9th Int. Workshop on IFSs, Banská Bystrica, 8 October 2013 Notes on Intuitionistic Fuzzy Sets Vol. 19, 2013, No. 2, 25–30

Some new equalities connected with intuitionistic fuzzy sets

Rajkumar Verma and Bhu Dev Sharma

Department of Mathematics, Jaypee Institute of Information Technology Noida, Uttar Pradesh, India

e-mails: rkver83@gmail.com, bhudev.sharma@jiit.ac.in

Abstract: In this paper, some new equalities connected with intuitionistic fuzzy sets based on operations (denoted by \bigcup , \bigcap , \cdot , +, *, @, \$,#) are proved.

Keywords: Intuitionistic fuzzy set, Operation, Equality.

AMS Classification: 03E72.

1 Introduction

The notion of intuitionistic fuzzy sets was introduced by Atanassov [1, 2], as a generalization of the concept of fuzzy sets [3]. Intuitionistic fuzzy sets are characterized by two functions expressing the degree of membership and the degree of non-membership respectively. In this paper, we prove some new equalities connected with IFSs based on operations (denoted by \bigcup , \bigcap , \cdot , +, *, @, \$,#).

The paper is organized as follows: In Section 2, some basic definitions related to intuitionistic fuzzy set theory are presented. In Section 3, new equalities connected with IFSs are proved.

2 Preliminaries

Definition 1 (*Intuitionistic Fuzzy Set*): An intuitionistic fuzzy set A [1] defined on a universe of discourse X is mathematically represented as

$$A = \left\{ \left\langle x, \, \mu_A(x), \nu_A(x) \right\rangle \middle| x \in X \right\},\tag{1}$$

25

where functions $\mu_A \colon X \to [0,1]$ and $\nu_A \colon X \to [0,1]$ define the degree of membership and the degree of non-membership of the element $x \in X$ to the set A, respectively, and for every $x \in X$, such that

$$0 \le \mu_A(x) + \nu_A(x) \le 1. \tag{2}$$

Furthermore, we call $\pi_A(x) = 1 - \mu_A(x) - \nu_A(x)$, $x \in X$, the intuitionistic index or hesitancy degree of x in A. It is obvious that $0 \le \pi_A(x) \le 1$, for each $x \in X$.

Definition 2 (*Set operations on IFSs*): Let IFS(X) denote the family of all IFSs in the universe X, assume $A, B \in IFS(X)$ given as

$$A = \{ \langle x, \mu_A(x), \nu_A(x) \rangle | x \in X \},$$

$$B = \{ \langle x, \mu_B(x), \nu_B(x) \rangle | x \in X \},$$

then some operations defined as follows:

(i)
$$A \cup B = \{\langle x, \max(\mu_A(x), \mu_B(x)), \min(\nu_A(x), \nu_B(x)) \rangle \mid x \in X \};$$

(ii)
$$A \cap B = \{\langle x, \min(\mu_A(x), \mu_B(x)), \max(\nu_A(x), \nu_B(x)) \rangle \mid x \in X \};$$

(iii)
$$A + B = \{ \langle x, \mu_A(x) + \mu_B(x) - \mu_A(x) \mu_B(x), \nu_A(x) \nu_B(x) \rangle \mid x \in X \};$$

(iv)
$$A \cdot B = \{\langle x, \mu_A(x)\mu_B(x), \nu_A(x) + \nu_B(x) - \nu_A(x)\nu_B(x) \rangle \mid x \in X \};$$

(v)
$$A @ B = \left\{ \left\langle x, \frac{\mu_A(x) + \mu_B(x)}{2}, \frac{\nu_A(x) + \nu_B(x)}{2} \right\rangle \mid x \in X \right\};$$

(vi)
$$A$B = \left\langle \left\langle x, \sqrt{\mu_A(x)\mu_B(x)}, \sqrt{\nu_A(x)\nu_B(x)} \right\rangle \mid x \in X \right\rangle;$$

(vii)
$$A\#B = \left\{ \left\langle x, \frac{2\,\mu_A(x)\mu_B(x)}{\mu_A(x) + \mu_B(x)}, \frac{2\,\nu_A(x)\nu_B(x)}{\nu_A(x) + \nu_B(x)} \right\rangle \mid x \in X \right\}$$
 for which we shall accept that if $\mu_A(x) = \mu_B(x) = 0$, then $\frac{\mu_A(x)\mu_B(x)}{\mu_A(x) + \mu_B(x)} = 0$ and if $\nu_A(x) = \nu_B(x) = 0$, then $\frac{\nu_A(x)\nu_B(x)}{\nu_A(x) + \nu_B(x)} = 0$;

(viii)
$$A * B = \left\{ \left\langle x, \frac{\mu_A(x) + \mu_B(x)}{2(\mu_A(x)\mu_B(x) + 1)}, \frac{\nu_A(x) + \nu_B(x)}{2(\nu_A(x)\nu_B(x) + 1)} \right\rangle \mid x \in X \right\}.$$

In the next section, we formulate and prove some new equalities connected with operations on IFSs.

3 New equalities connected with IFSs

Theorem 1: For $A, B \in IFS(X)$, it holds that

$$(A \# B) \$ (A \# B) = (A \# B).$$

Proof:

$$(A\#B)\$ (A\#B)$$

$$= \left\{ \left\langle x, \frac{2\mu_{A}(x)\mu_{B}(x)}{\mu_{A}(x) + \mu_{B}(x)}, \frac{2\nu_{A}(x)\nu_{B}(x)}{\nu_{A}(x) + \nu_{B}(x)} \right\rangle \mid x \in X \right\} \$ \left\{ \left\langle x, \frac{2\mu_{A}(x)\mu_{B}(x)}{\mu_{A}(x) + \mu_{B}(x)}, \frac{2\nu_{A}(x)\nu_{B}(x)}{\nu_{A}(x) + \nu_{B}(x)} \right\rangle \mid x \in X \right\}$$

$$= \left\{ \left\langle x, \sqrt{\frac{2\mu_{A}(x)\mu_{B}(x)}{\mu_{A}(x) + \mu_{B}(x)}}, \frac{2\mu_{A}(x)\mu_{B}(x)}{\mu_{A}(x) + \mu_{B}(x)}, \sqrt{\frac{2\nu_{A}(x)\nu_{B}(x)}{\nu_{A}(x) + \nu_{B}(x)}}, \frac{2\nu_{A}(x)\nu_{B}(x)}{\nu_{A}(x) + \nu_{B}(x)} \right\rangle \mid x \in X \right\}$$

$$= \left\{ \left\langle x, \frac{2\mu_{A}(x)\mu_{B}(x)}{\mu_{A}(x) + \mu_{B}(x)}, \frac{2\nu_{A}(x)\nu_{B}(x)}{\nu_{A}(x) + \nu_{B}(x)} \right\rangle \mid x \in X \right\}$$

$$= \left\{ \left\langle x, \frac{2\mu_{A}(x)\mu_{B}(x)}{\mu_{A}(x) + \mu_{B}(x)}, \frac{2\nu_{A}(x)\nu_{B}(x)}{\nu_{A}(x) + \nu_{B}(x)} \right\rangle \mid x \in X \right\}$$

$$= \left\{ \left\langle x, \frac{2\mu_{A}(x)\mu_{B}(x)}{\mu_{A}(x) + \mu_{B}(x)}, \frac{2\nu_{A}(x)\nu_{B}(x)}{\nu_{A}(x) + \nu_{B}(x)} \right\rangle \mid x \in X \right\}$$

$$= \left\{ \left\langle x, \frac{2\mu_{A}(x)\mu_{B}(x)}{\mu_{A}(x) + \mu_{B}(x)}, \frac{2\nu_{A}(x)\nu_{B}(x)}{\nu_{A}(x) + \nu_{B}(x)} \right\rangle \mid x \in X \right\}$$

$$= \left\{ \left\langle x, \frac{2\mu_{A}(x)\mu_{B}(x)}{\mu_{A}(x) + \mu_{B}(x)}, \frac{2\nu_{A}(x)\nu_{B}(x)}{\nu_{A}(x) + \nu_{B}(x)} \right\rangle \mid x \in X \right\}$$

$$= \left\{ \left\langle x, \frac{2\mu_{A}(x)\mu_{B}(x)}{\mu_{A}(x) + \mu_{B}(x)}, \frac{2\nu_{A}(x)\nu_{B}(x)}{\nu_{A}(x) + \nu_{B}(x)} \right\rangle \mid x \in X \right\}$$

$$= \left\{ \left\langle x, \frac{2\mu_{A}(x)\mu_{B}(x)}{\mu_{A}(x) + \mu_{B}(x)}, \frac{2\nu_{A}(x)\nu_{B}(x)}{\nu_{A}(x) + \nu_{B}(x)} \right\rangle \mid x \in X \right\}$$

This proves the result.

Theorem 2: For $A, B \in IFS(X)$, it holds that

$$(A+B)\$(A+B)=(A+B).$$

Proof:

$$(A+B)\$(A+B)$$

$$= \left\langle (x, \sqrt{(\mu_{A}(x) + \mu_{B}(x) - \mu_{A}(x)\mu_{B}(x))(\mu_{A}(x) + \mu_{B}(x) - \mu_{A}(x)\mu_{B}(x))} \right\rangle | x \in X \right\rangle$$

$$\$ \left\langle (x, \sqrt{(\nu_{A}(x)\nu_{B}(x))(\nu_{A}(x)\nu_{B}(x))} \right\rangle | x \in X \right\rangle$$

$$= \left\langle (x, \mu_{A}(x) + \mu_{B}(x) - \mu_{A}(x)\mu_{B}(x), \nu_{A}(x)\nu_{B}(x) \right\rangle | x \in X \right\rangle$$

$$= (A+B).$$

This proves the result.

Theorem 3: For $A, B \in IFS(X)$, it holds that

$$(A \cdot B)$$
\$ $(A \cdot B) = (A \cdot B)$

Proof:

$$(A \cdot B) \$ (A \cdot B)$$

$$= \left\langle \left\langle x, \sqrt{(\mu_A(x)\mu_B(x))(\mu_A(x)\mu_B(x))} \right\rangle \mid x \in X \right\rangle$$

$$\$ \left\langle \left\langle x, \sqrt{(\nu_A(x) + \nu_B(x) - \nu_A(x)\nu_B(x))(\nu_A(x) + \nu_B(x) - \nu_A(x)\nu_B(x))} \right\rangle \mid x \in X \right\rangle$$

$$= \left\langle \left\langle x, \mu_A(x)\mu_B(x), \nu_A(x) + \nu_B(x) - \nu_A(x)\nu_B(x) \right\rangle \mid x \in X \right\rangle$$

$$= (A + B).$$

This proves the result.

Theorem 4: For $A, B \in IFS(X)$, it holds that,

$$(A @ B)$$
\$ $(A @ B) = (A @ B)$.

Proof:

$$(A @ B) \$ (A @ B)$$

$$= \left\{ \left\langle x, \sqrt{\left(\frac{\mu_A(x) + \mu_B(x)}{2}\right) \left(\frac{\mu_A(x) + \mu_B(x)}{2}\right)} \right\rangle \mid x \in X \right\}$$

$$\$ \left\{ \left\langle x, \sqrt{\left(\frac{\nu_A(x) + \nu_B(x)}{2}\right) \left(\frac{\nu_A(x) + \nu_B(x)}{2}\right)} \right\rangle \mid x \in X \right\}$$

$$= \left\{ \left\langle x, \frac{\mu_A(x) + \mu_B(x)}{2}, \frac{\nu_A(x) + \nu_B(x)}{2} \right\rangle \mid x \in X \right\}$$

$$= \left(A @ B \right).$$

This proves the result.

Theorem 5: For $A, B \in IFS(X)$, it holds that

$$((A \# B)\$(A \# B))\$((A @ B)\$(A @ B)) = (A\$B).$$

Proof:

$$((A\#B)\$(A\#B)) = \left\{ \left\langle x, \frac{2\,\mu_A(x)\mu_B(x)}{\mu_A(x) + \mu_B(x)}, \frac{2\,\nu_A(x)\nu_B(x)}{\nu_A(x) + \nu_B(x)} \right\rangle \mid x \in X \right\},\tag{3}$$

and

$$((A @ B) \$ (A @ B)) = \left\{ \left\langle x, \frac{\mu_A(x) + \mu_B(x)}{2}, \frac{\nu_A(x) + \nu_B(x)}{2} \right\rangle \mid x \in X \right\}. \tag{4}$$

Now with \$ of (3) and (4), we have

$$((A \# B) \$ (A \# B)) \$ ((A @ B) \$ (A @ B))$$

$$= \left\{ \left\langle x, \sqrt{2 \frac{\mu_{A}(x)\mu_{B}(x)}{\mu_{A}(x) + \mu_{B}(x)}} \frac{\mu_{A}(x) + \mu_{B}(x)}{2}, \sqrt{2 \frac{\nu_{A}(x)\nu_{B}(x)}{\nu_{A}(x) + \nu_{B}(x)}} \frac{\nu_{A}(x) + \nu_{B}(x)}{2} \right\rangle \mid x \in X \right\}$$

$$= \left\langle \left\langle x, \sqrt{\mu_{A}(x)\mu_{B}(x)}, \sqrt{\nu_{A}(x)\nu_{B}(x)} \right\rangle \mid x \in X \right\}$$

$$= \left\langle \left\langle x, \sqrt{\mu_{A}(x)\mu_{B}(x)}, \sqrt{\nu_{A}(x)\nu_{B}(x)} \right\rangle \mid x \in X \right\}$$

$$= \left\langle \left\langle x, \sqrt{\mu_{A}(x)\mu_{B}(x)}, \sqrt{\nu_{A}(x)\nu_{B}(x)} \right\rangle \mid x \in X \right\rangle$$

$$= \left\langle \left\langle x, \sqrt{\mu_{A}(x)\mu_{B}(x)}, \sqrt{\nu_{A}(x)\nu_{B}(x)} \right\rangle \mid x \in X \right\rangle$$

This proves the result.

Theorem 6: For $A, B \in IFS(X)$, it holds that

$$((A+B)\$(A+B))@((A\cdot B)\$(A\cdot B))=(A@B).$$

Proof:

$$((A+B)\$(A+B)) = \{ \langle x, (\mu_A(x) + \mu_B(x) - \mu_A(x)\mu_B(x)), \nu_A(x)\nu_B(x) \rangle \mid x \in X \}$$
(5)

and

$$((A \cdot B) \$ (A \cdot B)) = \{ \langle x, \mu_A(x) \mu_B(x), \nu_A(x) + \nu_B(x) \nu_A(x) \nu_B(x) \rangle \mid x \in X \}$$

$$(6)$$

Now with @ of (5) and (6),

$$((A+B)\$(A+B)) @ ((A \cdot B)\$(A \cdot B))$$

$$= \left\{ \left\langle x, \frac{\mu_{A}(x) + \mu_{B}(x) - \mu_{A}(x)\mu_{B}(x) + \mu_{A}(x)\mu_{B}(x)}{2}, \frac{\nu_{A}(x)\nu_{B}(x) + \nu_{A}(x) + \nu_{B}(x) - \nu_{A}(x)\nu_{B}(x)}{2} \right\rangle | x \in X \right\}$$

$$= \left\{ \left\langle x, \frac{\mu_{A}(x) + \mu_{B}(x)}{2}, \frac{\nu_{A}(x) + \nu_{B}(x)}{2} \right\rangle | x \in X \right\}$$

$$= (A @ B).$$

This proves the result.

Theorem 7: For $A, B \in IFS(X)$, it holds that

$$(A \cup B) \# (A \cap B) = (A \# B) \$ (A \# B).$$

Proof:

$$(A \cup B) \#(A \cap B)$$

$$= \left\{ \langle x, \max(\mu_{A}(x), \mu_{B}(x)), \min(\nu_{A}(x), \nu_{B}(x)) \rangle \mid x \in X \right\}$$

$$\#\left\{ \langle x, \min(\mu_{A}(x), \mu_{B}(x)), \max(\nu_{A}(x), \nu_{B}(x)) \rangle \mid x \in X \right\}$$

$$= \left\{ \langle x, \frac{2 \max(\mu_{A}(x), \mu_{B}(x)) \min(\mu_{A}(x), \mu_{B}(x))}{\max(\mu_{A}(x), \mu_{B}(x))}, \frac{2 \min(\nu_{A}(x), \nu_{B}(x)) \max(\nu_{A}(x), \nu_{B}(x))}{\min(\nu_{A}(x), \nu_{B}(x)) + \max(\nu_{A}(x), \nu_{B}(x))} \rangle \mid x \in X \right\}$$

$$= \left\{ \langle x, \frac{2 \mu_{A}(x) \mu_{B}(x)}{\mu_{A}(x) + \mu_{B}(x)}, \frac{2 \nu_{A}(x) \nu_{B}(x)}{\nu_{A}(x) + \nu_{B}(x)} \rangle \mid x \in X \right\}$$

$$(7)$$

and

$$(A\#B)\$(A\#B)$$

$$= \left\{ \left\langle x, \sqrt{\frac{2\mu_{A}(x)\mu_{B}(x)}{\mu_{A}(x) + \mu_{B}(x)}} \frac{2\mu_{A}(x)\mu_{B}(x)}{\mu_{A}(x) + \mu_{B}(x)}, \sqrt{\frac{2\nu_{A}(x)\nu_{B}(x)}{\nu_{A}(x) + \nu_{B}(x)}} \frac{2\nu_{A}(x)\nu_{B}(x)}{\nu_{A}(x) + \nu_{B}(x)} \right\rangle \mid x \in X \right\}$$

$$= \left\{ \left\langle x, \frac{2\mu_{A}(x)\mu_{B}(x)}{\mu_{A}(x) + \mu_{B}(x)}, \frac{2\nu_{A}(x)\nu_{B}(x)}{\nu_{A}(x) + \nu_{B}(x)} \right\rangle \mid x \in X \right\}.$$

$$(8)$$

From (7) and (8) we get the result.

Theorem 8: For $A, B \in IFS(X)$, it holds that

$$(A \cup B) \# (A \cap B) = (A \# B) @ (A \# B).$$

Proof:

$$(A \cup B) \# (A \cap B)$$

$$= \begin{cases} \left\{ \left\langle x, \max(\mu_{A}(x), \mu_{B}(x)), \min(\nu_{A}(x), \nu_{B}(x)) \right\rangle \mid x \in X \right\} \\ \#\left\{ \left\langle x, \min(\mu_{A}(x), \mu_{B}(x)), \max(\nu_{A}(x), \nu_{B}(x)) \right\rangle \mid x \in X \right\} \end{cases}$$

$$= \begin{cases} \left\langle x, \frac{2 \max(\mu_{A}(x), \mu_{B}(x)) \min(\mu_{A}(x), \mu_{B}(x))}{\max(\mu_{A}(x), \mu_{B}(x))}, \\ \frac{2 \min(\nu_{A}(x), \nu_{B}(x)) \max(\nu_{A}(x), \nu_{B}(x))}{\min(\nu_{A}(x), \nu_{B}(x)) + \max(\nu_{A}(x), \nu_{B}(x))} \right\rangle \mid x \in X \end{cases}$$

$$= \begin{cases} \left\langle x, \frac{2 \mu_{A}(x) \mu_{B}(x)}{\mu_{A}(x) + \mu_{B}(x)}, \frac{2 \nu_{A}(x) \nu_{B}(x)}{\nu_{A}(x) + \nu_{B}(x)} \right\rangle \mid x \in X \end{cases}$$

$$= \begin{cases} \left\langle x, \frac{2 \mu_{A}(x) \mu_{B}(x)}{\mu_{A}(x) + \mu_{B}(x)}, \frac{2 \nu_{A}(x) \nu_{B}(x)}{\nu_{A}(x) + \nu_{B}(x)} \right\rangle \mid x \in X \end{cases}$$

and

$$(A \# B) @ (A \# B)$$

$$= \left\{ \left\langle x, \frac{2\mu_{A}(x)\mu_{B}(x)}{\mu_{A}(x) + \mu_{B}(x)} + \frac{2\mu_{A}(x)\mu_{B}(x)}{\mu_{A}(x) + \mu_{B}(x)}, \frac{2\nu_{A}(x)\nu_{B}(x)}{\nu_{A}(x) + \nu_{B}(x)} + \frac{2\nu_{A}(x)\nu_{B}(x)}{\nu_{A}(x) + \nu_{B}(x)} \right\rangle \mid x \in X \right\}$$

$$= \left\{ \left\langle x, \frac{2\mu_{A}(x)\mu_{B}(x)}{\mu_{A}(x) + \mu_{B}(x)}, \frac{2\nu_{A}(x)\nu_{B}(x)}{\nu_{A}(x) + \nu_{B}(x)} \right\rangle \mid x \in X \right\}.$$

$$(10)$$

From (9) and (10) we get the result.

Corollary 1: For $A, B \in IFS(X)$, it holds that

$$(A \cup B)\#(A \cap B) = (A\#B)\$(A\#B) = (A\#B)@(A\#B) = (A\#B).$$

Proof: It obvious follows Theorems 7 and 8.

References

- [1] Atanassov, K. Intuitionistic fuzzy sets, *Fuzzy Sets and Systems*, Vol. 20, 1986, No. 1, 87–96.
- [2] Atanassov, K. *Intuitionistic Fuzzy Sets: Theory and Applications*, Springer Physica-Verlag, Heidelberg, 1999.
- [3] Zadeh, L. Fuzzy sets, Information and Control, Vol. 8, 1965, No. 3, 338–353.