17th Int. Conf. on IFSs, Sofia, 1–2 November 2013 Notes on Intuitionistic Fuzzy Sets Vol. 19, 2013, No. 3, 20–24

Modifications of the weight-center operator, defined over intuitionistic fuzzy sets. Part 3

Beloslav Riečan¹, Adrian Ban² and Krassimir Atanassov³

¹ Department of Mathematics, Faculty of Natural Sciences, Matej Bel University Tajovského 40, SK-97401 Banská Bystrica, Slovakia, and Mathematical Institute of Slovak Academy of Sciences Štefánikova Str. 49, SK-81473 Bratislava, Slovakia e-mail: beloslav.riecan@umb.sk

² Department of Mathematics and Informatics, University of Oradea Universității 1, 410087 Oradea, Romania

e-mail: aiban@uoradea.ro

³ Dept. of Bioinformatics and Mathematical Modelling
Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences
105 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria

e-mail: krat@bas.bg

Abstract: A third modification of the weight-center operator, defined over an intuitionistic fuzzy set is introduced. Its basic properties are shown. The connection with the previous modifications of this operator are discussed.

Keywords: Intuitionistic fuzzy set, Weight-center operator.

AMS Classification: 03E72.

1 Introduction

In the present, third, part of the research, a new modification of the weight-center operator W, defined over intuitionistic fuzzy sets in [2], will be introduced.

Initially, we give some basic definitions, related to the Intuitionistic Fuzzy Sets (IFSs), following [1].

Let a set E be fixed. An IFS A in E is an object of the following form:

$$A = \{ \langle x, \mu_A(x), \nu_A(x) \rangle | x \in E \},\$$

where the functions $\mu_A : E \to [0, 1]$ and $\nu_A : E \to [0, 1]$ define the degree of membership and the degree of non-membership of the element $x \in E$, respectively, and for every $x \in E$:

$$0 \le \mu_A(x) + \nu_A(x) \le 1.$$

For every two IFSs A and B a lot of operations, relations and operators are defined (see, e.g. [1]), the most important of which, related to the present research, are:

$$A \subseteq B \qquad iff \quad (\forall x \in E)(\mu_A(x) \leq \mu_B(x) \& \nu_A(x) \geq \nu_B(x)),$$

$$A \subset_{\square} B \quad iff \quad (\forall x \in E)(\mu_A(x) \leq \mu_B(x)),$$

$$A \subset_{\Diamond} B \quad iff \quad (\forall x \in E)(\nu_A(x) \geq \nu_B(x)),$$

$$A = B \quad iff \quad (\forall x \in E)(\mu_A(x) = \mu_B(x) \& \nu_A(x) = \nu_B(x)),$$

$$\overline{A} \quad = \quad \{\langle x, \nu_A(x), \mu_A(x) \rangle | x \in E\},$$

$$C(A) \quad = \quad \{\langle x, K, L \rangle | x \in E\},$$

$$I(A) \quad = \quad \{\langle x, k, l \rangle | x \in E\},$$

$$C_{\nu}(A) \quad = \quad \{\langle x, \mu_A(x), L \rangle | x \in E\},$$

$$I_{\mu}(A) \quad = \quad \{\langle x, k, \nu_A(x) \rangle | x \in E\},$$

where

$$K = \sup_{y \in E} \mu_A(y),$$

$$L = \inf_{y \in E} \nu_A(y),$$

$$k = \inf_{y \in E} \mu_A(y),$$

$$l = \sup_{y \in E} \nu_A(y).$$

In [2] we introduced the following operator, defined for IFSs over a finite universe E:

$$W(A) = \{ \langle x, \frac{\sum_{y \in E} \mu_A(y)}{card(E)}, \frac{\sum_{y \in E} \nu_A(y)}{card(E)} \rangle | x \in E \},$$
 (1)

where card(E) is the number of the elements of a finite universe E.

In [1] the operators $H_{\alpha,\beta}$ and $J_{\alpha,\beta}$ are defined by

$$H_{\alpha,\beta}(A) = \{ \langle x, \alpha.\mu_A(x), \nu_A(x) + \beta.\pi_A(x) \rangle | x \in E \},$$

$$J_{\alpha,\beta}(A) = \{ \langle x, \mu_A(x) + \alpha.\pi_A(x), \beta.\nu_A(x) \rangle | x \in E \}.$$

Obviously, for every IFS X over universe E,

$$H_{0,0}(X) = \{ \langle x, 0, \nu_X(x) \rangle | x \in E \},$$

$$J_{0,0}(X) = \{ \langle x, \mu_X(x), 0 \rangle | x \in E \}.$$

Let the IFS $B \neq H_{0,0}(B)$ and $B \neq J_{0,0}(B)$. Therefore,

$$\sum_{y \in E} \mu_B(y) > 0,$$

$$\sum_{y \in E} \nu_B(y) > 0,$$

$$\sum_{y \in E} (\mu_B(y) + \nu_B(y)) > 0.$$

In [5, 6] we modified this operator to the forms

$$W_B^1(A) = \{ \langle x, \frac{(\sum_{y \in E} \mu_A(y)) \cdot \mu_B(x)}{card(E) \sum_{y \in E} \mu_B(y)}, \frac{(\sum_{y \in E} \nu_A(y)) \cdot \nu_B(x)}{card(E) \sum_{y \in E} \nu_B(y)} \rangle | x \in E \}$$

$$(2)$$

and

$$W_B^2(A) = \{ \langle x, \frac{(\sum_{y \in E} \mu_A(y)) \cdot \mu_B(x)}{2 \max(\sum_{y \in E} \mu_B(y), \sum_{y \in E} \nu_B(y))}, \frac{(\sum_{y \in E} \nu_A(y)) \cdot \nu_B(x)}{2 \max(\sum_{y \in E} \mu_B(y), \sum_{y \in E} \nu_B(y))} \rangle | x \in E \}, \quad (3)$$

respectively, where $B \neq H_{0,0}(B)$ and $B \neq J_{0,0}(B)$.

It is inspired by papers of Ricardo Alberto Marques Pereira and Rita Almeida Ribeiro [4], and Vania Peneva and Ivan Popchev [3].

2 Third modification of the weight-center operator

Let

$$||X|| = \frac{\sum\limits_{y \in E} (\mu_X(y) + \nu_X(y))}{card(E)}$$

be a norm of X.

Let A and B be two IFSs over the finite universe E, so that $||A|| \le ||B||$.

Now, we introduce "the third modified weight-center operator" over IFSs A and B over the finite universe E.

Let everywhere below, $B \neq H_{0,0}(B)$, $B \neq J_{0,0}(B)$ and $||A|| \leq ||B||$. Therefore,

$$\sum_{y \in E} (\mu_B(y) + \nu_B(y)) > 0$$

and

$$\sum_{y \in E} (\mu_A(y) + \nu_A(y)) \le \sum_{y \in E} (\mu_B(y) + \nu_B(y)).$$

The new operator has the form

$$W_B^3(A) = \{ \langle x, \frac{(\sum_{y \in E} \mu_A(y)) \cdot \mu_B(x)}{\sum_{y \in E} (\mu_B(y) + \nu_B(y))}, \frac{(\sum_{y \in E} \nu_A(y)) \cdot \nu_B(x)}{\sum_{y \in E} (\mu_B(y) + \nu_B(y))} \rangle | x \in E \},$$
(4)

First, we see that the definition is correct, i.e., $W_B^3(A)$ is an IFS. Really, for every $x \in E$,

$$0 \le \frac{(\sum_{y \in E} \mu_A(y)) \cdot \mu_B(x)}{\sum_{y \in E} (\mu_B(y) + \nu_B(y))} \le \frac{\sum_{y \in E} \mu_A(y)}{\sum_{y \in E} (\mu_B(y) + \nu_B(y))} \le 1,$$

$$0 \le \frac{(\sum_{y \in E} \nu_A(y)) \cdot \nu_B(x)}{\sum_{y \in E} (\mu_B(y) + \nu_B(y))} \le \frac{\sum_{y \in E} \nu_A(y)}{\sum_{y \in E} (\mu_B(y) + \nu_B(y))} \le 1$$

and

$$\frac{\left(\sum_{y \in E} \mu_{A}(y)\right) \cdot \mu_{B}(x)}{\sum_{y \in E} (\mu_{B}(y) + \nu_{B}(y))} + \frac{\left(\sum_{y \in E} \nu_{A}(y)\right) \cdot \nu_{B}(x)}{\sum_{y \in E} (\mu_{B}(y) + \nu_{B}(y))}$$

$$= \frac{\left(\sum_{y \in E} \mu_{A}(y)\right) \cdot \mu_{B}(x) + \left(\sum_{y \in E} \nu_{A}(y)\right) \cdot \nu_{B}(x)}{\sum_{y \in E} (\mu_{B}(y) + \nu_{B}(y))}$$

$$\leq \frac{\sum_{y \in E} \mu_{A}(y) + \sum_{y \in E} \nu_{A}(y)}{\sum_{y \in E} (\mu_{B}(y) + \nu_{B}(y))} \leq 1.$$

Theorem 1: For every two IFSs A and B over the finite universe E, so that $B \neq H_{0,0}(B)$, $B \neq J_{0,0}(B)$ and $||A|| \leq ||B||$:

(a)
$$\overline{W_B^3(\overline{A})} = W_{\overline{B}}^3(A),$$

(b)
$$I(W_B^3(A)) = W_B^3(I(A)),$$

(c)
$$C(W_B^3(A)) = W_B^3(C(A)),$$

(d)
$$I_{\mu}(W_B^3(A)) = W_B^3(I_{\mu}(A)),$$

(c)
$$C_{\nu}(W_B^3(A)) = W_B^3(C_{\nu}(A)).$$

Proof: Let us check the validity of (a) for given IFSs A and $B \neq U^*$ over universe E.

$$\overline{W_B^3(\overline{A})} = \overline{W_B^3(\{\langle x, \nu_A(x), \mu_A(x) \rangle | x \in E\})}$$

$$= \overline{\{\langle x, \frac{\sum\limits_{y \in E} \nu_A(y)) . \mu_B(x)}{\sum\limits_{y \in E} (\nu_B(y) + \mu_B(y))}, \frac{(\sum\limits_{y \in E} \mu_A(y)) . \nu_B(x)}{\sum\limits_{y \in E} (\nu_B(y) + \mu_B(y))} \rangle | x \in E\}}$$

$$= \{\langle x, \frac{(\sum\limits_{y \in E} \mu_A(y)) . \nu_B(x)}{\sum\limits_{y \in E} (\mu_B(y) + \nu_B(y))}, \frac{(\sum\limits_{y \in E} \nu_A(y)) . \mu_B(x)}{\sum\limits_{y \in E} (\mu_B(y) + \nu_B(y))} \rangle | x \in E\} = W_{\overline{B}}^3(A).$$

(b) - (e) are proved analogously.

From (2)–(4), the validity of the following assertions is checked.

Theorem 2: For every two IFSs A and $B \neq U^*$ over the finite universe E:

$$W^1_B(A)A\subset_{\ \square}\ W^2_B(A)\subset_{\ \square}\ W^3_B(A),$$

$$W_B^1(A)A \subset_{\Diamond} W_B^2(A) \subset_{\Diamond} W_B^3(A).$$

3 Conclusion

In the next authors' research, we will introduce another new modification of operator W_B and will study some of its properties.

References

- [1] Atanassov, K., On Intuitionistic Fuzzy Sets Theory, Springer, Berlin, 2012.
- [2] Atanassov, K., A. Ban, On an operator over intuitionistic fuzzy sets. *Comptes rendus de l'Academie bulgare des Sciences*, Vol. 53, 2000, No. 5, 39–42.
- [3] Peneva, V., I. Popchev, Aggregation of fuzzy relations using weighting function. *Comptes rendus de l'Academie bulgare des Sciences*, Vol. 60, 2007, No. 10, 1047–1052.
- [4] Marques Pereira, R. A., R. A. Ribeiro, Aggregation with generalized mixture operators using weighting functions, *Fuzzy Sets and Systems*, Vol. 137, 2003, No. 1, 43–58.
- [5] Riečan, B., A. Ban, K. Atanassov, Modifications of the weight-center operator, defined over intuitionistic fuzzy sets. Part 1. *Issues in Intuitionistic Fuzzy Sets and Generalized Nets*, Vol. 10, 2013, 1–4.
- [6] Riečan, B., A. Ban, K. Atanassov, Modifications of the weight-center operator, defined over intuitionistic fuzzy sets. Part 2. *Notes on Intuitionistic Fuzzy Sets*, Vol. 19, 2013, No. 2, 1–5.