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1 Introduction

The concept of intuitionistic fuzzy sets is introduced by K. Atanassov (1984) [1,2]. This concept
is a generalization of fuzzy theory introduced by L. Zadeh [3].

The concept of complex fuzzy sets as sets with complex membership functions was first in-
troduced by Ramot et al., who in [8] demonstrated the increased expressive power gained by
endowing a set S with a complex membership function µS(x) = rS(x)e

iφS(x), where rS(x) and
φS(x) are real-valued functions with rS solely responsible for the fuzzy information and φS func-
tioning as a phase term containing additional crisp information.

In this work, we will be working on the same idea, but this time in the intuitionistic fuzzy the-
ory, we can write the representation of complex membership function µ as µS(x) = rS(x)e

iφS(x)
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and the non-membership function ν as νS(x) = r′S(x)e
iφ′S(x), where (rS(x), r

′
S(x)) and (φS(x),

φ′S(x)) are real-valued functions with (rS, r
′
S) solely responsible for the intuitionistic fuzzy infor-

mation and (φS, φ
′
S) functioning.

We attract the reader’s attention to the difference between complex intuitionistic fuzzy sets
and intuitionistic fuzzy complex numbers.

2 Preliminaries

In this section, we introduce notations, definitions, and preliminary facts which are used through-
out this paper.

Let us denote by Pk(R) the set of all nonempty compact convex subsets of R.

Definition 1. We denote

IF =
{
(u, v) : R→ [0, 1]2 |∀x ∈ R /0 ≤ u(x) + v(x) ≤ 1

}
where

1. (u, v) is normal i.e., there exists x0, x1 ∈ R such that u(x0) = 1 and v(x1) = 1;

2. u is fuzzy convex and v is fuzzy concave;

3. u is upper semicontinuous and v is lower semicontinuous;

4. supp(u, v) = cl({x ∈ R : v(x) < 1}) is bounded.

For α ∈ [0, 1] and (u, v) ∈ IF, we define

[(u, v)]α = {x ∈ R | v(x) ≤ 1− α}

and
[(u, v)]α = {x ∈ R | u(x) ≥ α}

Remark 1. We can consider [(u, v)]α as [u]α and [(u, v)]α as [1− v]α in the fuzzy case.

Definition 2. The intuitionistic fuzzy zero is the intuitionistic fuzzy set defined by

0(1,0)(x) =

(1, 0), x = 0

(0, 1), x 6= 0

Definition 3. Let (u, v) ,(u′, v′) ∈ IF and λ ∈ R, we define the addition by:

((u, v)⊕ (u′, v′)) (z) =

(
sup
z=x+y

min(u(x), u′(y)); inf
z=x+y

max(v(x), v′(y))

)

λ(u, v) =

{
(λu, λv) if λ 6= 0

0(0,1) if λ = 0
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According to Zadeh’s extension principle, we have addition and scalar multiplication in intu-
itionistic fuzzy number space IF as follows:

[(u, v)⊕ (z, w)]α = [(u, v)]α + [(z, w)]α, (1)

[λ(u, v)]α = λ[(u, v)]α, (2)

[(u, v)⊕ (z, w)]α = [(u, v)]α + [(z, w)]α, (3)

[λ(u, v)]α = λ[(u, v)]α, (4)

where (u, v), (z, w) ∈ IF and λ ∈ R.
We denote

[(u, v)]+l (α) = inf{x ∈ R | u(x) ≥ α},
[(u, v)]+r (α) = sup{x ∈ R | u(x) ≥ α},
[(u, v)]−l (α) = inf{x ∈ R | v(x) ≤ 1− α},
[(u, v)]−r (α) = sup{x ∈ R | v(x) ≤ 1− α}.

Remark 2. [
(u, v)

]
α
=
[
[(u, v)]+l (α), [(u, v)]

+
r (α)

]
,[

(u, v)
]α

=
[
[(u, v)]−l (α), [(u, v)]

−
r (α)

]
.

Theorem 1. LetM = {Mα, M
α : α ∈ [0, 1]} be a family of subsets in R satisfying Conditions

(i)− (iv):

i) α ≤ β ⇒Mβ ⊂Mα and Mβ ⊂Mα

ii) Mα and Mα are nonempty compact convex sets in R for each α ∈ [0, 1].

iii) for any nondecreasing sequence αi → α on [0, 1], we have Mα =
⋂
iMαi

and Mα =⋂
iM

αi .

iv) For each α ∈ [0, 1], Mα ⊂Mα let u and v be defined by

u(x) =

{
0 if x /∈M0

sup {α ∈ [0, 1] : x ∈Mα} ifx ∈M0

v(x) =

{
1 if x /∈M0

1− sup {α ∈ [0, 1] : x ∈Mα} ifx ∈M0

Then (u, v) ∈ IF.

Proof. See [7].
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On IF, we define the metric d∞ by:

d∞ ((u, v), (z, w)) =
1

4
sup

0<α≤1
|[(u, v)]+r (α)− [(z, w)]+r (α)|

+
1

4
sup

0<α≤1
|[(u, v)]+l (α)− [(z, w)]+l (α)|+

1

4
sup

0<α≤1
|[(u, v)]−r (α)− [(z, w)]−r (α)|

+
1

4
sup

0<α≤1
|[(u, v)]−l (α)− [(z, w)]−l (α)|

where |.| denotes the usual Euclidean norm in R.

Theorem 2. (IF, d∞) is a complete metric space.

Proof. See [7]

(IF, d∞) is a complete metric space which can be embedded isomorphically as a cone in a
Banach space (see theorem 3.1 in [5]). We recall the definition of a complex fuzzy set:

Definition 4. A complex fuzzy set A, defined on a universe of discourse X , is characterized
by a membership function µA(x) that assigns any element x ∈ X a complex-valued grade of
membership in A. By definition µA(x) is a value in the unit circle in the complex plane in the
polar case, and a value in the unit square in C in the Cartesian case.

3 Main results

3.1 Complex intuitionistic fuzzy set

Similarly to the definition of complex fuzzy set, we give here a definition of complex intuitionistic
fuzzy set:

Definition 5. A complex intuitionistic fuzzy set A, defined on a universe of discourse X , is char-
acterized by a membership function µA(x) and non-membership function νA(x) that assign any
element x ∈ X a complex-valued grade of membership and non-membership in A. By definition,
the values that µA(x), νA(x) and µA(x) + νA(x) may obtain, are all lying within the unit circle
in the complex plane in the polar case, and µA, νA and µA(x) + νA(x) obtain a value in the unit
square in C in the Cartesian case.

3.2 Cartesian representation

The complex membership function in [9], µ, is defined as

µ(V, z) = µR(V ) + iµI(z),

likewise, we can define the complex non-membership function as

ν(V, z) = νR(V ) + iνI(z),
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where V is to be interpreted as a set in an intuitionistic fuzzy set of sets and z as an element of V
. This definition can be easily extended to R, for x ∈ R, let

f1(x) = u(x) + iv(x) and f2(x) = u′(x) + iv′(x),

where f = (u, u′) : R −→ [0, 1]2 and g = (v, v′) : R −→ [0, 1]2. For ease of notation, denote
F by (f, g). Thus, f1, f2 assigns to each x ∈ R a value in the unit square in C, representing
a complex grade of membership and non-membership. Note that u, v, u′ and v′ considered
individually define non-complex fuzzy sets in R.

Now, for f = (u, u′), g = (v, v′) : R −→ [0, 1]2, α-level sets are classically defined as
follows:

[f ]α = [(u, u′)]α = {x ∈ R |u′(x) ≤ 1− α} ; [f ]α = [(u, u′)]α = {x ∈ R |u(x) ≥ α}

and

[f ]0 = [(u, u′)]0 = {x ∈ R |u′(x) < 1}; [f ]0 = [(u, u′)]0 = {x ∈ R |u(x) > 0}.

We use the above to define (α, β)-level sets for F = (f, g), 0 < α, β ≤ 1:

[F ](α,β) = [(f, g)](α,β) = [f ]α ∩ [g]β, (5)

and
[F ](α,β) = [(f, g)](α,β) = [f ]α ∩ [g]β, (6)

Consider the following set of conditions as an alternative definition of [F ](α,β) and [F ](α,β):

[F ](α,β) = {x ∈ R |u′(x) ≤ 1− α, v′(x) ≤ 1− β} , (7)

[F ](α,0) = {x ∈ R |u′(x) ≤ 1− α, v′(x) < 1}, (8)

[F ](0,β) = {x ∈ R |u′(x) < 1, v′(x) ≤ 1− β}, (9)

[F ](0,0) = {x ∈ R |u′(x) < 1, v′(x) < 1}, (10)

and
[F ](α,β) = {x ∈ R |u(x) ≥ α, v(x) ≥ β} , (11)

[F ](α,0) = {x ∈ R |u(x) ≥ α, v(x) > 0}, (12)

[F ](0,β) = {x ∈ R |u(x) > 0, v(x) ≥ β}, (13)

[F ](0,0) = {x ∈ R |u(x) > 0, v(x) > 0}. (14)

Note that (7) and (10) are equivalent to definition (5), likewise (11) and (14) are equivalent
to definition (6) for the corresponding α, β, but (8), (9) and (12), (13) are not: (5) and (6) may
not yield closed sets in the case when exactly one of α, β is equal to 0, but (8), (9) and (12), (13)
would yield the respective closures of those sets.

For f, g ∈ IF , we have [f ]α∩[g]β , [f ]α∩[g]β are always compact and [f ]1∩[g]1 ⊂ [f ]α∩[g]β ⊂
[f ]0 ∩ [g]0 and [f ]1 ∩ [g]1 ⊂ [f ]α ∩ [g]β ⊂ [f ]0 ∩ [g]0 are nonempty as in order to ensure this,
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it is sufficient that [f ]1 ∩ [g]1 and [f ]1 ∩ [g]1 be nonempty, meaning that there should exist some
x0, x1 ∈ R such that x0 ∈ [f ]1, i.e.,u′(x0) = 0, x0 ∈ [g]1,i.e. v′(x0) = 0 and x1 ∈ [f ]1,
i.e.,u(x1) = 1, x1 ∈ [g]1,i.e. v(x1) = 1. With that in mind, we define the following set:

ÎF
2
=

{(
(u, u′), (v, v′)

)
∈ IF2 | ∃x0, x1∈ R, / u(x1) = v(x1) = 1, u′(x0) = v′(x0) = 0

}
. (15)

Then for (f, g) ∈ ÎF
2
, [F ](α,β) = [f ]α ∩ [g]β, [F ](α,β) = [f ]α ∩ [g]β ∈ Pk(R) for all α, β ∈ [0, 1].

And the compactness of the [F ](α,β) sets guarantees the complete equivalence of definition (5)
and the set of definitions (7)-(10), and the complete equivalence of definition (6) and the set of
definitions (11)-(14).

We recall that IF is closed under addition and scalar multiplication, to establish a similar
result for ÎF

2
. For functions f = (u, u′), g = (v, v′) ∈ IF, addition and scalar multiplication can

be defined via level sets as (1)-(4).
For F = (f, g) =

(
(u, u′), (v, v′)

)
, G = (f ′, g′) =

(
(x, x′), (y, y′)

)
∈ ÎF

2
and a scalar λ, let

F + G = (f, g) + (f ′, g′) = (f + f ′, g + g′), (16)

λF = λ(f, g) = (λf, λg). (17)

It is clear that for F , G ∈ IF, λF , F+G ∈ IF×IF. We need to show that there exist c0, c1 ∈ R
such that

(u+ x)(c0) = (v + y)(c0) = 1, and (u′ + x′)(c1) = (v′ + y′)(c1) = 0.

That is to say, [F + G](1,1) and [F + G](1,1) are nonempty, and also that [λF ](1,1) and [λF ](1,1)
are likewise nonempty.

We know that there exist a0, a1, b0, b1 ∈ R such that u(a1) = v(a1) = 1, u′(a0) = v′(a0) = 0

and x(b1) = y(b1) = 1, x′(b0) = y′(b0) = 0, then

[λF ](1,1) = [λf ]1 ∩ [λg]1

=
{
λz | z ∈ [f ]1

}
∩
{
λz | z ∈ [g]1

}
= {λz |u′(z) = 0} ∩ {λz | v′(z) = 0}

Clearly λa0 ∈ [λF ](1,1). And

[λF ](1,1) = [λf ]1 ∩ [λg]1

= {λz | z ∈ [f ]1} ∩ {λz | z ∈ [g]1}
= {λz |u(z) = 1} ∩ {λz | v(z) = 1}

λa1 ∈ [λF ](1,1). Also,

[F + G](1,1) = [(f + f ′, g + g′)](1,1)

= [f + f ′]1 ∩ [g + g′]1

=
(
[f ]1 + [f ′]1

)
∩
(
[g]1 + [g′]1

)
=

{
z0 + z1 | z0 ∈ [f ]1, z1 ∈ [f ′]1

}
∩
{
z0 + z1 | z0 ∈ [g]1, z1 ∈ [g′]1

}
= {z0 + z1 |u′(z0) = x′(z1) = 0} ∩ {z0 + z1 | v′(z0) = y′(z1) = 0}
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a0 + b0 ∈ [F + G](1,1). And

[F + G](1,1) = [(f + f ′, g + g′)](1,1)

= [f + f ′]1 ∩ [g + g′]1

= ([f ]1 + [f ]1) ∩ ([g]1 + [g′]1)

= {z0 + z1 | z0 ∈ [f ]1, z1 ∈ [f ′]1} ∩ {z0 + z1 | z0 ∈ [g]1, z1 ∈ [g′]1}
= {z0 + z1 |u(z0) = x(z1) = 1} ∩ {z0 + z1 | v(z0) = y(z1) = 1}

Clearly a1 + b1 ∈ [F + G](1,1).
We have thus shown that ÎF

2
is closed under addition and scalar multiplication.

Consider the product metric on IF2 = IF× IF, d̂∞ : IF2 × IF2 −→ R+ by:

d̂∞(F ,G) = max{d∞(f, f ′) , d∞(g, g′)}, F = (f, g), G = (f ′, g′) ∈ ÎF
2
. (18)

Since ÎF
2 ⊂ IF2, d̂∞ is also a metric for ÎF

2
. Hence, (ÎF

2
, d̂∞) is a complete metric space.

It will also prove useful to define a zero element in ÎF
2
. Recall that on IF we define zero

element 0(1,0) ∈ IF by

0(1,0)(x) =

{
(1, 0) , x = 0

(0, 1) , x 6= 0

The zero element on ÎF
2

then reads

0̂ =
(
0(1,0), 0(1,0)

)
∈ IF2.

We have 0̂(0) =
(
(1, 0), (1, 0)

)
, verifying that 0̂ ∈ ÎF

2
.

From [5], there exists a Banach space B and an embedding j : IF −→ B.
Thus, ÎF

2 ⊂ IF× IF is embedded into a Banach space.

Remark 3. In the same manner can be defined ÎF
n
, n ≥ 3 and it is shown that is embedding into

a Banach space.

3.3 Polar representation of complex grades
of membership and non-membership

The polar representation of the membership function as presented in [9], µ, is defined as

µ(V, z) = r(V )eiσφ(z).

Likewise, we can define the polar representation of complex non-membership function as

ν(V, z) = r′(V )eiσφ
′(z),

where σ is a scaling factor, which does not translate directly to and from the respective Cartesian
representation. Therefore, the two representations of the corresponding extension to R are not
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equivalent as defined, which will be seen below. Thus, depending on the application, one may be
more appropriate to use than the other.

For x ∈ R, the polar form of f1 and f2 is defined as follows:

f1(x) = r(x)e2πφ(x)i, f2(x) = r′(x)e2πφ
′(x)i,

where f = (r, r′), g = (φ, φ′) : R −→ [0, 1]2.
We denote f1 = (r, φ) and f2 = (r′, φ′). The scaling factor is taken to be 2π , allowing the

range of f1 and f2 to be the entire unit circle. Because e2πiφ is periodic, we take the value of
φ giving the maximum distance from e0, φ = 0.5, to be the “maximum” membership or non-
membership value.

The level sets for f = (r, r′), [f ]α and [f ]α are defined just as

[f ]α = [(r, r′)]α = {x ∈ R | r′(x) ≤ 1− α} ,

and
[f ]α = [(r, r′)]α = {x ∈ R | r(x) ≥ α} .

And we define the level sets for g = (φ, φ′), denoted [g]〈α〉 and [g]〈α〉, must be defined differ-
ently to account for the periodicity:

[g]〈α〉 = {x ∈ R |φ′(x) ∈ [α, 1− α], α ∈ (0, 0.5]} , (19)

[g]〈α〉 = {x ∈ R |φ(x) ∈ [α, 1− α], α ∈ (0, 0.5]} , (20)

[g]〈0〉 = {x ∈ R | 0 < φ′(x) < 1}, (21)

[g]〈0〉 = {x ∈ R | 0 < φ(x) < 1}, (22)

[g]〈α〉 = [(φ, φ′)]〈1−α〉, [g]〈α〉 = [(φ, φ′)]〈1−α〉, for all α ∈ [0, 1]. (23)

For F = (f, g), we can then define the level sets [F ]〈α,β〉 and [F ]〈α,β〉 as

[F ]〈α,β〉 = [(f, g)]〈α,β〉 = [f ]〈α〉 ∩ [g]〈β〉, and [F ]〈α,β〉 = [(f, g)]〈α,β〉 = [f ]〈α〉 ∩ [g]〈β〉, (24)

or by the relations:

[F ]〈α,β〉 = {x ∈ R | r′(x) ≤ 1− α, φ′(x) ∈ [β, 1− β]} , (25)

[F ]〈α,β〉 = {x ∈ R | r(x) ≥ α, φ(x) ∈ [β, 1− β]} , (26)

[F ]〈α,0〉 = {x ∈ R | r′(x) ≤ 1− α, 0 < φ′(x) < 1}, (27)

[F ]〈α,0〉 = {x ∈ R | r(x) ≥ α, 0 < φ(x) < 1}, (28)

[F ]〈0,β〉 = {x ∈ R | r′(x) < 1, φ′(x) ∈ [β, 1− β]}, (29)

[F ]〈0,β〉 = {x ∈ R | r(x) > 0, φ(x) ∈ [β, 1− β]}, (30)

[F ]〈0,0〉 = {x ∈ R | r′(x) < 1, 0 < φ′(x) < 1}, (31)

[F ]〈0,0〉 = {x ∈ R | r(x) > 0, 0 < φ(x) < 1}, (32)
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together with

[F ]〈α,β〉 = [F ]〈α,1−β〉, and [F ]〈α,β〉 = [F ]〈α,1−β〉, for allα, β ∈ [0, 1]. (33)

It is clear that, for g = (φ, φ′) ∈ IF , [g]〈α〉 ⊂ [g]α and [g]〈α〉 ⊂ [g]α for all α ∈ [0, 0.5].
However, [g]〈α〉, [g]〈α〉 need not be compact or convex. In order to address this issue, we define

Ĝ =
{
(u, v) : R −→ [0, 1]2 satisfying all of the following conditions

}
,

1. There exists x0, x1 ∈ R such that u(x0) = v(x1) = 0.5.

2. u and v are monotone.

3. u is upper semi-continuous on K1 and lower semi-continuous on K2, with

K1 = {x ∈ R | 0 < u(x) ≤ 0.5} , and K2 = {x ∈ R | 0.5 ≤ u(x) < 1} .

4. v is lower semi-continuous on K ′1 and upper semi-continuous on K ′2, with

K ′1 = {x ∈ R | 0 < v(x) ≤ 0.5} , and K ′2 = {x ∈ R | 0.5 ≤ v(x) < 1} .

5. K1 ∪K2 and K ′1 ∪K ′2 are compact.

Now, we define

ÎF
2

∗ =

{(
(r, r′), (φ, φ′)

)
∈ IF× Ĝ | ∃x0, x1 ∈ R s.t r(x0) = 1, r′(x1) = 0, φ(x0) = φ′(x1) = 0.5

}
.

Note that, for F ∈ ÎF
2

∗, definition (24) is equivalent to the set of definitions (25)-(33).

For f = (u, v) ∈ Ĝ, we may write

f(x) = (u, v)(x) =


(u1(x), v1(x)), x ∈ K1 ∩K ′1,
(u2(x), v2(x)), x ∈ K1 ∩K ′2,
(u3(x), v3(x)), x ∈ K2 ∩K ′1,
(u4(x), v4(x)), x ∈ K2 ∩K ′2,

where for some (z1, z2), (z3, z4) ∈ IF,

u1 =
1

2
z1, v1 =

1

2
z2 u2 =

1

2
z1 v2 =

1

2
(2− z2),

u3 =
1

2
(2− z3), v3 =

1

2
z4 u4 =

1

2
(2− z3) and v2 =

1

2
(2− z4).

Thus, there exists an embedding l such that l : Ĝ −→ IF × IF by f = (u, v) −→
((z1, z2) , (z3, z4)), which implies there exists an embedding k ≡ (id, l) : IF×Ĝ −→ IF× IF× IF,
where id is the canonical identity map.

Now, if u(x0) = v(x1) = 0.5, we can choose (z1, z2), (z3, z4) so that

z1(x0) = z2(x1) = z3(x0) = z4(x1) = 1

hence, ÎF
2

∗ is embedded into ÎF
3
.

Since, as shown in the remark (3), ˆIF
3

is embedded into a Banach space, then so is ÎF
2

∗.
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