2)

A−3 B = {〈x, µA(x) ∧ ϕ(1− νB(x)), νA(x) ∨ ϕ(1− µB(x))〉 | x ∈ X}, (3)

where ϕ is any decreasing intuitionistic fuzzy generator such that ϕ(0) = 1.

However, these definitions do not provide a sufficient endowment to explore the mathemati-
cal extensions of these operations to the more general cases that apply to any intuitionistic fuzzy
t-norm. Huawen’s difference operations preserve only two out of the four properties which are
the minimal conditions (as we have established in the results of Proposition 2) to require for a
difference operation on sets, fuzzy sets and intuitionistic fuzzy sets in general. It is worthy to note
here that the Huawen’s difference operation−1 is trivially the generalization of the difference op-
eration in the sense of crisp set given byA−B = A∩Bc. As he noted, if we choose the generator
ϕ to be the standard negator defined by ϕ(x) = 1− x, then the difference operations −2 and −3

reduce to −1. The complement functions (which are special examples of any difference opera-
tion) constructed from the difference operations −2 and −3 in Equations (2) and (3) are the same
as the intuitionistic fuzzy complementation and intuitionistic fuzzy pseudo-complementation re-
spectively, obtained by Bustince, et al. [4]. Thus, we can refer to the difference operation −3

as intuitionistic fuzzy pseudo-difference operation, which in general does not inherit the general
properties of the difference −2.

It is also notable to remark here that, the intuitionistic fuzzy complementation associated to
difference −2 defined by Huawen [15] and Bustince, et al. [4] depends largely on the choice of
the intuitionistic fuzzy generator. Thus, with different choice of intuitionistic fuzzy generator,
the intuitionistic fuzzy complementation so defined may yield different result. Meanwhile, the
intuitionistic fuzzy complementation associated to the difference operation we proposed, though
by means of intuitionistic fuzzy R-implications, yet yields the same result for any choice of
associated t-representable intuitionistic fuzzy t-norm.

By these new difference and symmetric difference operations for intuitionistic fuzzy sets we
have proposed, we are able to construct typical examples of intuitionistic fuzzy difference and
symmetric difference associated to the three usual known of intuitionistic fuzzy t-norms (the
minimum, product and Lukasiewicz). More explicit examples of these new operations can be
constructed for other t-representable intuitionistic fuzzy t-norms. This possibility provides a more
robust knowledge and insight into the study of these operations in general cases and their appli-
cations would be more enriched.

The rest of this paper is organized as follows. Section 2 recalls some preliminaries on fuzzy
sets and intuitionistic fuzzy sets. It also recalls known and useful results on difference and sym-
metric difference of fuzzy sets established by Fono et al. [10]. Section 3 introduces difference
and symmetric difference of intuitionistic fuzzy sets and establishes their properties. Section 4
gives some concluding remarks. An Appendix recalls some known results of the fuzzy case that
we use.
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2 Preliminaries

Throughout this paper, X shall denote a nonempty universal set, > a t-norm and S a t-conorm.

In this Section, we introduce some basic definitions and provide some preliminary results
needed in the rest of the paper. Some other useful notions and concepts on fuzzy sets are recalled
in Appendix.

2.1 Intuitionistic fuzzy sets, intuitionistic fuzzy operators and operations

Here, we introduce the basic concepts of intuitionistic fuzzy sets, recall the definitions and exam-
ples of some intuitionistic fuzzy operators and operations ( [5, 13, 17]).

Definition 1 (Intuitionistic Fuzzy Set [7, 9, 17]). An intuitionistic fuzzy set D on X is defined by:

D = {(x, µD(x), νD(x)) | µD(x), νD(x) ∈ [0, 1], 0 ≤ µD(x) + νD(x) ≤ 1, ∀x ∈ X},

where µD(x), νD(x) are the degrees of membership and non-membership of x in D, respectively.

If µD(x) + νD(x) = 1, then D is a fuzzy set of X where µD(x) is the degree of membership
of x in D.

We will subsequently be referring to the complete lattice (L∗,≤L∗) with 0L∗ = (0, 1) and
1L∗ = (1, 0) as the units whereL∗ = {(x1, x2)|(x1, x2) ∈ [0, 1]×[0, 1], x1+x2 ≤ 1} and≤L∗ is an
order on L∗ defined by: for all (x1, x2), (y1, y2) ∈ L∗, (x1, x2) ≤L∗ (y1, y2) if and only if x1 ≤
y1 andx2 ≥ y2. The meet operator ∧ and the join operator ∨ on this lattice, (L∗,≤L∗) are defined
for all (x1, x2), (y1, y2) ∈ L∗ as:

(x1, x2) ∧ (y1, y2) = (min(x1, y1),max(x2, y2))

(x1, x2) ∨ (y1, y2) = (max(x1, y1),min(x2, y2)).

Definition 2 (Intuitionistic Fuzzy t-norm and t-conorm, (see [5, 6, 13])). 1. An intuitionistic fuzzy
t-norm is a binary operation T : L∗ ×L∗ −→ L∗ such that for any x ∈ L∗, T (x, 1L∗) = x

(neutral element) and, T satisfies commutativity, monotonicity (increasing) and associativ-
ity.

2. An intuitionistic fuzzy t-conorm is a binary operation J : L∗ × L∗ −→ L∗ such that for
any x ∈ L∗, J (x, 0L∗) = x and, J is commutative, monotone increasing and associative.

Definition 3 (Intuitionistic Fuzzy Negation, (see [5–7, 18])). An intuitionistic fuzzy negation is
a non-increasing mapping N : L∗ −→ L∗ satisfying N (0L∗) = 1L∗ and N (1L∗) = 0L∗ . If
N (N (x)) = x, ∀x ∈ L∗, then N is said to be involutive. An involutive intuitionistic fuzzy
negation is called strong intuitionistic fuzzy negation.

Deschrijver et al. and, Reseir and Bedregal [6, 18] have shown that an involutive intuition-
istic fuzzy negation, N , can be characterized by an involutive fuzzy negation by proving that,
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if the fuzzy negation N is involutive, then N (x) = (N(1 − x2), 1 − N(x1)). An example of
a strong (involutive) intuitionistic fuzzy negation is the standard negation Ns on L∗ defined by
Ns(x1, x2) = (x2, x1).

We now recall useful classes of intuitionistic fuzzy t-norm and t-conorm and, their implica-
tions and co-implications.

Definition 4 (t-Representable intuitionistic fuzzy t-norm and t-conorm (see [5, 6, 13, 17])). An
intuitionistic fuzzy t-norm T (respectively intuitionistic fuzzy t-conorm J ) is t-representable if
there exists a fuzzy t-norm> and a fuzzy t-conorm S (respectively a fuzzy t-conorm S ′ and a fuzzy
t-norm >′) such that, for all x = (x1, x2), y = (y1, y2) ∈ L∗, T (x,y) = (>(x1, y1), S(x2, y2))

and J (x,y) = (S ′(x1, y1),>′(x2, y2)), respectively.

The following result allows us to construct t-representable intuitionistic fuzzy t-norms and
t-conorms from fuzzy t-norms and t-conorms.

Theorem 1. [5, 6, 17] Given a fuzzy t-norm > and fuzzy t-conorm S satisfying >(a, b) ≤ 1 −
S(1 − a, 1 − b) for all a, b ∈ [0, 1], then T (x,y) = (>(x1, y1), S(x2, y2)) and J (x,y) =

(S(x1, y1),>(x2, y2)) for all x = (x1, x2), y = (y1, y2) ∈ L∗, are t-representable intuitionistic
fuzzy t-norm and t-representable intuitionistic fuzzy t-conorm respectively.

We denote by IF-t-norm the intuitionistic fuzzy t-norm and, by IF-t-conorm the intuitionistic
fuzzy t-conorm.

Definition 5 (Intuitionistic fuzzy R-implication and co-implicator [5, 6, 13]). 1. An intuition-
istic fuzzy R-implication (for short, IF-R-implication) associated with an IF-t-norm, T =

(>, S), is a mapping IT : L∗×L∗ −→ L∗ such that, for all x = (x1, x2), y = (y1, y2) ∈ L∗,

IT (x,y) = sup{z|z ∈ L∗, T (x, z) ≤L∗ y}
= sup{(z1, z2)|(z1, z2) ∈ L∗, >(x1, z1) ≤ y1 and S(x2, z2) ≥ y2}.

2. An intuitionistic fuzzy co-implication (for short, IF-co-implication) associated with an IF-t-
conorm,J = (S,>), is a mapping JJ : L∗×L∗ −→ L∗ such that, for all x = (x1, x2), y =

(y1, y2) ∈ L∗,

JJ (x,y) = inf{z|z ∈ L∗, y ≤L∗ J (x, z)}
= inf{(z1, z2)|(z1, z2) ∈ L∗, y1 ≤ >(x1, z1) and y2 ≥ S(x2, z2)}.

The following useful result relates IF-co-implication and IF-R-implication associated with
an IF-t-conorm, J = (S,>) and IF-t-norm, T = (>, S), respectively to corresponding fuzzy
co-implication, JS associated to S and fuzzy R-implication, I> associated to >.

Lemma 1 (see [13]). For any x = (x1, x2), y = (y1, y2) ∈ L∗, we have

1. JJ (x,y) = (JS(x1, y1),min (I>(x2, y2), 1− JS(x1, y1))) .

2. IT (x,y) = (min (I>(x1, y1), 1− JS(x2, y2)) , JS(x2, y2)).
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The following are examples of t-representable IF-t-norms and IF-t-conorms [13].

Example 1. i. TM = (>M , SM) and JM = (SM ,>M) are t-representable IF-t-norm and IF-t-
conorm respectively associated to >M and SM .

ii. TP = (>P , SP ) and JP = (SP ,>P ) are t-representable IF-t-norm and IF-t-conorm respec-
tively associated to >P and SP .

iii. TL = (>L, SL) and JL = (SL,>L) are t-representable IF-t-norm and IF-t-conorm respec-
tively associated to >L and SL.

iv. Also, by verifying that >lF (a, b) ≤ 1 − SlF (1 − a, 1 − b) holds for all a, b ∈ [0, 1], l ∈
(0, 1) ∪ (1,+∞), T lF = (>lF , SlF ) and J l

F = (SlF ,>lF ) are t-representable IF-t-norm and
IF-t-conorm respectively associated to >lF and SlF for all l ∈ (0, 1) ∪ (1,+∞).

Using Lemma 1 and Example 8 (see the Appendix), we construct the following examples
of IF-R-implication and IF-co-implication associated with an IF-t-norm, T = (>, S) and IF-t-
conorm, J = (S,>).

Example 2. For all x = (x1, x2),y = (y1, y2) ∈ L∗,

1. The IF-R-implication associated with TM = (>M , SM) and the IF-co-implication associ-
ated with JM = (SM ,>M) are respectively given by:

ITM (x,y) =

(1, 0), if x ≤L∗ y,
(min(y1, 1− y2), y2) , if x >L∗ y.

and

JJM (x,y) =

(0, 1), if x ≥L∗ y,
(y1,min(y2, 1− y1)) , if x <L∗ y.

2. IF-R-implication associated with TP = (>P , SP ) and IF-co-implication associated with
JP = (SP ,>P ) are respectively given by:

ITP (x,y) =

(1, 0), if x ≤L∗ y,(
min

(
y1
x1
, 1−y2
1−x2

)
, y2−x2

1−x2

)
, if x >L∗ y.

and

JJP (x,y) =

(0, 1), if x ≥L∗ y,(
y1−x1
1−x1 ,min

(
y2
x2
, 1−y1
1−x1

))
, if x <L∗ y.

3. The IF-R-implication associated with TL = (>L, SL) and the IF-co-implication associated
with JL = (SL,>L) are respectively given by:

ITL(x,y) =

(1, 0), if x ≤L∗ y,
(min (1− x1 + y1, 1 + x2 − y2) , y2 − x2) , if x >L∗ y.
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and

JJL(x,y) =

(0, 1), if x ≥L∗ y,
(y1 − x1,min (1− x2 + y2, 1 + x1 − y1)) , if x <L∗ y.

4. The IF-R-implication associated with T lF = (>lF , SlF ) and the IF-co-implication associated
with J l

F = (SlF ,>lF ) for all l ∈ (0, 1) ∪ (1,+∞) are respectively given by:

IT l
F

(x,y) =


(1, 0), if x ≤L∗ y,(

min
(

logl

(
1 + (l−1)(ly1−1)

lx1−1

)
, logl

(
1 + (l−1)(l1−y2−1)

l1−x2−1

))
,

1− logl

(
1 + (l−1)(l1−y2−1)

l1−x2−1

))
, if x >L∗ y,

and

JJ l
F (x,y) =


(0, 1), if x ≥L∗ y,(

1− logl

(
1 + (l−1)(l1−y1−1)

l1−x1−1

)
,

min
(

logl

(
1 + (l−1)(ly2−1)

lx2−1

)
, logl

(
1 + (l−1)(l1−y2−1)

l1−x2−1

)))
, if x <L∗ y.

We end this Subsection by recalling inclusion and some operations on intuitionistic fuzzy sets.

Definition 6 (Intuitionistic Fuzzy Operations [2, 7, 9, 11, 12]). Let A and B be any two intuition-
istic fuzzy sets defined on X . Inclusion and the following operations are defined by associated
membership and non-membership functions as follows:

i. Inclusion: A ⊆ B if ∀x ∈ X,µA(x) ≤ µB(x) and νA(x) ≥ νB(x);

ii. Intersection: A∩B is defined by: ∀x ∈ X, (µA∩B(x), νA∩B(x)) = (µA(x) ∧ µB(x), νA(x) ∨ νB(x)) ;

iii. Union: A∪B is defined by: ∀x ∈ X, (µA∪B(x), νA∪B(x)) = (µA(x) ∨ µB(x), νA(x) ∧ νB(x)) ;

iv. Complement: Ac is defined by: ∀x ∈ X, (µAc(x), νAc(x)) = (νA(x), µA(x)) ;

v. Difference: A−B is defined by: ∀x ∈ X, (µA−B(x), νA−B(x)) = (µA(x) ∧ νB(x), νA(x) ∨ µB(x)) ;

vi. Symmetric Difference: A M B is defined by: ∀x ∈ X, (µAMB(x), νAMB(x)) =

(min{µA(x) ∨ µB(x), νA(x) ∨ νB(x)}, max{νA(x) ∧ νB(x), µA(x) ∧ µB(x)}) .

In the next Subsection, we recall the difference and symmetric difference operations for fuzzy
sets, some examples and their properties as proposed by Fono et al. [10].

2.2 Difference and symmetric difference of fuzzy sets
based on fuzzy implications

Definition 7 (Difference and Symmetric Difference Operations for Fuzzy Sets [10]). a. LetM,N

be any two fuzzy sets defined onX and i ∈ {1, 2, 3, 4}. The fuzzy difference of type i associated

to > of M and N is the fuzzy set of X denoted by M
i
−
>
N and defined by:

µ
M

i
−
>
N

(x) = I i>(µM(x), µN(x)) = 1− I i>(µM(x), µN(x)), for all x ∈ X.
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b. The fuzzy symmetric difference of type i ∈ {1, 2} associated to > of M and N is the fuzzy set

of X denoted by M
i
M
>
N and defined for all x ∈ X by:

µ
M

i
M
>
N

(x) = µ
M∪N

i
−
>
M∩N

(x) =

1− I1> (µM(x) ∨ µN(x), µM(x) ∧ µN(x)) , if i = 1

1− I2> (µM(x) ∨ µN(x), µM(x) ∧ µN(x)) , if i = 2.

We recall the examples of these operations for fuzzy sets of type 1 and 2 associated to the
usual three fuzzy t-norms in what follows.

Example 3. For any fuzzy sets M and N defined on X ,

1. Examples of fuzzy difference operations

(a) The difference operation associated with >M is given by, for all x ∈ X

µ
M

1
−
>M

N
(x) =

0, if µM(x) ≤ µN(x),

1− µN(x), if µM(x) > µN(x),

µ
M

2
−
>M

N
(x) =

0, if µM(x) ≤ µN(x),

µM(x), if µM(x) > µN(x)

(b) The difference operation associated with >P is given by, for all x ∈ X

µ
M

1
−
>P

N
(x) =

0, if µM(x) ≤ µN(x),

1− µN (x)
µM (x)

, if µM(x) > µN(x),

µ
M

2
−
>P

N
(x) =

0, if µM(x) ≤ µN(x),
µM (x)−µN (x)

1−µN (x)
, if µM(x) > µN(x).

(c) The difference operation associated with>L is given by, for all x ∈ X and i ∈ {1, 2},

µ
M

i
−
>L

N
(x) =

0, if µM(x) ≤ µN(x),

µM(x)− µN(x), if µM(x) > µN(x).

2. Examples of fuzzy symmetric difference operations

(a) The symmetric difference operation associated with >M is given by, for all x ∈ X

µ
M

1
M
>M

N
(x) =

0, if µM(x) = µN(x),

max (1− µM(x), 1− µN(x)) , if µM(x) 6= µN(x),

µ
M

2
M
>M

N
(x) =

0, if µM(x) = µN(x),

max (µM(x), µN(x)) , if µM(x) 6= µN(x).
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(b) The symmetric difference operation associated with >P is given by, for all x ∈ X

µ
M

1
M
>P

N
(x) =

0, if µM(x) = µN(x) = 0,
|µM (x)−µN (x)|

max{µM (x),µN (x)} , if µM(x) 6= 0, or µN(x) 6= 0 ,

µ
M

2
M
>P

N
(x) =

0, if µM(x) = µN(x) = 1,
|µM (x)−µN (x)|

1−min{µM (x),µN (x)} , if µM(x) ∧ µN(x) < 1.

(c) The symmetric difference operation associated with>L is given by, for all x ∈ X and
i ∈ {1, 2},

µ
M

i
M
>L

N
(x) =| µM(x)− µN(x) | .

Fono et al. [10] have also proved that the difference and symmetric difference operations
for fuzzy sets of type 1 and 2 associated to any continuous t-norm > so defined preserve the
properties of the classical difference and symmetric difference operation for crisp sets. We recall
these results as follows:

Proposition 1. Let i ∈ {1, 2} and M,M ′, N be any arbitrary fuzzy sets on X . The following
properties hold [10]:

1. Properties of fuzzy difference operation;

(a) if M ⊆ N , then M
i
−
>
N = ∅, (b) if M ⊆M ′, then M

i
−
>
N ⊆M ′ i−

>
N , (c) if M ⊆M ′,

thenN
i
−
>
M ′ ⊆ N

i
−
>
M , (d)

(
M

i
−
>
N

)
∩
(
N

i
−
>
M

)
= ∅ and (e)M

i
−
>
N = M

i
−
>

(M ∩N).

2. Properties of fuzzy symmetric difference operation;

(a) M
i
M
>
N =

(
M

i
−
>
N

)
∪
(
N

i
−
>
M

)
,

(b) if M ⊆ N , then M
i
M
>
N = N

i
−
>
M and (c) M

i
M
>
M = ∅.

The following result shows that, the fuzzy complement of fuzzy sets associated with any
continuous t-norm > so defined, preserve the property of the classical complement for crisp sets.

Corollary 1. Let > be any continuous t-norm, A be a fuzzy set on X , and Ac be the fuzzy
complement of A associated with >.
Then Ac = X −> A.

Proof. Let x ∈ X. From Definition 12 (see the Appendix), it is sufficient to show that: µX−>A(x) =

1− µA(x).

Since µX(x) = 1 and I>(1, a) = a (see Proposition 9 in the Appendix) for all a ∈ [0; 1], from
Definition 7,
µX−>A(x) = 1− I>(µX(x), µA(x)) = 1− µA(x).

In the following Section, we introduce new operations for intuitionistic fuzzy sets and estab-
lish some of their properties.
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3 New operations for intuitionistic fuzzy sets:
Difference and symmetric difference

3.1 Definitions and properties of difference operations

Let IT = (1IT ,2 IT ) be an IF-R-implication operator. We define the negation of IT as N (IT ) =

(2IT ,1 IT ). In particular, using Lemma 1 we define the negation of IF-R-implication as ∀x =

(x1, x2), y = (y1, y2) ∈ L∗,N (IT (x,y)) = (JS(x2, y2),min{I>(x1, y1), 1− JS(x2, y2)}) .

Definition 8. Let A, B be any two intuitionistic fuzzy sets defined on X . The intuitionistic fuzzy
difference associated to T of A and B is the intuitionistic fuzzy set on X denoted by A − T B
and defined by the membership and non-membership degrees as follows:
For all x ∈ X ,

(µA−T B(x), νA−T B(x)) = N (IT ((µA(x), νA(x)), (µB(x), νB(x))))

= (JS(νA(x), νB(x)),min{I>(µA(x), µB(x)), 1− JS(νA(x), νB(x))}) .

The following are typical examples of difference operations associated with the three usual
and well-known T .

Example 4. For any intuitionistic fuzzy sets A and B defined on X,

1. The difference operation associated with TM is given by, for all x ∈ X

(
µA−TM B(x), νA−TM B(x)

)
=


(0, 1), if (µA(x), νA(x)) ≤L∗ (µB(x), νB(x)),

(νB(x),min{µB(x), 1− νB(x)}) ,
if (µA(x), νA(x)) >L∗ (µB(x), νB(x)).

2. The difference operation associated with TP is given by, for all x ∈ X

(
µA−TP B(x), νA−TP B(x)

)
=


(0, 1), if (µA(x), νA(x)) ≤L∗ (µB(x), νB(x))(
νB(x)−νA(x)

1−νA(x)
,min

{
µB(x)
µA(x)

, 1−νB(x)
1−νA(x)

})
,

if (µA(x), νA(x)) >L∗ (µB(x), νB(x)).

3. The difference operation associated with TL is given by, for all x ∈ X

(
µA−TL B(x), νA−TL B(x)

)
=


(0, 1), if (µA(x), νA(x)) ≤L∗ (µB(x), νB(x))(
νB(x)− νA(x),min

{
1− µA(x) + µB(x), 1 + νA(x)

−νB(x)
})

, if (µA(x), νA(x)) >L∗ (µB(x), νB(x)).

In the following results, we establish four classical properties for difference operation which
are satisfied by the new intuitionistic fuzzy difference operation.

Proposition 2 (Properties of Intuitionistic Fuzzy Difference Operation). LetA,B,C be intuition-
istic fuzzy sets on X . The following properties for intuitionistic fuzzy difference operations hold:
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1. if A ⊆ B, then A − T B = ∅;

2. if A ⊆ B, then A − T C ⊆ B − T C;

3. if A ⊆ B, then C − T B ⊆ C − T A;

4. A − T B = A − T (A ∩B).

Proof. By Proposition 9 and Definition 8, we establish the results for all x ∈ X as follows:

1. Assume that, A ⊆ B, then µA(x) ≤ µB(x) and νA(x) ≥ νB(x).
Since JS(νA(x), νB(x)) = 0, whenever νA(x) ≥ νB(x), and I>(µA(x), µB(x)) = 1,

whenever µA(x) ≤ µB(x) then by Definition 8, we have (µA−T B(x), νA−T B(x)) = (0, 1)

and the result follows.

2. Assume that A ⊆ B, then µA(x) ≤ µB(x) and νA(x) ≥ νB(x).

(µA−T C(x), νA−T C(x)) = (JS(νA(x), νC(x)),min{I>(µA(x), µC(x)), 1− JS(νA(x), νC(x))}) ,

(µB−T C(x), νB−T C(x)) = (JS(νB(x), νC(x)),min{I>(µB(x), µC(x)), 1− JS(νB(x), νC(x))}) .

Since νB(x) ≤ νA(x), then from Proposition 9 JS(νA(x), νC(x)) ≤ JS(νB(x), νC(x)).

So, µA−T C(x) ≤ µB−T C(x).

For the non-membership degree, there are four possibilities:

Case i: νA−T C(x) = I>(µA(x), µC(x)) and νB−T C(x) = I>(µB(x), µC(x)).

Since µA(x) ≤ µB(x), then I>(µA(x), µC(x)) ≥ I>(µB(x), µC(x)) and we have
νA−T C(x) ≥ νB−T C(x).

Case ii: νA−T C(x) = 1− JS(νA(x), νC(x)) and νB−T C(x) = 1− JS(νB(x), νC(x)).

Since νB(x) ≤ νA(x)then, JS(νA(x), νC(x)) ≤ JS(νB(x), νC(x)), then we have
νA−T C(x) ≥ νB−T C(x).

Case iii: νA−T C(x) = I>(µA(x), µC(x)) and νB−T C(x) = 1− JS(νB(x), νC(x)).

Since µA(x) ≤ µB(x), then

I>(µA(x), µC(x)) ≥ I>(µB(x), µC(x)) ≥ 1− JS(νB(x), νC(x)).

So, νA−T C(x) ≥ νB−T C(x).

Case iv: νA−T C(x) = 1− JS(νA(x), νC(x)) and νB−T C(x) = I>(µB(x), µC(x)).

Since νA(x) ≥ νB(x), then

1− JS(νA(x), νC(x)) ≥ 1− JS(νB(x), νC(x)) ≥ I>(µB(x), µC(x)).

So, νA−T C(x) ≥ νB−T C(x).

Thus for all x ∈ X, µA−T C(x) ≤ µB−T C(x) and νA−T C(x) ≥ νB−T C(x).

So, A − T C ⊆ B − T C.
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3. Assume that A ⊆ B then, µA(x) ≤ µB(x) and νA(x) ≥ νB(x).

(µC−T B(x), νC−T B(x)) = (JS(νC(x), νB(x)),min{I>(µC(x), µB(x)), 1− JS(νC(x), νB(x))}) ,

(µC−T A(x), νC−T A(x)) = (JS(νC(x), νA(x)),min{I>(µC(x), µA(x)), 1− JS(νC(x), νA(x))}) .

Since νB(x) ≤ νA(x), then JS(νC(x), νB(x)) ≤ JS(νC(x), νA(x)). So, µC−T B(x) ≤
µC−T A(x).

For the non-membership degree, there are four possibilities:

Case i: νC−T B(x) = I>(µC(x), µB(x)) and νC−T A(x) = I>(µC(x), µA(x)).

Since µA(x) ≤ µB(x), then I>(µC(x), µB(x)) ≥ I>(µC(x), µA(x)) and we have
νC−T B(x) ≥ νC−T A(x).

Case ii: νC−T B(x) = 1− JS(νC(x), νB(x)) and νC−T A(x) = 1− JS(νC(x), νA(x)).

Since νB(x) ≤ νA(x) then JS(νC(x), νB(x)) ≤ JS(νC(x), νA(x)), then we have
νC−T B(x) ≥ νC−T A(x).

Case iii: νC−T B(x) = I>(µC(x), µB(x)) and νC−T A(x) = 1 − JS(νC(x), νA(x)). Since
µA(x) ≤ µB(x), then

I>(µC(x), µB(x)) ≥ I>(µC(x), µA(x)) ≥ 1− JS(νC(x), νA(x)).

So, νC−T B(x) ≥ νC−T A(x).

Case iv: νC−T B(x) = 1− JS(νC(x), νB(x)) and νC−T A(x) = I>(µC(x), µA(x)).

Since νA(x) ≥ νB(x), then

1− JS(νC(x), νB(x)) ≥ 1− JS(νC(x), νA(x)) ≥ I>(µC(x), µA(x)).

So, νC−T B(x) ≥ νC−T A(x).

Thus for all x ∈ X, µC−T B(x) ≤ µC−T A(x) and νC−T B(x) ≥ νC−T A(x).

So, C − T B ⊆ C − T A.

4. From Definition 8 we have,

µA−T (A∩B)(x) = JS(νA(x), νA∩B(x)) = JS(νA(x),max{νA(x), νB(x)}), (4)

νA−T (A∩B)(x) = min
{
I>(µA(x), µA∩B(x)), 1− JS(νA(x), νA∩B(x))

}
= min

{
I>(µA(x),min{µA(x), µB(x)}), 1− JS(νA(x),max{νA(x), νB(x)})

}
, (5)

µA−T B(x) = JS(νA(x), νB(x)), (6)

νA−T B(x) = min{I>(µA(x), µB(x)), 1− JS(νA(x), νB(x))}. (7)

Claim:
We claim µA−T (A∩B)(x) = µA−T B(x) and νA−T (A∩B)(x) = νA−T B(x) for all x ∈ X.
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We note the following properties:
JS(νA(x), νB(x)) = 0, whenever νA(x) ≥ νB(x); I>(µA(x), µB(x)) = 1, whenever
µA(x) ≤ µB(x); JS(νA(x), νA(x)) = 0 and I>(µA(x), µA(x)) = 1.
Then consider the following cases:

Case i: If µA(x) ≤ µB(x) and νA(x) ≤ νB(x), then by Equations (4)-(7), we have

µA−T (A∩B)(x) = JS(νA(x), νB(x)) = µA−T B(x), and

νA−T (A∩B)(x) = min
{
I>(µA(x), µA(x)), 1− JS(νA(x), νB(x))

}
= min

{
1, 1− JS(νA(x), νB(x))

}
= min

{
I>(µA(x), µB(x)), 1− JS(νA(x), νB(x))

}
= νA−T B(x).

Case ii: If µA(x) ≤ µB(x) and νA(x) ≥ νB(x), then by Equations (4)-(7), we have

µA−T (A∩B)(x) = JS(νA(x), νA(x)) = 0

= JS(νA(x), νB(x)) = µA−T B(x), and

νA−T (A∩B)(x) = min
{
I>(µA(x), µA(x)), 1− JS(νA(x), νA(x))

}
= min

{
1, 1− 0

}
= min

{
I>(µA(x), µB(x)), 1− JS(νA(x), νB(x))

}
= νA−T B(x).

Case iii: If µA(x) ≥ µB(x) and νA(x) ≤ νB(x), then by Equations (4)-(7), we have

µA−T (A∩B)(x) = JS(νA(x), νB(x)) = µA−T B(x), and

νA−T (A∩B)(x) = min
{
I>(µA(x), µB(x)), 1− JS(νA(x), νB(x))

}
= νA−T B(x).

Case iv: If µA(x) ≥ µB(x) and νA(x) ≥ νB(x), then by Equations (4)-(7), we have

µA−T (A∩B)(x) = JS(νA(x), νA(x)) = 0

= JS(νA(x), νB(x)) = µA−T B(x), and

νA−T (A∩B)(x) = min
{
I>(µA(x), µB(x)), 1− JS(νA(x), νA(x))

}
= min

{
I>(µA(x), µB(x)), 1− 0

}
= min

{
I>(µA(x), µB(x)), 1− JS(νA(x), νB(x))

}
= νA−T B(x).

Hence,
(
µA−T (A∩B)(x), νA−T (A∩B)(x)

)
= (µA−T B(x), νA−T B(x)) for all x ∈ X , and the

result follows.

The following result shows that, the intuitionistic fuzzy complement of fuzzy sets associ-
ated with a t-representable of an IF-t-norm T = (>, S) so defined, preserve the property of the
classical complement for crisp sets.

Corollary 2. Let A be any intuitionistic fuzzy set of X . AcT be the intuitionistic fuzzy complement
of A. Then AcT = X −T A.
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Proof. Let x ∈ X. Since (µX(x), νX(x)) = (1, 0), then from Definition 8,

(µX−T A(x), νX−T A(x)) = (JS(0, νA(x)),min{I>(1, µA(x)), 1− JS(0, νA(x))}) ,
= (νA(x), min{µA(x), 1− νA(x)}) , (recalling Prop. 9(1)),

= (νA(x), µA(x)) , since µA(x) ≤ 1− νA(x). (8)

From Definition 6, the result follows.

The following result establishes a property of the new difference operation.

Proposition 3. Let A and B be any intuitionistic fuzzy sets on X .

1. Then (A − T B) ∩T (B − T A) is an intuitionistic fuzzy set with membership function,
µ(A−T B)∩T (B−T A)(x) = 0, ∀x ∈ X and non-membership function defined by: for all
x ∈ X,

ν(A−T B)∩T (B−T A)(x) =



S (1− JS(νA(x), νB(x)), I>(µB(x), µA(x))) ,

if µA(x) ≤ µB(x) and νA(x) ≤ νB(x) ,

S (I>(µA(x), µB(x)), 1− JS(νB(x), νA(x))) ,

if µA(x) ≥ µB(x) and νA(x) ≥ νB(x) ,

1, otherwise.

(9)

2. If T is a Lukasiewicz IF-t-norm, then

(A − T B) ∩T (B − T A) = ∅.

Proof. 1. Recall that for any two intuitionistic fuzzy sets A and B, we define the intersection
by means of any t-representable IF-t-norm T = (>, S) as follows:

A ∩T B = {〈x,>(µA(x), µB(x)), S(νA(x), νB(x))〉 | x ∈ X}.

So,

µ(A−T B)∩T (B−T A)(x) = > (JS(νA(x), νB(x)), JS(νB(x), νA(x))) , (10)

ν(A−T B)∩T (B−T A)(x) = S (min{I>(µA(x), µB(x)), 1− JS(νA(x), νB(x))},
min{I>(µB(x), µA(x)), 1− JS(νB(x), νA(x))}) . (11)

We note that JS(νA(x), νB(x)) = 0, whenever νA(x) ≥ νB(x) and I>(µA(x), µB(x)) = 1,

whenever µA(x) ≤ µB(x), then consider the following cases: for all x ∈ X,

Case i: If µA(x) ≤ µB(x) and νA(x) ≤ νB(x), then from Equation (10) µ(A−T B)∩T (B−T A)(x) =

> (JS(νA(x), νB(x)), 0) = 0, and from Equation (11) we have

ν(A−T B)∩T (B−T A)(x) = S (min{1, 1− JS(νA(x), νB(x))},min{I>(µB(x), µA(x)), 1− 0}) ,

= S (1− JS(νA(x), νB(x)), I>(µB(x), µA(x))) .
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Case ii: If µA(x) ≥ µB(x) and νA(x) ≥ νB(x), then from Equation (10) µ(A−T B)∩T (B−T A)(x) =

> (0, JS(νB(x), νA(x))) = 0, and from Equation (11)

ν(A−T B)∩T (B−T A)(x) = S (min{I>(µA(x), µB(x)), 1− 0},min{1, 1− JS(νB(x), νA(x))}) ,

= S (I>(µA(x), µB(x)), 1− JS(νB(x), νA(x))) .

Other possible cases are:

Case iii: If µA(x) ≤ µB(x) and νA(x) ≥ νB(x), then from Equation (10) µ(A−T B)∩T (B−T A)(x) =

> (0, JS(νB(x), νA(x))) = 0, and from Equation (11)

ν(A−T B)∩T (B−T A)(x) = S (min{1, 1− 0},min{I>(µB(x), µA(x)), 1− JS(νB(x), νA(x))}) ,

= S (1,min{I>(µB(x), µA(x)), 1− JS(νB(x), νA(x))}) = 1.

Case iv: If µA(x) ≥ µB(x) and νA(x) ≤ νB(x), then from Equation (10) µ(A−T B)∩T (B−T A)(x) =

> (JS(νA(x), νB(x)), 0) = 0, and from Equation (11)

ν(A−T B)∩T (B−T A)(x) = S (min{I>(µA(x), µB(x)), 1− JS(νA(x), νB(x))},min{1, 1− 0}) ,

= S (min{I>(µA(x), µB(x)), 1− JS(νA(x), νB(x))}, 1) = 1.

So, we have established the result 1.

2. If T is Lukasiewicz IF-t-norm, then T = TL = (>L, SL). Since from the result in 1 above,
we have the membership function µ(A−T B)∩T (B−T A)(x) = 0, ∀x ∈ X , then from Equation
(9) it suffices to prove that the non-membership function, ν(A−T B)∩T (B−T A)(x) = 1, ∀x ∈
X , for the first two cases in (9). From Equation (11),

i If µA(x) ≤ µB(x) and νA(x) ≤ νB(x), we obtain by applying Proposition 9 and
Example 8,

ν(A−T B)∩T (B−T A)(x) = min (1− JSL
(νA(x), νB(x)) + I>L

(µB(x), µA(x)), 1) ,

= 1, if µA(x) = µB(x) or νA(x) = νB(x).

If µA(x) < µB(x) and νA(x) < νB(x), then we have

ν(A−T B)∩T (B−T A)(x) = min (1− νB(x) + νA(x) + 1− µB(x) + µA(x), 1) ,

= min (2− (µB(x) + νB(x)) + µA(x) + νA(x), 1) = 1, since µB(x) + νB(x) ≤ 1.

ii If µA(x) ≥ µB(x) and νA(x) ≥ νB(x), we obtain by applying Proposition 9 and
Example 8,

ν(A−T B)∩T (B−T A)(x) = min (I>L
(µA(x), µB(x)) + 1− JSL

(νB(x), νA(x)), 1) ,

= 1, if µA(x) = µB(x) or νA(x) = νB(x).

If µA(x) > µB(x) and νA(x) > νB(x), then we have

ν(A−T B)∩T (B−T A)(x) = min (1− µA(x) + µB(x) + 1− νA(x) + νB(x), 1) ,

= min (2− (µA(x) + νA(x)) + µB(x) + νB(x), 1) = 1, since µA(x) + νA(x) ≤ 1.
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So
(
µ(A−T B)∩T (B−T A)(x), ν(A−T B)∩T (B−T A)(x)

)
= (0, 1), for all x ∈ X. Hence result 2

is established.

Remark 1. 1. Note that, (A − T B) ∩T (B − T A) = ∅ whenever either A ⊆ B or B ⊆ A.
This follows immediately from the third case in Equation (9).

2. Proposition 2 specifies conditions which are preserved by the intuitionistic fuzzy difference
operation. These four conditions shall be referred to as the minimal conditions to require
of difference operation on (even in crisp, fuzzy and intuitionistic) sets in general.

The following result gives a necessary and sufficient condition for difference of intuitionistic
fuzzy sets to be a fuzzy set.

Proposition 4. Let A and B be any intuitionistic fuzzy sets defined on X. Then the intuitionistic
fuzzy difference A − T B is a fuzzy set if and only if for all x ∈ X,

I> (µA(x), µB(x)) ≥ 1− JS (νA(x), νB(x)) .

Proof. Let x ∈ X. Then from the Definition 8,

(µA−T B(x), νA−T B(x)) = (JS(νA(x), νB(x)),min{I>(µA(x), µB(x)), 1− JS(νA(x), νB(x))}) .

A − T B is a fuzzy set if and only if νA−T B(x) = 1− µA−T B(x),

if and only if

min{I>(µA(x), µB(x)), 1− JS(νA(x), νB(x))} = 1− JS(νA(x), νB(x)),

if and only if I>(µA(x), µB(x)) ≥ 1− JS(νA(x), νB(x)).

Note that A − T B also becomes a fuzzy set if A ⊂ B, because in this case A − T B = ∅
(Proposition 2), I>(µA(x), µB(x) = 1 and JS(νA(x), νB(x)) = 0. Furthermore, in the case where
A − T B becomes a fuzzy set, we deduce from Proposition 4 that for

x ∈ X : (µA−T B(x), νA−T B(x)) = (JS(νA(x), νB(x)), 1− JS(νA(x), νB(x))) .

This can be considered as fuzzy part of A − T B.

The following are typical applications of Proposition 4 to difference operators associated with
the three usual and well-known T .

Example 5. For any intuitionistic fuzzy sets A and B defined on X ,

1. The difference operation associated with TM is given by, for all x ∈ X

(
µA−TM B(x), νA−TM B(x)

)
=

(νB(x), µB(x)) , Intuitionistic Fuzzy Part

(νB(x), 1− νB(x)) , Fuzzy Part.
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2. The difference operation associated with TP is given by, for all x ∈ X

(
µA−TP B(x), νA−TP B(x)

)
=


(
νB(x)−νA(x)

1−νA(x)
, µB(x)
µA(x)

)
, Intuitionistic Fuzzy Part(

νB(x)−νA(x)
1−νA(x)

, 1−νB(x)
1−νA(x)

)
, Fuzzy Part.

3. The difference operation associated with TL is given by, for all x ∈ X

(
µA−TL B(x), νA−TL B(x)

)
=

(νB(x)− νA(x), 1− µA(x) + µB(x)) , Intuitionistic Fuzzy

(νB(x)− νA(x), 1 + νA(x)− νB(x)) , Fuzzy Part.

Notation 1. Let A and B be any fuzzy sets, A ≡ B if and only if for all x ∈ X, µA(x) = µB(x).

The following result shows that the intuitionistic fuzzy difference operator defined in Defini-
tion 8 associated with t-representable IF t-norm T = (>, S) is a generalization of fuzzy difference
operator proposed by Fono et al. [10] associated with a t-norm > if and only if the fuzzy t-norm
> and fuzzy t-conorm S are dual.

Proposition 5 (Generalization of Difference Operation for Fuzzy Sets). Let > and S be any t-
norm and t-conorm respectively, and T = (>, S) be a t-representable IF t-norm associated with
any intuitionistic fuzzy set. > and S are dual if and only if for any fuzzy sets A and B, A−T B is
a fuzzy set and A−> B ≡ A−T B.

Proof. Let x ∈ X, and A and B be any fuzzy sets.

a. Assume that > and S are dual.

i. Let us show that A−T B is a fuzzy set.
Since > and S are dual, then From Proposition 10, I>(µA(x), µB(x)) = 1 − JS(1 −
µA(x), 1− µB(x)) and from Proposition 4, the result follows.

ii. Now we shall show that, A −> B ≡ A −T B. It is sufficient to prove that µA−>B(x) =

µA−T B(x).

According to Fono and al. [10], µA−>B(x) = 1− I>(µA(x), µB(x)) and from Definition
8 µA−T B(x) = JS(1− µA(x), 1− µB(x)).

Since > and S are dual, the Proposition 10 shows that, I>(µA(x), µB(x)) = 1 − JS(1 −
µA(x), 1− µB(x)) and the result follows.

b. Assume now that A −T B is a fuzzy set and A −> B ≡ A −T B. Let us show that > and S
are dual.
We have,

µA−>B(x) = 1− I>(µA(x), µB(x))

= 1−max{t ∈ [0; 1], >(µA(x), t) ≤ µB(x)}
= min{1− t ∈ [0; 1], >(µA(x), t) ≤ µB(x)}
= min{1− t ∈ [0; 1], >(µA(x), t) ≤ µB(x)}, (12)
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and

µA−T B(x) = JS(1− µA(x), 1− µB(x))

= min{r ∈ [0; 1], S(1− µA(x), r) ≥ 1− µB(x)}
= min{1− t ∈ [0; 1], S(1− µA(x), 1− t) ≥ 1− µB(x)}
= min{1− t ∈ [0; 1], 1− S(1− µA(x), 1− t) ≤ µB(x)} (13)

Since A −> B ≡ A −T B then, µA−>B(x) = µA−T B(x). From Equations (12) and (13)
>(µA(x), t) = 1− S(1− µA(x), 1− t), ∀t ∈ [0; 1] and the result follows.

In the following, we define a new symmetric difference operation for intuitionistic fuzzy sets
based on the IF-R-implication and IF-co-implication and we study its properties.

3.2 Definitions and properties of symmetric difference operations

The idea for the new definition is derived from the classical formula for symmetric difference and
the operations of union and intersection alongside with the proposed difference for intuitionistic
fuzzy sets in Section 3.

Definition 9. Let A, B be any two intuitionistic fuzzy sets defined on X . The intuitionistic fuzzy
symmetric difference associated to T of A and B is the intuitionistic fuzzy set on X denoted by
A M T B and defined by the membership and non-membership degrees as follows:

For all x ∈ X ,

µAMT B(x) = JS(νA(x) ∧ νB(x), νA(x) ∨ νB(x)), (14)

νAMT B(x) = min{I>(µA(x) ∨ µB(x), µA(x) ∧ µB(x)),

1− JS(νA(x) ∧ νB(x), νA(x) ∨ νB(x))}.

In what follows, we establish some results showing that some properties of the classical set
symmetric difference are preserved by this new proposed intuitionistic fuzzy symmetric differ-
ence operation.

Proposition 6 (Properties of Intuitionistic Fuzzy Symmetric Difference Operation). Let A,B be
any intuitionistic fuzzy sets on X . The following properties for intuitionistic fuzzy symmetric
difference operation hold:

1. A M T B = (A − T B) ∪ (B − T A);

2. A M T B = B M T A;

3. If A ⊆ B, then A M T B = B − T A;

4. A M T A = ∅.
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Proof. 1. The following are properties for fuzzy-R-implication, I> and fuzzy co-implication,
JS which we require here:

I>(a ∨ b, c) = I>(a, c) ∧ I>(b, c), and JS(a ∨ b, c) = JS(a, c) ∧ JS(b, c);

I>(a ∧ b, c) = I>(a, c) ∨ I>(b, c), and JS(a ∧ b, c) = JS(a, c) ∨ JS(b, c);

I>(a, b ∨ c) = I>(a, b) ∨ I>(a, c), and JS(a, b ∨ c) = JS(a, b) ∨ JS(a, c);

I>(a, b ∧ c) = I>(a, b) ∧ I>(a, c), and JS(a, b ∧ c) = JS(a, b) ∧ JS(a, c).

These can easily be verified.
Now, we proceed to prove 1 and 2 consequently as follows: From Equation (14) and apply-
ing above properties of I> and JS we have, for all x ∈ X

(µAMT B(x), νAMT B(x)) = (JS(νA(x) ∧ νB(x), νA(x)) ∨ JS(νA(x) ∧ νB(x), νB(x)) ,

min{I>(µA(x) ∨ µB(x), µA(x)) ∧ I>(µA(x) ∨ µB(x), µB(x)) ,

1− JS(νA(x) ∧ νB(x), νA(x)) ∨ JS(νA(x) ∧ νB(x), νB(x))}) .

So we have

µAMT B(x) = (JS(νA(x), νA(x)) ∨ JS(νB(x), νA(x)))∨(JS(νA(x), νB(x)) ∨ JS(νB(x), νB(x))) ,

νAMT B(x) = min{(I>(µA(x), µA(x)) ∧ I>(µB(x), µA(x))} ∧ {I>(µA(x), µB(x))

∧I>(µB(x), µB(x))) , 1− (JS(νA(x), νA(x)) ∨ JS(νB(x), νA(x))}
∨{JS(νA(x), νB(x)) ∨ JS(νB(x), νB(x)))},

and applying Proposition 9 we have the following:

µAMT B(x) = JS(νB(x), νA(x)) ∨ JS(νA(x), νB(x)),

= JS(νA(x), νB(x)) ∨ JS(νB(x), νA(x)), (15)

= µA−T B(x) ∨ µB−T A(x),

= µ(A−T B)∪(B−T A)(x).

νAMT B(x) =
min{I>(µB(x), µA(x)) ∧ I>(µA(x), µB(x)),

1− JS(νB(x), νA(x)) ∨ JS(νA(x), νB(x))}

=
min{I>(µA(x), µB(x)) ∧ I>(µB(x), µA(x)),

1− JS(νA(x), νB(x)) ∨ JS(νB(x), νA(x))}
(16)

=
min{I>(µA(x), µB(x)) ∧ (1− JS(νA(x), νB(x))),

I>(µB(x), µA(x)) ∧ (1− JS(νB(x), νA(x)))}

= νA−T B(x) ∧ νB−T A(x)

= ν(A−T B)∪(B−T A)(x).

So, result 1 is established.
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2. By commutativity of Equations (15) and (16), result 2 follows, since
A M T B = (A − T B) ∪ (B − T A) = (B − T A) ∪ (A − T B) = B M T A.

3. If A ⊆ B, then for all x ∈ X , µA(x) ≤ µB(x) and νA(x) ≥ νB(x).
Applying the above inequalities to the Equation (14), we get

(µAMT B(x), νAMT B(x)) = (JS(νB(x), νA(x)),min{I>(µB(x), µA(x)), 1− JS(νB(x), νA(x))}) ,
= (µB−T A(x), νB−T A(x)) ,

and the result follows.

4. By Equation (14) we have, for all x ∈ X

µAMT A(x) = JS(νA(x) ∧ νA(x), νA(x) ∨ νA(x))

= JS(νA(x), νA(x)) = 0.

νAMT A(x) = min{I>(µA(x) ∨ µA(x), µA(x) ∧ µA(x)), 1− JS(νA(x) ∧ νA(x), νA(x) ∨ νA(x))}
= min{I>(µA(x), µA(x)), 1− JS(νA(x), νA(x))}
= min{1, 1} = 1.

So the result is established.

The following are typical examples of symmetric difference operators associated with the
three usual and well-known T .

Example 6. For any two intuitionistic fuzzy sets A and B defined on X ,

1. The symmetric difference operator associated with TM is given by, for all x ∈ X

µAMTM B(x) =

0, if (µA(x), νA(x)) = (µB(x), νB(x))

νB(x) ∨ νA(x), if (µA(x), νA(x)) 6= (µB(x), νB(x)),

νAMTM B(x) =


1, if (µA(x), νA(x)) = (µB(x), νB(x))

min{min{µB(x), 1− νB(x)},min{µA(x), 1− νA(x)}},
if (µA(x), νA(x)) 6= (µB(x), νB(x)),

=

1, if (µA(x), νA(x)) = (µB(x), νB(x))

min{µA(x) ∧ µB(x), 1− νA(x) ∨ νB(x)}, if (µA(x), νA(x)) 6= (µB(x), νB(x)).

2. The symmetric difference operator associated with TP is given by, for all x ∈ X

µAMTP B(x) =

0, if (µA(x), νA(x)) = (µB(x), νB(x))

max
{
νB(x)−νA(x)

1−νA(x)
, νA(x)−νB(x)

1−νB(x)

}
, if (µA(x), νA(x)) 6= (µB(x), νB(x)),
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=

0, if (µA(x), νA(x)) = (µB(x), νB(x))
(νA(x)−νB(x))∨(νB(x)−νA(x))

(1−νA(x))∧(1−νB(x))
, if (µA(x), νA(x)) 6= (µB(x), νB(x)),

νAMTP B(x) =


1, if (µA(x), νA(x)) = (µB(x), νB(x))

min
{

min
{µB(x)
µA(x)

, µA(x)
µB(x)

}
, 1−max

{νB(x)−νA(x)
1−νA(x)

, νA(x)−νB(x)
1−νB(x)

}}
,

if (µA(x), νA(x)) 6= (µB(x), νB(x)),

=


1, if (µA(x), νA(x)) = (µB(x), νB(x))

min
{
µA(x)∧µB(x)
µA(x)∨µB(x)

, 1− (νA(x)−νB(x))∨(νB(x)−νA(x))
(1−νA(x))∧(1−νB(x))

}
,

if (µA(x), νA(x)) 6= (µB(x), νB(x)).

3. The symmetric difference operator associated with TL is given by, for all x ∈ X

µAMTL B
(x) =

0, if (µA(x), νA(x)) = (µB(x), νB(x))

(νA(x)− νB(x)) ∨ (νB(x)− νA(x)), if (µA(x), νA(x)) 6= (µB(x), νB(x)),

νAMTL B
(x) =



1, if (µA(x), νA(x)) = (µB(x), νB(x))

min
{

min{1− µA(x) + µB(x), 1 + νA(x)− νB(x)},

min{1− µB(x) + µA(x), 1 + νB(x)− νA(x)}
}
,

if (µA(x), νA(x)) 6= (µB(x), νB(x)),

=


1, if (µA(x), νA(x)) = (µB(x), νB(x))

min
{

1− (µA(x)− µB(x)) ∨ (µB(x)− µA(x)),

1− (νA(x)− νB(x)) ∨ (νB(x)− νA(x))
}
, if (µA(x), νA(x)) 6= (µB(x), νB(x)).

The following result shows that, the intuitionistic fuzzy symmetric difference operator in Def-
inition 9 associated with t-representable IF t-norm T = (>, S) is a generalization of fuzzy sym-
metric difference operator proposed by Fono et al. [10] associated with a t-norm > if and only if
the fuzzy t-norm > and fuzzy t-conorm S are dual.

Proposition 7 (Generalization of Symmetric Difference Operation for Fuzzy Sets). Let > and
S be any t-norm and t-conorm, respectively, and T = (>, S) be a t-representable IF t-norm
associated with any intuitionistic fuzzy set. > and S are dual if and only if for any fuzzy sets C
and D, C M T D is a fuzzy set and C M >D ≡ C M T D.

Proof. Let x ∈ X, and C and D be any fuzzy sets.

a. Assume that > and S are dual.

i. Let us show that C M T D is a fuzzy set.
Since C and D are fuzzy sets (1− µC(x) = νC(x) and 1− µD(x) = νD(x)) , and > and

133



S are dual, then from Proposition 10,

I>(µC(x) ∨ µD(x), µC(x) ∧ µD(x)) = 1− JS(1− µC(x) ∨ µD(x), 1− µC(x) ∧ µD(x))

= 1− JS((1− µC(x)) ∧ (1− µD(x)), (1− µC(x)) ∨ (1− µD(x)))

= 1− JS(νC(x) ∧ νD(x), νC(x) ∨ νD(x)).(17)

From Definition 9, the result follows.

ii. Now we shall show that, C M >D ≡ C M T D. It is sufficient to prove that µCM>D(x) =

µC MT D(x).

Definition 7 and Definition 9 show that,

µ
C

i
M
>
D

(x) = µ
C∪D

i
−
>
C∩D

(x) =

1− I1> (µC(x) ∨ µD(x), µC(x) ∧ µD(x)) , if i = 1

1− I2> (µC(x) ∨ µD(x), µC(x) ∧ µD(x)) , if i = 2,

and µC MT D(x) = JS(νC(x) ∧ νD(x), νC(x) ∨ νD(x)).

From Equation (17), the result follows.

b. Assume now that C M T D is a fuzzy set and C M >D ≡ C M T D.

Let us show that > and S are dual.
We have,

µCM>D(x) = 1− I>(µC(x) ∨ µD(x), µC(x) ∧ µD(x))

= 1−max{t ∈ [0; 1], >(µC(x) ∨ µD(x), t) ≤ µC(x) ∧ µD(x)}
= min{1− t ∈ [0; 1], >(µC(x) ∨ µD(x), t) ≤ µC(x) ∧ µD(x)}
= min{1− t ∈ [0; 1], >(µC(x) ∨ µD(x), t) ≤ µC(x) ∧ µD(x)}, (18)

and

µC MT D(x) = JS(νC(x) ∧ νD(x), νC(x) ∨ νD(x))

= min{r ∈ [0; 1], S(νC(x) ∧ νD(x), r) ≥ νC(x) ∨ νD(x)}
= min{1− t ∈ [0; 1], S(1− µC(x) ∨ µD(x), 1− t) ≥ 1− µC(x) ∧ µD(x)}

= min{1− t ∈ [0; 1], 1− S(1− µC(x) ∨ µD(x), 1− t) ≤ µC(x) ∧ µD(x)}. (19)

Since C M >D ≡ C M T D then, µCM>D(x) = µC MT D(x). From Equation (18) and (19),
>(µC(x) ∨ µD(x), t) = 1− S(1− µC(x) ∨ µD(x), 1− t), ∀t ∈ [0; 1], and the result follows.

In the following Subsection, we investigate some properties of cardinality for intuitionistic
fuzzy set difference and symmetric difference. For that, throughout this Subsection, the universal
set X is finite.
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3.3 Some cardinality properties of difference
and symmetric difference for IFSs

We recall the definition and some results on intuitionistic fuzzy cardinality in what follows.

Definition 10 (Cardinality of Intuitionistic Fuzzy Set [19]). Let A be an intuitionistic fuzzy set on
X . The cardinality of A denoted by Σ count(A) is given by

Σ count(A) = Card(A) =

(
n∑
i=1

µA(xi),
n∑
i=1

1− νA(xi)

)
. (20)

One of the properties of this cardinality operation is given here [See Property of Σ count [19]
]: Let A and B be any two intuitionistic fuzzy sets on X . Then

Σ count(A ∪B) + Σ count(A ∩B) = Σ count(A) + Σ count(B). (21)

In what follows, we establish a cardinality property that is satisfied by the intuitionistic fuzzy
difference and symmetric difference proposed.

Proposition 8. Let A,B,C be any intuitionistic fuzzy sets on X . The following property holds:

Card(A MT B) ≤L∗ Card(A−T B) + Card(B −T A).

Proof. Recall from Proposition 6, we have A M T B = (A − T B)∪ (B − T A) and by Equation
(21) we obtain

Card(A MT B) = Card(A−T B) + Card(B −T A)− Card ((A−T B) ∩ (B −T A)) . (22)

Since by Proposition 3 we have (A − T B) ∩T (B − T A) 6= ∅ in general, then we have

Card ((A − T B) ∩ (B − T A)) ≥L∗ 0L∗ . (23)

Putting Equation (23) into (22) we obtain the required result.

4 Conclusion

In this study, we have proposed new difference and symmetric difference operations for intu-
itionistic fuzzy sets by means of intuitionistic fuzzy R-implications. We have also constructed
some examples of difference and symmetric operations associated to the well-known intuition-
istic fuzzy t-norms (minimum TM , product TP and Łukasiewicz TL) and established conditions
under which these operations yield the same results for fuzzy cases as obtained by Fono et al. [10].

We further established that the intuitionistic fuzzy difference operation preserves four prop-
erties out of five, which we referred to as the four minimal conditions to require of a difference
operation on sets in general (even in crisp, fuzzy and intuitionistic fuzzy cases). We investigated
and established some sufficient conditions under which the fifth property is satisfied. Meanwhile,
we established that the intuitionistic fuzzy symmetric difference operation proposed preserves the
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properties of symmetric difference operations for crisp sets and fuzzy sets. We established out of
many, one cardinality property that is satisfied by these operations.

The results of Proposition 3 have shown that the property, (A − T B) ∩T (B − T A) = ∅ do
not hold true in general case for the difference operation for intuitionistic fuzzy sets proposed.
The open problem will be to determine all intuitionistic fuzzy-t-norms under which the difference
operation, so defined, preserves this property. We have not studied here, other cardinality prop-
erties and the cardinality-based measures of comparison for intuitionistic fuzzy sets by means of
these new difference and symmetric difference operations for intuitionistic fuzzy sets proposed.
This area is opened for further research studies.
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Appendix on Fuzzy Operators and Fuzzy Operations

Fuzzy Sets and Fuzzy Operators

Definition 11. 1. A fuzzy set B on X is defined by:
B = {(x, µB(x)) | µB(x) ∈ [0, 1], ∀x ∈ X} where µB(x) is the degree of membership of
x in B.

2. A fuzzy triangular-norm (fuzzy t-norm) is a binary operation > : [0, 1] × [0, 1] −→ [0, 1]

such that for any x ∈ [0, 1],>(x, 1) = x and> satisfies commutativity (∀a, b ∈ [0, 1], >(a, b) =

>(b, a)), monotonicity (increasing) (∀a, b, c, d ∈ [0, 1], if a ≤ b and c ≤ d, then >(a, c) ≤ >(b, d))
and associativity (∀a, b, c,∈ [0, 1], >(a,>(b, c) = >(>(a, b), c)).

3. A fuzzy t-conorm is a binary operation S : [0, 1] × [0, 1] −→ [0, 1] such that for any
x ∈ [0, 1], S(x, 0) = x and S satisfies commutativity, monotonicity (increasing) and asso-
ciativity.

4. A fuzzy negation N is a non-increasing mapping N : [0, 1] −→ [0, 1] with N(0) = 1 and
N(1) = 0. If N(N(x)) = x, ∀x ∈ [0, 1] (i.e. N satisfies the involutive property), then N is
called strong fuzzy negation.

5. The dual of a fuzzy t-norm> is a fuzzy t-conorm S, such that, for all a, b ∈ [0, 1], >(a, b) =

1− S(1− a, 1− b).

6. A fuzzy R-implicator, I> associated to a t-norm> is an operator I> : [0, 1]×[0, 1] −→ [0, 1]

defined for all a, b ∈ [0, 1] by I>(a, b) = max{t ∈ [0, 1] | >(a, t) ≤ b}.
When> is left continued, we defined the residual implicator I1>, the symetric contraposition
implicator I2>, the QL−implicator I3> and the S−implicator I4> as follows: for all x, y ∈
[o, 1], I1>(x, y) = max{t ∈ [0, 1], >(x, t) ≤ y}; I2>(x, y) = 1−min{t ∈ [0, 1], S(y, t) ≥
x}; I3>(x, y) = S(n(x),>(x, y)) and I4>(x, y) = S(n(x), y).

7. A fuzzy co-implicator, JS associated to S is an operator JS : [0, 1]× [0, 1] −→ [0, 1] defined
for all a, b ∈ [0, 1] by JS(a, b) = min{r ∈ [0, 1] | b ≤ S(a, r)}.

We will require the following useful results to establish the proofs of some basic findings in
this research work.

Proposition 9 (See [10–13]). For all a, b, c ∈ [0, 1],

1. I>(a, a) = 1; JS(a, a) = 0; JS(a, b) ≤ b ≤ I>(a, b) and I>(1, a) = a = JS(0, a);

2. b < a⇐⇒ (I>(a, b) < 1 or JS(b, a) > 0);

3. a ≤ b⇒

I>(b, c) ≤ I>(a, c),

I>(c, a) ≤ I>(c, b).
and a ≤ b⇒

JS(b, c) ≤ JS(a, c),

JS(c, a) ≤ JS(c, b).

Thus I> and JS are left decreasing and right increasing operators.
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Proposition 10 (see [13]). Let S and > be such that, for all a, b ∈ [0, 1], >(a, b) ≤ 1 − S(1 −
a, 1− b). Then

i. for all a, b ∈ [0, 1], I>(a, b) ≥ 1− JS(1− a, 1− b);

ii. if > and S are dual, then for all a, b ∈ [0, 1], I>(a, b) = 1− JS(1− a, 1− b).

The following examples of fuzzy t-norms and fuzzy t-conorms belonging to a family called
Frank t-norms and Frank t-conorms will commonly be referred to in this study (see [10, 13]):

Example 7. The Frank t-norms
(
>lF
)
l∈[0,+∞]

such that, for all a, b ∈ [0, 1],

>lF (a, b) =


>M(a, b) = min(a, b), if l = 0,

>P (a, b) = ab, if l = 1,

>L(a, b) = max(a+ b− 1, 0), if l = +∞,
logl

(
1 + (la−1)(lb−1)

l−1

)
, otherwise,

(24)

where >M ,>P ,>L are the minimum, product and Lukasiewicz fuzzy t-norms, respectively. The
Frank t-conorms

(
SlF
)
l∈[0,+∞]

such that, for all a, b ∈ [0, 1],

SlF (a, b) =


SM(a, b) = max(a, b), if l = 0,

SP (a, b) = a+ b− ab, if l = 1,

SL(a, b) = min(a+ b, 1), if l = +∞,
1− logl

(
1 + (l1−a−1)(l1−b−1)

l−1

)
, otherwise,

(25)

where SM , SP , SL are the maximum, probabilistic sum and Lukasiewicz fuzzy t-conorms, respec-
tively (see [9, 10, 13, 16, 17]). .

The following are examples of fuzzy R-implications and fuzzy co-implications associated
with Frank t-norms and Frank t-conorms respectively.

Example 8. [10, 13, 17]: for all a, b ∈ [0, 1]:

1. Fuzzy R-implication and fuzzy co-implication associated with >M and SM are respectively
given by

I>M
(a, b) =

1, if a ≤ b,

b, if a > b.

and

JSM
(a, b) =

b, if a < b,

0, if a ≥ b.

2. Fuzzy R-implication and fuzzy co-implication associated with >P and SP are respectively
given by

I>P
(a, b) =

1, if a ≤ b,

b
a
, if a > b.
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and

JSP
(a, b) =

 b−a
1−a , if a < b,

0, if a ≥ b.

3. Fuzzy R-implication and fuzzy co-implication associated with >L and SL are respectively
given by

I>L
(a, b) =

1, if a ≤ b,

1− a+ b, if a > b.

and

JSL
(a, b) =

b− a, if a < b,

0, if a ≥ b.

4. Fuzzy R-implication and fuzzy co-implication associated with>lF and SlF for all l ∈ (0, 1)∪
(1,+∞) are respectively given by

I>l
F

(a, b) =

1, if a ≤ b,

logl

(
1 + (l−1)(lb−1)

la−1

)
, if a > b.

and

JSL
(a, b) =

1− logl

(
1 + (l−1)(l1−b−1)

l1−a−1

)
, if a < b,

0, if a ≥ b.

Fuzzy Operations of Fuzzy Sets

Definition 12. Let A and B be any two fuzzy sets defined on X . The following operations are
defined by associated membership function as follows:

i) Inclusion: A ⊆ B if and only, µA(x) ≤ µB(x), ∀x ∈ X;

ii) Intersection: A ∩B is defined by: µA∩B(x) = µA(x) ∧ µB(x), ∀x ∈ X;

iii) Union: A ∪B is defined by: µA∪B(x) = µA(x) ∨ µB(x), ∀x ∈ X;

iv) Complement: Ac is defined by: µAc(x) = 1− µA(x), ∀x ∈ X.
Where ∨ and ∧ are max and min respectively.
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