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Abstract: Intuitionistic fuzzy logic as defined by K. Atanassov [1, 3], is an extension of fuzzy
logic, using the more general intuitionistic fuzzy sets as a model. The extension allows for many
different definitions of various logical connectives, such as implication and negation, which can
be suitable for different needs. This paper suggests a method for automatic verification of prop-
erties of intuitionistic fuzzy connectives using the computer algebra system Mathematica [6].
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1 Introduction

Intuitionistic fuzzy sets (IFS) are an extension of fuzzy sets defined by K. Atanassov [1, 3] that
allow for describing uncertainty of propositions. In intuitionistic fuzzy propositional calculus [2]
if P is a proposition then its truth value V (P ) is represented by the ordered pair

V (P ) = 〈a, b〉, such that a, b, a+ b ∈ [0, 1].

The proposition P is called an intuitionistic fuzzy tautology if a ≥ b. P is called simply a
tautology if a = 1 and b = 0.

For easier presentation, below we will use the pairs of variables 〈a, b〉 and 〈c, d〉 denoting the
truth value of some propositions, instead of the propositions themselves. The classical proposi-
tional IFS connectives are defined in [1]:

¬〈a, b〉 := 〈b, a〉,
〈a, b〉 ∧ 〈c, d〉 := 〈min(a, c),max(b, d)〉,
〈a, b〉 ∨ 〈c, d〉 := 〈max(a, c),min(b, d)〉,
〈a, b〉 → 〈c, d〉 := ¬〈a, b〉 ∨ 〈c, d〉 = 〈max(b, c),min(a, d)〉
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Notation Name 〈a, b〉 → 〈c, d〉
→1 Zadeh 〈max(b,min(a, c)),min(a, d))

→2 Gaines-Rescher 〈1− sg(a− c), d.sg(a− c)〉
→3 Gödel 〈1− (1− c).sg(a− c), d.sg(a− c)〉
→4 Kleene-Dienes 〈max(b, c),min(a, d)〉
→5 Łukasiewicz 〈min(1, b+ c),max(0, a+ d− 1)〉
→11 Atanassov 1 〈1− (1− c).sg(a− c), d.sg(a− c).sg(d− b)〉
→12 Atanassov 2 〈max(b, c), 1−max(b, c)〉

Table 1: Examples for IFS implications

2 Examples of variants of intuitionistic fuzzy connectives

In order to present the examples in the following section, we will make use of the “signum”
function, defined as follows:

sg(x) =

{
1, if x > 0,

0, if x ≤ 0.

The most crucial connective determining the meaning of derivability is the logical implica-
tion. Already for fuzzy logic there are different means to define its meaning. Table 1 lists some
examples for definitions of implications from [4, 7].

Every implication naturally generates a corresponding negation, by defining

¬〈a, b〉 = 〈a, b〉 → 〈0, 1〉.

In [7], two sets of axioms are analysed. The first set consists of the axioms of intuitionistic
logic (cf. [9]). The purpose of the verification is to establish the relation between IF logic and
intuitionistic logic (cf. [5]). The second set captures the axioms for fuzzy logic and is defined by
Klir and Yuan in [8]. The first axiom in this list is

(∀x, y)(x ≤ y → (∀z)(I(x, z) ≥ I(y, z)),

where x, y, z are the fuzzy truth values of some arbitrary propositions. In order to verify this
axiom for IFS, we need to consider the ordering of truth values as defined in [1]:

〈a, b〉 ≺ 〈c, d〉 ⇐⇒ (a ≤ c) ∧ (b ≥ d).

For both sets of axioms, two questions can be posed: whether the axiom is valid as a tautology
or, if not, whether it is valid as an intuitionistic fuzzy tautology.

3 Verifying logical properties with Mathematica

The computer algebra system Mathematica provides a very convenient framework for handling
symbolic definitions and includes tools to automatically simplify arithmetic expressions. The
formal verification (or refutal) of the axioms from Section 2 in fact amounts to checking the
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validity of universal properties in real arithmetic in the form ∀~x ∈ R A(~x)→ B(~x), where A and
B are conjuncts (prospositional formulas consisting only of conjunctions) that involve the real
functions +,−, .,min,max, sg and the predicates < and =. All these functions are available in
Mathematica, except for sg, which can be defined as

Sg[x ] = 1− UnitStep[−x].

The formula A holds all assumptions of the axiom, while the formula B states the conclusion of
the axiom.

The most simple tool that can be used to transform algebraic inequalities is the function
Simplify. It attempts to find the simplest form of an algebraic expression. A more advanced
form of this function is FullSimplify, which attempts a wider range of simplification tech-
niques.

All properties, which are being checked, operate under the basic IFS conditions that a, b, a+
b ∈ [0; 1]. This is captured by the following Mathematica definition:

ifs[a , b ] = 0 ≤ a ≤ 1 && 0 ≤ b ≤ 1 && 0 ≤ a+ b ≤ 1 &&

a ∈ Reals && b ∈ Reals;

These conditions can be used to further simplify the arithmetic inequality that is being checked.
Thus some universal quantifiers can be eliminated based on the conditions in the assumption
formula A. This can be done via the Mathematica function Resolve.

Sometimes it is quicker to find a counterexample for an axiom rather than trying to verify it.
The Mathematica function FindInstance can be used on the negation of the axioms, which
becomes an existential formula, to compute counterexamples of non-valid axioms.

Some definitions of IFS implication make use of non-continuous functions (such as sg) and
functions with a non-continous derivative (such as min,max). These functions complicate the
task of automatic proof of properties. The task can be simplified if we eliminate the use of these
functions by considering cases. All their uses can be automatically detected by using the Cases
function as follows:

ListCases[Expr ]:=Cases[Expr,UnitStep[x ]|Min[x , y ]|Max[x , y ], {0,∞}];

Afterwards, we consider separate cases as follows: for every use of UnitStep[x], we consider
the cases {x ≥ 0, x < 0} and for every use of Min[x,y] and Max[x,y] we consider the cases
{x− y ≥ 0, x− y < 0}. We define rewrite rules depending on these cases as follows:

CalcRules[x ≥ 0] = {UnitStep[x]→ 1};
CalcRules[x < 0] = {UnitStep[x]→ 0};

CalcRules[x − y ≥ 0] = {Min[x, y]→ y,Max[x, y]→ x};
CalcRules[x − y < 0] = {Min[x, y]→ x,Max[x, y]→ y};

All possible combinations of cases are generated by using the function Outer, which computes
an outer tensor product of a second-order tensor containing cases on all possible arguments to
min,max and sg. Finally, the axiom assumptions A and conclusion B are refined using these
rewrite rules using the Mathematica function Refine.
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4 MathIFS — an implementation of automatic checking
of properties of IFS connectives

The implementation of the automatic IFS property checker MathIFS takes advantage of the sym-
bolic and functional features of Mathematica. For example, the implication→11 from above can
be implemented as follows:

Atanassov1[{a , b }, {c , d }] = {1− (1− c)Sg[a− c], dSg[a− c]Sg[d− b]};

The sample axiom in Section 2 can be defined as

Axiom1[Impl ] = ∀{a,b,c,d,e,f},prec[{a,b},{c,d}] && ifs[e,f ]

prec[Impl[{c, d}, {e, f}], Impl[{a, b}, {e, f}]];
prec[{a , b }, {c , d }] = ifs[a, b] && ifs[c, d] && a ≤ c && b ≥ d;

The actual automatic is defined by alternating between proof (using Resolve) and refutal (using
FindInstance), attempting each for a gradually increasing time interval, until one of them
succeeds via the TimeConstrained function. This can be automatically performed for a list
of axioms and list of implications, using the Map function.

In addition, since some of the axioms contain references to a notion of negation or to a notion
of tautology, we can explore variants of axioms by considering rewrite rules such as

IAxiomModify = {NegF→ ImplNeg[Impl],Taut→ IFTautology};
IFTautology[{x , y }] = x ≥ y; ImplNeg[Impl ] = Impl[#, {0, 1}]&;

where ImplNeg defined a negation using the respective implication and IFTautology defines the
notion of IF tautology from Section 1.

In addition to checking of axioms, MathIFS can be used to establish relations between differ-
ent implications and negations, as defined in [7]. For example, consider two implication variants
→a and→b; we can verify whether

∀a, b, c, d
(
〈a, b〉 →a 〈c, d〉

)
�
(
〈a, b〉 →b 〈c, d〉

)
for some relation � ∈ {=,�,�}.

5 Conclusion and relation to other work

MathIFS was used to verify most the results which were published in [7]. For some of the impli-
cations, especially those containing non-linear terms, or requiring many case splits, the automatic
proving process failed to converge, but for most of them, the verification was straightforward.

Another verification approach was followed by D. Dimitrov [10], where the axioms are ver-
ified numerically rather than symbolically. Specifically, test sets of random truth values were
generated and the validity of the axioms was tested against these sets. An advantage of our ap-
proach is that the validity is verified with a higher degree of certainty, but at the cost of more time
and memory resources.
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