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1 Introduction

The present paper studied the existence of intuitionistic fuzzy fractional evolution problem intu-
itionistic fuzzy nonlinear differential equations of fractional order

(
c
gHD

qx(t)
)

= Ax(t) + f (t, x(t)) , t ∈ I = [t0, T ]

x(t0) = x0 ∈ IF1.
(1)

where 0 < q < 1, A is an operator of IF1 from IF1 generated an intuitionistic fuzzy α-semigroup
Tα, the operator c

gHD
γ denote the Caputo fractional generalized derivative of order γ, f : I ×

IF1(R) −→ IF1(R).
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The concept of intuitionistic fuzzy sets is intoduced by K. Atanassov [3]. The authors in [8]
built the concept of intuitionistic fuzzy metric space and intuionistic fuzzy numbers.

In [9], S. Melliani introduce the extension of Hukuhara difference in the intuitionistic fuzzy
case. T. Allahviranloo, A. Armand and Z. Gouyandeh in [1] solve the fuzzy fractional differential
equations under generalized fuzzy Caputo derivative. From this end idea we introduce in this
paper the concept of generalized intuitionistic fuzzy Caputo derivative, and we give an integral
solution of an intuitionistic fuzzy fractional equation.

This paper is organized as follows. In Section 2 we recall some concept concerning the
intuitionistic fuzzy numbers. The concept of generalized intuitionistic fuzzy derivative and gen-
eralized intuitionistic fuzzy Caputo derivative, takes place in Section 3. The integral solution has
descused in Section 4. Finally, in Section 5 we illustrate by an example.

2 Preliminaries

Definition 2.1. [8] The set of all intuitionistic fuzzy numbers is given by

IF1 = IF1(R) =
{
〈u, v〉 : R −→ [0, 1]2, 0 ≤ u+ v ≤ 1

}
with the following conditions:

1. For each 〈u, v〉 ∈ IF1 is normal, i.e., ∃x0, x1 ∈ R, such that u(x0) = 1 and v(x1) = 1.

2. For each 〈u, v〉 ∈ IF1 is a convex intuitionistic set, i.e., u is fuzzy convex and v is fuzzy
concave.

3. For each 〈u, v〉 ∈ IF1, u is a lower continuous and v is appear continuous.

4. cl {x ∈ R, v(x) ≤ α} is bounded.

Definition 2.2. [8] For α ∈ [0, 1], we define the upper and lower α-cut by[
〈u, v〉

]
α

= {x ∈ R, u(x) ≥ α} ,
[
〈u, v〉

]α
= {x ∈ R, v(x) ≤ 1− α} .

Definition 2.3. The intuitionistic fuzzy zero is intuitionistic fuzzy set defined by

0̃(x) =

(1, 0) x = 0

(0, 1) x 6= 0
.

Proposition 2.1. [8] We can write[
〈u, v〉

]
α

=
[
[〈u, v〉]+l (α), [〈u, v〉]+r (α)

]
,
[
〈u, v〉

]α
=
[
[〈u, v〉]−l (α), [〈u, v〉]−r (α)

]
Remark 2.1. We can write [〈u, v〉]α = [u]α and [〈u, v〉]α = [1− v]α, in the fuzzy case.

Proposition 2.2. [8] For all 〈u, v〉, 〈u′, v′〉 ∈ IF1, we have

〈u, v〉 = 〈u′, v′〉 ⇐⇒ [〈u, v〉]α and [〈u, v〉]α , ∀t ∈ [0, 1].
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We define two operations on IF1 by

〈u, v〉 ⊕ 〈u′, v′〉 = 〈u ∨ v, u′ ∧ v′〉 ∀〈u, v〉, 〈u′, v′〉 ∈ IF1

λ〈u, v〉 = 〈λu, λv〉 ∀λ ∈ R, ∀〈u, v〉 ∈ IF1.

According to Zadeh extension, we have[
〈u, v〉 ⊕ 〈u′, v′〉

]
α

=
[
〈u, v〉

]
α

+
[
〈u′, v′〉

]
α
,
[
〈u, v〉 ⊕ 〈u′, v′〉

]α
=
[
〈u, v〉

]α
+
[
〈u′, v′〉

]α
[
λ〈u, v〉

]
α

= λ
[
〈u, v〉

]
α
,
[
λ〈u, v〉

]α
= λ

[
〈u, v〉

]α
.

Theorem 2.3. [8] Let M = {Mα,M
α, α ∈ [0, 1]} be a family of subsets in R stisfying the

following conditions

1. α ≤ s =⇒Ms ⊂Mα and M s ⊂Mα, for each α, s ∈ [0, 1].

2. Mα and Ms are nonempty compact convex sets in R for each α ∈ [0, 1].

3. for any nondecreasing sequence αi −→ α on [0, 1], we have Mα ∈ [0, 1] =
⋂
iMαi and

Mα =
⋂
iM

αi .

We define u and v by

u(x) =

0 x /∈M0

sup
α∈[0,1]

Mα x ∈M0

v(x) =

1 x /∈M0

1− sup
α∈[0,1]

Mα x ∈M0

Then 〈u, v〉 ∈ IF1 with Mα =
[
〈u, v〉

]
α

and Mα =
[
〈u, v〉

]α
.

Remark 2.2. [8]

1. The family {[〈u, v〉]α, [〈u, v〉]α, α ∈ [0, 1]} satisfying conditions 1–3 of the previous theo-
rem.

2. For all α ∈ [0, 1], [〈u, v〉]α ⊂ [〈u, v〉]α.

Theorem 2.4. [8] On IF1 we can define the metric

d∞

(
(u, v), (z, w)

)
=

1

4

(
sup

0<α≤1

∣∣∣∣[(u, v)
]+

r
(α)−

[
(z, w)

]+

r
(α)

∣∣∣∣
+ sup

0<α≤1

∣∣∣∣[(u, v)
]+

l
(α)−

[
(z, w)

]+

l
(α)

∣∣∣∣+ sup
0<α≤1

∣∣∣∣[(u, v)
]−
r

(α)−
[
(z, w)

]−
r

(α)

∣∣∣∣
+ sup

0<α≤1

∣∣∣∣[(u, v)
]−
l

(α)−
[
(z, w)

]−
l

(α)

∣∣∣∣)
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and

dp

(
〈u, v〉, 〈u′, v′〉

)
=

(
1

4

∫ 1

0

∣∣∣[〈u, v〉]+l (α)− [〈u′, v′〉]+l (α)
∣∣∣pdt

+
1

4

∫ 1

0

∣∣∣[〈u, v〉]+r (α)− [〈u′, v′〉]+r (α)
∣∣∣pdt+

1

4

∫ 1

0

∣∣∣[〈u, v〉]−l (α)− [〈u′, v′〉]−l (α)
∣∣∣pdt

+
1

4

∫ 1

0

∣∣∣[〈u, v〉]−r (α)− [〈u′, v′〉]−r (α)
∣∣∣pdt) 1

p

For p ∈ [1,∞), we have
(

IF1, dp

)
is a complete metric space.

3 The generalized Hukuhara derivative
of an intuitionistic fuzzy-valued function

The concept of intuitionistic fuzzy Hukuhara difference is introduced by the authors in [9], in this
paper we will give the definition of generalized Hukuhara difference betwen two intuitionistic
fuzzy number.

Definition 3.1. The generalized Hukuhara difference of two fuzzy number 〈u, v〉, 〈u′, v′〉 ∈ IF1 is
defined as follows

〈u, v〉 −gH 〈u′, v′〉 = 〈z, w〉 ⇐⇒ 〈u, v〉 = 〈u′, v′〉 ⊕ 〈z, w〉.

Note that the α-level representation of fuzzy-valued function f : [0, T ] −→ IF1 expressed by
[f ]α = [fα,l, fα,r] and [f ]α =

[
fα,l, fα,r

]
.

Definition 3.2. The generalized Hukuhara derivative of a intuitionistic fuzzy-valued function f :

[0, T ] −→ IF1 at t0 is defined as

f ′gH(t0) = lim
t→t0

f(t)−gH f(t0)

t− t0

if f ′gH(t0) ∈ IF1, we say that f is generalized Hukuhara differentiable at t0.

Also we say that f is [(i)− gH]-differentiable at t0 if
(
f ′gH
)
α

=
[
(fα,l)

′, (fα,r)
′
]

(
f ′gH
)α

=
[
(fα,l)′, (fα,r)′

]
and that f is [(ii)− gH]-differentiable at t0 if

(
f ′gH
)
α

=
[
(fα,r)

′, (fα,l)
′
]

(
f ′gH
)α

=
[
(fα,r)′, (fα,l)′

] .
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Remark 3.1. We can define the generalized derivative of higher order byf (0) = f

f
(n)
gH =

(
f (n−1)

)′
gH
, ∀n ∈ N

. (2)

Definition 3.3. Let f : (0, T ) −→ IF1. We say that f is of class Cm, m ∈ N, if f (m)
gh exists and

continues, by respect to metric d∞.

Now if the α-levels of f : (0, T ] −→ IF1, are given by [f ]α = [fα,l, fα,r] and [f ]α =[
fα,l, fα,r

]
and fα,l, fα,r, fα,l, fα,r are Riemann integrable on [0, T ]. Since the family{

[fα,l, fα,r] ,
[
fα,l, fα,r

] }
builds an intuitionistic element and the integral preserves the monotony, then by Theorem 2.3 the
family {[∫

[0,T ]

fα,l,

∫
[0,T ]

fα,r

]
,
[ ∫

[0,T ]

fα,l,

∫
[0,T ]

fα,r
]}

defines an intuitionistic fuzzy element, which is the integral of f on [0, T ], we denote by
∫ T

0
f .

Definition 3.4. Let f : [0, T ] −→ IF1 be a intuitionistic fuzzy-valued function. We say that f is
integrable on [0, T ] if fα,l, fα,r, fα,l, fα,r defined in the previous are integrable on [0, T ].

4 Intuitionistic fuzzy generalized Caputo-derivative

Let f : [0, T ] −→ IF1 be a intuitionistic fuzzy-valued integrable function on [0, T ], and
δ ∈ (m− 1,m] and m ∈ N∗, its α-levels are defined by [f ]α = [fα,l, fα,r] and [f ]α =

[
fα,l, fα,r

]
where fα,l, fα,r, fα,l, fα,r ∈ Cm([0, T ]).
So

Mα =

[
1

Γ(δ)

∫ t

0

(t− s)δ−m−1
(
fα,l

)(m)

(s),
1

Γ(δ)

∫ t

0

(t− s)δ−m−1
(
fα,r

)(m)

(s)

]
and

Mα =

[
1

Γ(δ)

∫ t

0

(t− s)δ−m−1
(
fα,l
)(m)

(s),
1

Γ(δ)

∫ t

0

(t− s)δ−m−1
(
fα,r

)(m)

(s)

]
.

Proposition 4.1. The the family
{
Mβ,M

β, β ∈ [0, 1]
}

defines an intuitionistic fuzzy element.

Proof. Just use Theorem 2.3.

Definition 4.1. The intuitionistic fuzzy preceding item is called the generalized Caputo derivative
of f , we denote Dαf . We say that f is cf [(i)− gH]-differentiable at t0 if[

gHD
δf
]
α

=
[
Dδfα,l, D

δfα,r
][

gHD
δf
]α

=
[
Dδfα,l, Dδfα,r

]
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and that f is cf [(ii)− gH]-differentiable at t0 if[
gHD

δf
]
α

=
[
Dδfα,r, D

δfα,l
]

[
gHD

δf
]α

=
[
Dδfα,r, Dδfα,l

]
.

As in the previuos definition we will give the difinition of intuitionistic fuzzy fractional
Riemann–Liouville integral. If the α-levels of f : (0, T ] −→ IF1, are given by [f ]α = [fα,l, fα,r]

and [f ]α =
[
fα,l, fα,r

]
and fα,l, fα,r, fα,l, fα,r are Riemann integrable on (0, T ]. Since the family{

[fα,l, fα,r] ,
[
fα,l, fα,r

]}
builds an intuitionistic element and the integral preserves the monotony, then by Theorem 2.3 the
family

{Aα,Aα, α ∈ [0, 1]} ,

where

Aα =

[
1

Γ(δ)

∫
(0,t)

(t− s)δ−1fα,l(s),
1

Γ(δ)

∫
(0,t)

(t− s)δ−1fα,r(s)

]
and

Aα =

[
1

Γ(δ)

∫
(0,t)

(t− s)δ−1fα,l(s),
1

Γ(δ)

∫
(0,t)

(t− s)δ−1fα,r(s)

]
,

defines an intuitionistic fuzzy element, which is the Riemann–Liouville fractional integral of f
on (0, T ), we denote 1

Γ(δ)

∫
(0,t)

(t− s)δ−1f(s)ds.

Definition 4.2. The Riemann–Liouville fractional integral of f on (0, T ), defined as

Iδf(t) =
1

Γ(δ)

∫
(0,t)

(t− s)δ−1f(s)ds

where δ ∈ (m− 1,m).

5 Embedding theorem and intuitionistic fuzzy α-semigroup

Since the element of IF1 are closed (Hausdorff topology) and convex, so we can apply the result
of [11].

Theorem 5.1. We can extend IF1 in a normed space.

Proof. Consider the following relation on IF1 × IF1 defined by

(〈u, v〉, 〈z, t〉) ∼ (〈u′, v′〉, 〈z′, t′〉)⇐⇒ 〈u, v〉+ 〈z′, t′〉 = 〈u′, v′〉+ 〈z, t〉.

It is clear that such relation a equivalence relation.
We denote that IF∗ = IF1 × IF1/∼ is a vector space (see [11]).
Now consider the map

j :

IF1 −→ IF∗1

〈u, v〉 −→
(
〈u, v〉, 0̃

) (3)
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is an injective mapping, indded:

j(〈u, v〉) = j(〈u′, v′〉) =⇒
(
〈u, v〉, 0̃

)
=
(
〈u′, v′〉, 0̃

)
=⇒ (〈u, v〉, 0̃) ∼ (〈u′, v′〉, 0̃) =⇒ 〈u, v〉 = 〈u′, v′〉.

Further we can define the norm on IF∗1 as

‖ (〈u, v〉, 〈u′, v′〉) ‖= d1 (〈u, v〉, 〈u′, v′〉) ,

which proves that (IF∗1, ‖.‖) is a normed vector space.

Theorem 5.2. There exists a Banach space X such that IF1 can be embedded as a convex cone
C with vertex 0 in X . Furthermore, the following conditions hold true:

1. The embedding j is isometric,

2. The addition in X induces the addition in IF1,

3. The multiplication by a nonegative real number in X induces the corresponding operation
in IF1,

4. C − C = {a− b, a, b ∈ C} is dense in X ,

5. C is closed

Proof. By Theorem 5.1, IF1 can be embedded as a convex cone C in a normed linear space Y such
that C spans Y and the conditions 1− 3 hold true.

If X is a completion of Y , then also 4. is satisfied. Since (IF1, d1) is complete, which follows
by combining results in [5] and [10], and the embedding j is isometric we have 5.

Definition 5.1. A continuous one-parameter intuitionistic fuzzy α-semigroup {Tα(t), t ≥ 0} of
operators on IF1 is defined by the following conditions:

1. For any fixed t ≥ 0, Tα(t) is a continuous operator defined on IF1 into IF1.

2. For any 〈u, v〉 ∈ IF1, Tα(t)〈u, v〉 is strongly continuous in t, with the metric d1.

3. Tα
(

(t+ s)
1
α

)
= Tα

(
(t)

1
α

)
Tα

(
(s)

1
α

)
.

4. For all 〈u, v〉, 〈u′, v′〉 ∈ IF1

d1 (Tα(t)〈u, v〉, Tα(t)〈u′, v′〉) ≤Meωt
α

d1 (〈u, v〉, 〈u′, v′〉) ∀t ≥ 0,

where M > 0.
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We call such a family {Tα(t)} simply intuitionistic fuzzy α-semigroup of type ω. The strict α-
infinitesimal generator Aα of a intuitionistic fuzzy α-semigroup {Tα(t)} is defined by

Aαx = lim
t→0

T (α)
α (t)〈u, v〉, 〈u, v〉 ∈ IF1.

The right side exists in IF1.
We define the domain of Aα, by

D(Aα) =
{
〈u, v〉 ∈ IF1, lim

t→0
T (α)
α (t)〈u, v〉 exist

}
.

Lemma 5.3. If the family {Tα(t), t ≥ 0} is an intuitionistic fuzzy α-semigroup of type ω, then
jTα(t)j−1 is a nonlinear α-semigroup of type ω on C.

Proof. By [6], jTα(t)j−1 : C −→ C, since j is an isometric, which implies that jTα(t)j−1 is a
nonlinear α-semigroup of type ω on C.

Lemma 5.4. If Aα is an intuitionistic fuzzy infinitesimal generator of an intuitionistic fuzzy α-
semigroup of type ω {Tα(t)}t≥0. Then jAαj−1 is the infinitesimal generator of jTα(t)j−1.

Proof. Let x ∈ C and put Rα(t) = jTα(t)j−1. We have T (t) : C −→ C, and 〈u, v〉 = j−1x

lim
t→0
‖ Rα(t+ εt1−α)x	Rαx

ε
−R(α)

α (t)x ‖= 0

=⇒ lim
t→0
‖ jTα(t)j−1x	 jTα(t)j−1xε− jTαα (t)j−1x ‖= 0

=⇒ lim
t→0

d1

(
Tα(t)j−1x	 jTα(t)j−1xε, jTαα (t)j−1x

)
= 0

=⇒ lim
t→0

d1

(
Tα(t)〈u, v〉 	 jTα(t)〈u, v〉ε, jTαα (t)〈u, v〉

)
= 0.

6 Intuitionistic fuzzy Caputo fractional evolution problem

In this section we consider the following problemgHD
qx(t) = Ax(t) + f(t, x(t)), t ∈ [t0, T ]

x(0) =< u0, v0 >∈ IF1

, (4)

where 0 < q < 1 is a real number and the operator gHDα denotes the Caputo fractional general-
ized derivative of order α, and f : [0,∞) × IF1 −→ IF1, is a continuous fuzzy function. A is an
operator of IF1 from IF1 generated an intuitionistic fuzzy α-semigroup Tα.

In this section, the existence and uniqueness of solutions of problem (1) with fuzzy initial
conditions is proved under cf [gH]-differentiability.

Lemma 6.1. If a ∈ IF1, then ∫
(0,t)

ads = ta.
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Proof. We set [a]α = [a−, a+] and [a]α = [a−, a+]. We have

[

∫
(0,t)

ads]α = [ta−, ta+] = t[a−, a+] = t[a]α

and
[

∫
(0,t)

ads]α = [ta−, ta+] = t[a−, a+] = t[a]α.

Lemma 6.2. Let f : [a, b] −→ IF1 be a fuzzy-valued function such that f ′gH ∈ CIF1([a, b]) ∩
LIF1([a, b]), then

Iα
(
gHD

αf
)

(t) = f(t)	gH f(a).

Proof. We set f = 〈f1, f2〉, it become Iα
(
gHD

αf1
)

(t) = f1(t)	gHf1(a) and Iα
(
gHD

αf2
)

(t) =

f2(t)	gH f2(a), but 0 ≤ f1 + f2 ≤ 1, which implies that

Iα
(
gHD

αf
)

(t) = f(t)	gH f(a).

We denote

sgn(x) =

+ if x is cf [(i)− gH]-differentiable

	(−1) if x is cf [(ii)− gH]-differentiable.
(5)

Theorem 6.3. The initial value problem (1) is equivalent to one of the following integral equa-
tions

x(t) = Tα(t)x0 +
1

Γ(q)

∫ t

t0

(t− s)α−1f(s, x(s)), (6)

if x(t) be cf [(i)− gH]-differentiable

x(t) = Tα(t)x0 	
−1

Γ(q)

∫ t

t0

(t− s)α−1,f(s, x(s)) (7)

if x(t) be cf [(ii)− gH]-differentiable

x(t) =

Tα(t)x0 + 1
Γ(q)

∫ t
t0

(t− s)α−1f(s, x(s)), if t ∈ [a, c]

Tα(t)x0 	 −1
Γ(q)

∫ t
t0

(t− s)α−1f(s, x(s)), if t ∈ [c, b]
. (8)

Proof. We have gHDqx(t) = Ax(t)+f(t, x(t)), wich implies [gHD
qx(t)]α = [Ax(t)+f(t, x(t))]α

and [gHD
qx(t)]α = [Ax(t) + f(t, x(t))]α, by [4] we get

[x(t)]α = [Tα(t)x0 +
1

Γ(q)

∫ t

t0

(t− s)α−1f(s, x(s))]α

and

[x(t)]α = [Tα(t)x0 +
1

Γ(q)

∫ t

t0

(t− s)α−1f(s, x(s))]α.

Now using Theorems 2.3, 6.2 and [2] for completing the proof.
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Theorem 6.4. [7] Consider U : T −→ X to be a set of continuous function. Then U is a relative
compact set if and only if U is equicontinuous and for any t ∈ T , U(t) is a relative compact set
in X .

Theorem 6.5. [7] Let U be a closed convex subset of a Banach space X . If A : U −→ U is
continuous and U = A(U) is compact, then A has a fixed point in U .

Theorem 6.6. Let f continue on R0 = {(t0, x), t ∈ [t0, t0 + h∗], ||x, x0|| ≤ η} such that
sup

t∈[t0,T ]

d1 (f(t, x), 0) = M , where η > d1(Tα(t)x0, x0) and f is Γ(q+1)
(t−t0)q

-Lipschitz. Then the prob-

lem (1) has a unique solution.

Proof. We set

(Ax)(t) = Tα(t)x0 +
1

Γ(q)

∫ t1

t0

(t1 − s)α−1f(s, x(s))ds.

The proof is presented in several steps.
Step 1: (Ax)(t) ∈ B(x0, η) is continuous

d1 ((Ax)(t), x0) ≤ 1

Γ(q)

∫ t

t0

(t− s)q−1d1

(
f(s, x(s), 0̃)

)
ds+ d1 (Tα(t)x0, x0)

≤ η.

So if x ∈ B then Ax ∈ B.
Step 2: t −→ (Ax)(t) is contraction. For t0 ≤ t1 ≤ t2 ≤ t0 + h,

d1

(
(Ax)(t1), (Ax)(t2)

)
≤ 1

Γ(q)
d1

(∫ t1

t0

(t1 − s)α−1f(s, x(s)),

∫ t2

t0

(t2 − s)α−1f(s, x(s))

)
≤ 1

Γ(q)

{∫ t1

t0

|(t1 − s)α−1 − (t2 − s)α−1|d1

(
f(s, x(s)), 0̃

)
ds

+

∫ t2

t1

(t2 − s)q−1d1(f(s, x(s)), 0̃)ds

}
.

Since q < 1 then q − 1 < 0, so we have∫ t1

t0

∣∣∣(t1 − s)q−1 − (t2 − s)q−1
∣∣∣ds ≤ 1

q
(t2 − t1)q,

which implies that

d1

(
(Ax)(t1), (Ax)(t2)

)
≤ 2M

Γ(q + 1)
.

By Lemmas 5.3 and 5.4, A has a fixed point, which is the solution of the problem.
Step 3: By the same proof, we prove that T (t)x0 	 −1

Γ(q)

∫ t1
t0

(t1 − s)α−1f(s, x(s))ds has a fixed
point.
Step 4: Uniqueness. Suppose that x and y two solution of (4), we have

89



d1

(
x(t), y(t)

)
= d1

(
Ax(t), Ay(t)

)
≤ 1

Γ(q)

∫ t

t0

|(t− s)q−1|d1

(
f(s, x(s), f(s, y(s)))

)
ds

< q

∫ t

t0

(t− s)q−1(s− t0)−qd1

(
x(s), y(s)

)
ds.

By setting ψ(t) = (t− t0)−qd1 (x(t), y(t)) and m = sup[t0,T ] ψ(t), we get

m < mq(t1 − t0)−q
∫ t1

t0

(t1 − s)q−1ds = m,

which completes the proof.
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