On intuitionistic fuzzy ideals in Γ -near-rings

N. Palaniappan¹, P. S. Veerappan² and D. Ezhilmaran³

 ¹ Alagappa University, Karaikudi – 630 003, Tamilnadu, India, e-mail: palaniappan.nallappan@yahoo.com
 ² Department of Mathematics, K. S. R. College of Technology Tiruchengode-637215, Tamilnadu, India e-mail: peeyesvee@yahoo.co.in

³ Department of Mathematics, K. S. R. College of Technology Tiruchengode-637215, Tamilnadu, India e-mail: ezhil.devarasan@yahoo.com

Abstract: In this paper, we study some properties of intuitionistic fuzzy ideals of a Γ -near-ring and prove some results on these.

Keywords: Γ-near-ring, Intuitionistic fuzzy set, Intuitionistic fuzzy ideal. **AMS Classification:** 16D25, 03E72, 03G25

1 Introduction

The notion of a fuzzy set was introduced by L. A. Zadeh [10], and since then this concept have been applied to various algebraic structures. The idea of intuitionistic fuzzy set was first published by K. T. Atanassov [1] as a generalization of the notion of fuzzy set. Γ -near-rings were defined by Bh. Satyanarayana [9] and G. L. Booth [2, 3] studied the ideal theory in Γ near-rings. W. Liu [7] introduced fuzzy ideals and it has been studied by several authors. The notion of fuzzy ideals and its properties were applied to semi groups, BCK-algebras and semi rings. Y.B. Jun [5, 6] introduced the notion of fuzzy left (respectively, right) ideals.

In this paper, we introduce the notion of intuitionistic fuzzy ideals in Γ -near-rings and study some of its properties.

2 Preliminaries

In this section we include some elementary aspects that are necessary for this paper.

Definition 2.1. A non-empty set R with two binary operations "+" (addition) and "." (multiplication) is called a near-ring if it satisfies the following axioms:

- (i) (R, +) is a group,
- (ii) (R, .) is a semigroup,
- (iii) $(x + y) \cdot z = x \cdot z + y \cdot z$, for all x, y, $z \in R$. It is a right near-ring because it satisfies the right distributive law.

Definition 2.2 A Γ -near-ring is a triple (M, +, Γ) where

(i) (M, +) is a group,

- (ii) Γ is a nonempty set of binary operators on M such that for each $\alpha \in \Gamma$, (M, +, α) is a near-ring,
- (iii) $x\alpha(y\beta z) = (x\alpha y)\beta z$ for all $x, y, z \in M$ and $\alpha, \beta \in \Gamma$.

Definition 2.3 A subset A of a Γ -near-ring M is called a left (respectively, right) ideal of M if

- (i) (A, +) is a normal divisor of (M, +),
- (ii) $u\alpha(x + v) u\alpha v \in A$ (respectively, $x\alpha u \in A$) for all $x \in A$, $\alpha \in \Gamma$ and $u, v \in M$.

Definition 2.4 A fuzzy set μ in a Γ -near-ring M is called a fuzzy left (respectively, right) ideal of M if

- (i) $\mu(x-y) \ge \min{\{\mu(x), \mu(y)\}},$
- (ii) $\mu(y + x y) \ge \mu(x)$, for all $x, y \in M$.
- (iii) $\mu(u\alpha(x + v) u\alpha v) \ge \mu(x)$ (respectively, $\mu(x\alpha u) \ge \mu(x)$) for all $x, u, v \in M$ and $\alpha \in \Gamma$.

Definition 2.5 [1] Let X be a nonempty fixed set. An intuitionistic fuzzy set (IFS) A in X is an object having the form $A = \{\langle x, \mu_A(x), \nu_A(x) \rangle \mid x \in X\}$, where the functions $\mu_A : X \rightarrow [0, 1]$ and $\nu_A : X \rightarrow [0, 1]$ denote the degree of membership and degree of non membership of each element $x \in X$ to the set A, respectively, and $0 \le \mu_A(x) + \nu_A(x) \le 1$.

Notation. For the sake of simplicity, we shall use the symbol $A = \langle \mu_A, \nu_A \rangle$ for the IFS

$$A = \{ \langle x, \mu_A(x), \nu_A(x) \rangle \mid x \in X \}.$$

Definition 2.6 [1]. Let X be a non-empty set and let $A = \langle \mu_A, \nu_A \rangle$ and $B = \langle \mu_B, \nu_B \rangle$ be IFSs in X. Then,

- 1. A \subset B iff $\mu_A \leq \mu_B$ and $\nu_A \geq \nu_B$.
- 2. $A = B \text{ iff } A \subset B \text{ and } B \subset A.$
- 3. $A^c = \langle v_A, \mu_A \rangle$.
- 4. A \cap B = ($\mu_A \wedge \mu_B$, $\nu_A \vee \nu_B$).
- 5. $A \bigcup B = (\mu_A \lor \mu_B, \nu_A \land \nu_B).$
- 6. $\Box \mathbf{A} = (\mu_{\mathbf{A}}, 1 \mu_{\mathbf{A}}) \Diamond \mathbf{A} = (1 \nu_{\mathbf{A}}, \nu_{\mathbf{A}}).$

Definition 2.7. Let μ and ν be two fuzzy sets in a Γ -near-ring. For s, $t \in [0, 1]$ the set $U(\mu,s) = \{x \in \mu(x) \ge s\}$ is called upper level of μ . The set $L(\nu, t) = \{x \in \nu(x) \le t\}$ is called lower level of ν .

Definition 2.8. Let A be an IFS in a Γ -near-ring M. For each pair $\langle t, s \rangle \in [0, 1]$ with $t + s \le 1$, the set $A_{\langle t, s \rangle} = \{x \in X \mid \mu_A(x) \ge t \text{ and } \nu_A(x) \le s\}$ is called a $\langle t, s \rangle$ -level subset of A.

Definition 2.9. Let $A = \langle \mu_A, \nu_A \rangle$ be an intuitionistic fuzzy set in M and let $t \in [0,1]$. Then, the sets $U(\mu_A; t) = \{x \in M \mid \mu_A(x) \ge t\}$ and $L(\nu_A; t) = \{x \in M \mid \nu_A(x) \le t\}$ are called upper level set and lower level set of A, respectively.

3 Intuitionistic fuzzy ideals

In what follows, let M denote a Γ -near-ring, unless otherwise specified.

Definition 3.1. An IFS $A = \langle \mu_A, \nu_A \rangle$ in M is called an intuitionistic fuzzy left (respectively, right) ideal of a Γ -near-ring M if

- (i) $\mu_A(x-y) \ge \{\mu_A(x) \land \mu_A(y)\},\$
- (ii) $\mu_A(y+x-y) \ge \mu_A(x)$
- (iii) $\mu_A(u\alpha(x+v)-u\alpha v) \ge \mu_A(x)$ (respectively, $\mu_A(x\alpha u) \ge \mu_A(x)$),

 $(iv) \quad \nu_A(x-y) \leq \{\nu_A(x) \vee \nu_A(y)\},$

(v) $v_A(y+x-y) \leq v_A(x)$,

(vi) $v_A(u\alpha(x+v) - u\alpha v) \le v_A(x)$ (respectively, $v_A(x\alpha u) \le v_A(x)$),

for all x, y, u, $v \in M$ and $\alpha \in \Gamma$.

Example 3.2. Let R be the set of all integers then R is a ring. Take $M = \Gamma = R$. Let a, $b \in M$, $\alpha \in \Gamma$, suppose a b is the product of a, α , $b \in R$. Then, M is a Γ -near-ring.

Define an IFS A = $\langle \mu_A, \nu_A \rangle$ in R as follows.

 $\mu_A(0) = 1$ and $\mu_A(\pm 1) = \mu_A(\pm 2) = \mu_A(\pm 3) = \dots = t$ and

 $v_A(0) = 0$ and $v_A(\pm 1) = v_A(\pm 2) = v_A(\pm 3) = \dots = s$, where $t \in [0, 1]$, $s \in [0, 1]$ and $t + s \le 1$. By routine calculations, clearly A is an intuitionistic fuzzy ideal of a Γ -near-ring R.

Theorem 3.3. If A is an ideal of a Γ -near-ring M, then the IFS $\hat{A} = \langle \chi_A, \overline{\chi}_A \rangle$ is an intuitionistic fuzzy ideal of M.

Proof. Let $x, y \in M$.

If x, y, u, $v \in A$ and $\alpha \in \Gamma$, then $x - y \in A$, $(y + x - y) \in A$ and $(u\alpha(x + v) - u\alpha v) \in A$, since A is an ideal of M.

Hence, $\chi_A(x - y) = 1 \ge {\chi_A(x) \land \chi_A(y)}$, $\chi_A(y + x - y) = 1 \ge \chi_A(x)$ and $\chi_A(u\alpha(x + v) - u\alpha v) = 1 \ge \chi_A(x)$ (respectively, $\chi_A(x\alpha u) \ge \chi_A(x)$). Also, we have

 $\begin{array}{l} 0=1-\chi_{A}\left(x-y\right)=\overline{\chi}_{A}(x-y)\leq\{\chi_{A}\left(x\right)\vee\bar{\chi}_{A}(y)\},\\ 0=1-\chi_{A}\left(y+x-y\right)=\overline{\chi}_{A}\left(y+x-y\right)\leq\chi_{A}\left(x\right), \text{and}\\ 0=1-\chi_{A}(u\alpha(x+v)-u\alpha v)=\overline{\chi}_{A}(u\alpha(x+v)-u\alpha v)\leq\bar{\chi}_{A}(x) \ (\text{respectively},\chi_{A}\left(x\alpha u\right)\leq\bar{\chi}_{A}\left(x\right)).\\ \text{If } x\notin A \text{ or } y\notin A, \text{ then } \chi_{A}(x)=0 \text{ or } \chi_{A}(y)=0. \text{ Thus, we have}\\ \chi_{A}(x-y)\geq\{\chi_{A}(x)\wedge\chi_{A}(y)\},\\ \chi_{A}\left(y+x-y\right)\geq\chi_{A}(x) \text{ and}\\ \chi_{A}(u\alpha(x+v)-u\alpha v)\geq\chi_{A}\left(x\right) \ (\text{respectively},\chi_{A}\left(x\alpha u\right)\geq\chi_{A}\left(x\right)) \text{ for all } \alpha\in\Gamma.\\ \text{Also}\\ \overline{\chi}_{A}(x-y)\leq\{\chi_{A}(x)\vee\bar{\chi}_{A}(y)\},\\ =\left\{(1-\chi_{A}(x))\vee(1-\chi_{A}(y))\right\}=1\\ \overline{\chi}_{A}(y+x-y)\leq\bar{\chi}_{A}(x)\\ =\left(1-\chi_{A}(x)\right)=1\\ \text{and}\\ \overline{\chi}_{A}(u\alpha(x+v)-u\alpha v)=1-\chi_{A}\left(u\alpha(x+v)-u\alpha v\right)\leq1-\chi_{A}(x)=\overline{\chi}_{A}(x).\\ \text{This completes the proof.} \end{array}$

Definition 3.4[3]. An intuitionistic fuzzy left (respectively, right) ideal $A = \langle \mu_A, \nu_A \rangle$ of a Γ -near-ring M is said to be normal if $\mu_A(0) = 1$ and $\nu_A(0) = 0$.

Theorem 3.5. Let $A = \langle \mu_A, \nu_A \rangle$ be an intuitionistic fuzzy left (respectively, right) ideal of a Γ near-ring M and let $(x) = \mu_A(x) + 1 - \mu_A(0)$, $(x) = \nu_A(x) - \nu_A(0)$. If $(x) + (x) \le 1$ for all $x \in M$, then $A^+ = \langle , \rangle$ is a normal intuitionistic fuzzy left (respectively, right) ideal of M.

Proof. We first observe that $\mu_A^+(0) = 1$, $\nu_A^+(0) = 0$ and $\mu_A^+(x)$, $\nu_A^+(x) \in [0,1]$ for every $x \in M$. Hence,

 $A^+ = \langle \mu_A^+, \nu_A^+ \rangle$ is a normal intuitionistic fuzzy set. To prove that it is an intuitionistic fuzzy left (respectively, right) ideal, let x, $y \in M$ and $\alpha \in \Gamma$. Then,

 $\mu_{A}^{+}(x - y) = \mu_{A}(x - y) + 1 - \mu_{A}(0)$

$$\begin{split} & \geq \{\mu_A(x) \land \mu_A(y)\} + 1 - \mu_A(0) \\ & = \{\mu_A(x) + 1 - \mu_A(0)\} \land \{\mu_A(y) + 1 - \mu_A(0)\} \\ & = \mu_A^+(x) \land \mu_A^+(y) \\ & v_A^+(x - y) = v_A(x - y) - v_A(0) \\ & \leq \{v_A(x) \lor v_A(y)\} - v_A(0) \\ & = \{v_A(x) - v_A(0)\} \lor \{v_A(y) - v_A(0)\} \\ & = v_A^+(x) \lor v_A^+(y), \\ & \mu_A^+(y + x - y) = \mu_A(y + x - y) + 1 - \mu_A(0) \\ & \geq \{\mu_A(x) + 1 - \mu_A(0)\} \\ & = \mu_A^+(x) \\ & v_A^+(y + x - y) = v_A(y + x - y) - v_A(0) \\ & \leq \{v_A(x) - v_A(0)\} \\ & = v_A^+(x) \\ and \\ & \mu_A^+(u\alpha(x + v) - u\alpha v) = \mu_A(u\alpha(x + v) - u\alpha v) + 1 - \mu_A(x) \\ \end{split}$$

 $_{A}(0)$ $\geq \mu_A(x) + 1 - \mu_A(0) = {\mu_A}^+(x)$ $v_{A}^{+}(u\alpha(x+v) - u\alpha v) = v_{A}(u\alpha(x+v) - u\alpha v) - v_{A}(0)$

 $\leq \nu_A(x) - \nu_A(0) = \nu_A^+(x).$ This shows that A^+ is an intuitionistic fuzzy left (respectively, right) ideal of M. So, A^+ is a normal intuitionistic fuzzy left (respectively, right) ideal of M.

Definition 3.6. Let I be an ideal of a Γ -near-ring M. If for each a+I, b+I in the factor group M/I and each $\alpha \in \Gamma$, we define $(a+I)\alpha(b+I) = a\alpha b+I$, then M/I is a Γ -near-ring which we shall call the Γ -residue class ring of M with respect to I.

Theorem 3.7. Let I be an ideal of a Γ -near-ring M. If A is an intuitionistic fuzzy left (respectively, right) ideal of M, then the IFS \tilde{A} of M/I defined by $\mu_{\tilde{A}}(a+I) = \bigvee_{x \in I} \mu_A(a+x)$ and

 $v_{\widetilde{A}}(a+I) = \bigwedge_{x \in I} v_A(a+x)$ is an intuitionistic fuzzy left (respectively, right) ideal of the Γ -

residue class ring M/I of M with respect to I.

Proof. Let a,
$$b \in M$$
 be such that $a + I = b + I$.
Then $b = a + y$ for some $y \in I$ and so
 $\mu_{\widetilde{A}}(b+I) = \bigvee_{x \in I} \mu_A(b+x) = \bigvee_{x \in I} \mu_A(a+y+x) = \bigvee_{x+y=z \in I} \mu_A(a+z) = \mu_{\widetilde{A}}(a+I),$
 $\nu_{\widetilde{A}}(b+I) = \bigwedge_{x \in I} \nu_A(b+x) = \bigwedge_{x \in I} \nu_A(a+y+x) = \bigwedge_{x+y=z \in I} \nu_A(a+z) = \nu_{\widetilde{A}}(a+I).$

Hence, \tilde{A} is well defined.

For any x + I, $y + I \in M/I$ and $\alpha \in \Gamma$, we have $\mu_{\tilde{A}}((x + I) - (y + I)) = \mu_{\tilde{A}}((x - y) + I)$ = $\bigvee_{z \in I} \mu_{A}((x - y) + z)$ $= \bigvee_{z=u-v\in I} \mu_A((x-y) + (u-v))$ $= \bigvee_{u,v \in I} \mu_A((x+u) - (y+v))$ $\geq \bigvee_{u \in U} (\mu_A(x+u) \wedge \mu_A(y+v))$ $= (\bigvee_{u \in I} \mu_A(x+u)) \land (\bigvee_{v \in I} \mu_A(y+v))$ = $\mu_{\tilde{A}}(x+I) \wedge \mu_{\tilde{A}}(y+I)$.

$$\begin{split} v_{\tilde{A}}((x + I) - (y + I)) &= v_{\tilde{A}}((x - y) + I) \\ &= \bigwedge_{z \in I} v_{A}((x - y) + z) \\ &= \bigwedge_{u,v \in I} v_{A}((x - y) + (u - v)) \\ &= \bigwedge_{u,v \in I} v_{A}((x + u) - (y + v)) \\ &\leq \bigwedge_{u,v \in I} (v_{A}(x + u) \vee v_{A}(y + v)) \\ &= (\bigwedge_{u \in I} v_{A}(x + u)) \vee (\bigwedge_{v \in I} v_{A}(y + v)) \\ &= v_{\tilde{A}}(x + I) \vee v_{\tilde{A}}(y + I), \end{split}$$

$$\begin{split} & \mu_{\tilde{A}}((y + I) + ((x + I) - (y + I)) = \mu_{\tilde{A}}((y + x - y) + I) \\ &= \sum_{z \in V} \mu_{A}((y + x - y) + z) \\ &= \sum_{z \in V} \mu_{A}((y + x - y) + (v + (u - v))) \\ &= \sum_{u,v \in I} \mu_{A}((y + v) + ((x + u) - (y + v))) \\ &\geq \sum_{u \in I} (\mu_{A}(x + u)) \\ &= \mu_{\tilde{A}}(x + I) . \\ & \nu_{\tilde{A}}((y + I) + ((x + I) - (y + I)) = \nu_{\tilde{A}}((y + x - y) + I) \\ &= \sum_{z \in I} \nu_{A}((y + x - y) + z) \\ &= \sum_{z \in I} \nu_{A}((y + x - y) + (v + (u - v))) \\ &= \sum_{z \in I} \nu_{A}((y + v) + ((x + u) - (y + v))) \\ &\leq (\sum_{u \in I} \nu_{A}((y + v) + ((x + u) - (y + v))) \\ &\leq (\sum_{u \in I} \nu_{A}(x + u)) \\ &= \nu_{\tilde{A}}(x + I), \\ & \mu_{\tilde{A}}((a + I)\alpha((x + I) + (b + I)) - ((a + I)\alpha(b + I))) = \mu_{\tilde{A}}((a\alpha(x + b) - a\alpha b) + I) \\ &= \sum_{z \in I} \mu_{A}(a\alpha(x + a\alpha z) \text{ because } a\alpha z \in I \\ &= \sum_{z \in I} \mu_{A}(a\alpha(x + z)) \geq \sum_{z \in I} \mu_{A}(x + z) = \mu_{\tilde{A}}(x + I), \\ & \nu_{\tilde{A}}((a + I)\alpha((x + I) + (b + I)) - ((a + I)\alpha(b + I))) = \nu_{\tilde{A}}((a\alpha(x + b) - a\alpha b) + I) \\ &= \sum_{z \in I} \mu_{A}(a\alpha(x + z)) \geq \sum_{z \in I} \mu_{A}(x + z) = \mu_{\tilde{A}}(x + I), \\ & \nu_{\tilde{A}}((a + I)\alpha((x + I) + (b + I)) - ((a + I)\alpha(b + I))) = \nu_{\tilde{A}}((a\alpha(x + b) - a\alpha b) + I) \\ &= \sum_{z \in I} \nu_{A}(a\alpha(x + z) + a\alpha z) \text{ because } a\alpha z \in I \\ &= \sum_{z \in I} \nu_{A}((a\alpha(x + b) - a\alpha b) + z) \\ &\leq \sum_{z \in I} \nu_{A}(a\alpha(x + a\alpha z) \text{ because } a\alpha z \in I \\ &= \sum_{z \in I} \nu_{A}(a\alpha(x + a\alpha z) \text{ because } a\alpha z \in I \\ &= \sum_{z \in I} \nu_{A}(a\alpha(x + a\alpha z) \text{ because } a\alpha z \in I \\ &= \sum_{z \in I} \nu_{A}(a\alpha(x + a\alpha z) \text{ because } a\alpha z \in I \\ &= \sum_{z \in I} \nu_{A}(a\alpha(x + a\alpha z) \text{ because } a\alpha z \in I \\ &= \sum_{z \in I} \nu_{A}(a\alpha(x + a\alpha z) \text{ because } a\alpha z \in I \\ &= \sum_{z \in I} \nu_{A}(a\alpha(x + a\alpha z) \text{ because } a\alpha z \in I \\ &= \sum_{z \in I} \nu_{A}(a\alpha(x + a\alpha z) \text{ because } a\alpha z \in I \\ &= \sum_{z \in I} \nu_{A}(a\alpha(x + a\alpha z) \text{ because } a\alpha z \in I \\ &= \sum_{z \in I} \nu_{A}(a\alpha(x + a\alpha z) \text{ because } a\alpha z \in I \\ &= \sum_{z \in I} \nu_{A}(a\alpha(x + a\alpha z) \text{ because } a\alpha z \in I \\ &= \sum_{z \in I} \nu_{A}(a\alpha(x + a\alpha z) \text{ because } a\alpha z \in I \\ &= \sum_{z \in I} \nu_{A}(a\alpha(x + a\alpha z) \text{ because } a\alpha z \in I \\ &= \sum_{z \in I} \nu_{A}(a\alpha(x + a\alpha z) \text{ because } a\alpha z \in I \\ &= \sum_{z \in I} \nu_{A}(a\alpha(x + a\alpha z) \text{ because } a\alpha z \in I \\ &= \sum_{z \in I} \nu_$$

$$= \bigwedge_{z \in I} v_{A}(a\alpha(x+z)) \leq \bigwedge_{z \in I} v_{A}(x+z) = v_{\tilde{A}}(x+I).$$

Similarly,

$$\mu_{\tilde{A}}((x+I)\alpha(a+I)) \ge \mu_{\tilde{A}}(x+I)$$
 and $\nu_{\tilde{A}}((x+I)\alpha(a+I)) \le \nu_{\tilde{A}}(x+I)$.

Hence, \tilde{A} is an intuitionistic fuzzy left (respectively, right) ideal of M/I.

Theorem 3.8. If the IFS $A = \langle \mu_A, \nu_A \rangle$ is an intuitionistic fuzzy left (respectively, right) ideal of M, then the set $M_A = \{x \in M \mid \mu_A(x) = \mu_A(0) \text{ and } \nu_A(x) = \nu_A(0)\}$ is an ideal of M.

Proof. Let $x, y \in M_A$. Then $\mu_A(x) = \mu_A(y) = \mu_A(0)$ and $\nu_A(x) = \nu_A(y) = \nu_A(0)$. Since A is an intuitionistic fuzzy ideal of M, it follows that

$$\begin{split} \mu_A(x - y) &\geq \{\mu_A(x) \land \mu_A(y)\} = \{\mu_A(0) \land \mu_A(0) = \mu_A(0), \\ \nu_A(x - y) &\leq \{\nu_A(x) \lor \nu_A(y)\} = \{\nu_A(0) \lor \nu_A(0)\} = \nu_A(0). \\ \text{Hence, } \mu_A(x - y) &= \mu_A(0) \text{ and } \nu_A(x - y) = \nu_A(0). \text{ So, } x - y \in M_A. \\ \mu_A(y + x - y) &\geq \mu_A(x) = \mu_A(0), \\ \nu_A(y + x - y) &\leq \nu_A(x) = \nu_A(0). \end{split}$$

Hence, $\mu_A(y + x - y) = \mu_A(0)$ and $\nu_A(y + x - y) = \nu_A(0)$. So $y + x - y \in M_A$. Let $x \in M$, $\alpha \in \Gamma$ and $y \in M_A$. Therefore, $\mu_A(x\alpha(y + z) - x\alpha z) \ge \mu_A(x) = \mu_A(0)$ (respectively, $\mu_A(y\alpha x) \ge \mu_A(x) = \mu_A(0)$) and $\nu_A(x\alpha(y + z) - x\alpha z) \le \nu_A(y) = \nu_A(0)$ (respectively, $\nu_A(y\alpha x) \le \nu_A(x) = \nu_A(0)$). Hence, $\mu_A(x\alpha(y + z) - x\alpha z) = \mu_A(0)$ and $\nu_A(x\alpha(y + z) - x\alpha z) = \nu_A(0)$. So, $(x\alpha(y + z) - x\alpha z) \in M_A$. Hence, M_A is an intuitionistic fuzzy ideal of M.

Theorem 3.9. Let A be an intuitionistic fuzzy left (respectively, right) ideal of a Γ -near-ring M. For each pair $\langle t, s \rangle \in [0, 1]$, the level set $A_{\langle t, s \rangle}$ is an ideal of M.

Proof. Let $x, y \in A_{\langle t, s \rangle}$. Then $\mu_A(x) \ge t$, $\mu_A(y) \ge t$ and $\nu_A(x) \le s$, $\nu_A(y) \le s$. Since A is an intuitionistic fuzzy left (respectively, right) ideal, we have $\mu_A(x - y) \ge \{\mu_A(x) \land \mu_A(y)\} \ge t$ and $\nu_A(x - y) \le \{\nu_A(x) \lor \nu_A(y)\} \le s$. So $x - y \in A_{\langle t, s \rangle}$. $\mu_A(y + x - y) \ge \mu_A(x) \ge t$ and $\nu_A(y + x - y) \le \nu_A(x) \le s$. So $y + x - y \in A_{\langle t, s \rangle}$. Let $x \in M$, $y \in A_{\langle t, s \rangle}$ and $\alpha \in \Gamma$. Then $\mu_A(x\alpha(y + z) - x\alpha z) \ge \mu_A(y) \ge t$ and $\nu_A(x\alpha(y + z) - x\alpha z) \le \nu_A(y) \le s$. So $(x\alpha(y + z) - x\alpha z) \in A_{\langle t, s \rangle}$. Hence, $A_{\langle t, s \rangle}$ is an ideal of M.

Definition 3.10. Let A and B be two intuitionistic fuzzy subsets of a Γ -near-ring M and $\alpha \in \Gamma$. The product A Γ B is defined by

$$\mu_{A\Gamma B}(\mathbf{x}) = \begin{cases} \bigvee_{x=(u\gamma(v+w)-u\gamma w)} (\mu_{A}(\mathbf{u}) \wedge \mu_{B}(v)) & \text{for } u, v \in \mathbf{M}, \quad \gamma \in \Gamma \\ 0 & \text{otherwise}, \end{cases}$$
$$\nu_{A\Gamma B}(\mathbf{x}) = \begin{cases} \bigwedge_{x=(u\gamma(v+w)-u\gamma w)} (v_{A}(\mathbf{u}) \vee v_{B}(v)) & \text{for } u, v \in \mathbf{M}, \quad \gamma \in \Gamma \\ 1 & \text{otherwise}. \end{cases}$$

Definition 3.11 Let $A = \langle \mu_A, \nu_A \rangle$ and $B = \langle \mu_B, \nu_B \rangle$ be two IFSs in a Γ -near-ring M. Then, the composition of A and B is defined to be the intuitionistic fuzzy set $A_0B = \langle \mu_{A^0B}, \nu_{A^0B} \rangle$ in M given by

$$\mu_{AoB}(x) = \bigvee \begin{cases} \bigwedge_{1 \le i \le k} \left(\mu_A(u_i) \land \mu_B(v_i) \right) : x = \sum_{1}^{k} (u_i \gamma_i (v_i + w_i) - u_i \gamma_i w_i), u_i, v_i \in M, \gamma_i \in \Gamma, k \in N \\ 0 & Otherwise \end{cases}$$
$$v_{AoB}(x) = \bigwedge \begin{cases} \bigvee_{1 \le i \le k} \left(v_A(u_i) \lor v_B(v_i) \right) : x = \sum_{1}^{k} (u_i \gamma_i (v_i + w_i) - u_i \gamma_i w_i), u_i, v_i \in M, \gamma_i \in \Gamma, k \in N \\ 1 & Otherwise \end{cases}$$

Theorem 3.12. If $A = \langle \mu_A, \nu_A \rangle$ and $B = \langle \mu_B, \nu_B \rangle$ are intuitionistic fuzzy ideals in a Γ -near-ring M, then A₀B is an intuitionistic fuzzy ideal in M. **Proof.** For any x, y \in M, we have

$$\begin{split} &\mu_{A^{OB}}(x-y) = \vee \{\bigwedge_{1 \le i \le k} \mu_{A}(u_{i}) \land \mu_{B}(v_{i}) : x-y = \sum_{1}^{k} (u_{i}\alpha(v_{i}+u')-u_{i}\alpha u'), u_{i}, v_{i}, u' \in M, \alpha \in \Gamma \text{ and } k \in N\} \\ &\geq \vee \{(\bigwedge_{1 \le i \le m} \mu_{A}(a_{i}) \land \mu_{B}(b_{i})) \land (\bigwedge_{1 \le i \le n} \mu_{A}(-c_{i}) \land \mu_{B}(d_{i})) : x = \sum_{1}^{m} (a_{i}\alpha(b_{i}+a')-a_{i}\alpha a'), \\ &-y = \sum_{1}^{n} -(c_{i}\alpha(d_{i}+c')-c_{i}\alpha c'), a_{i}, b_{i}, c_{i}, d_{i}, a', c' \in M, \alpha \in \Gamma \text{ and } m, n \in N\} \\ &= \vee \{(\bigwedge_{1 \le i \le m} \mu_{A}(a_{i}) \land \mu_{B}(b_{i})) \land (\bigwedge_{1 \le i \le n} \mu_{A}(c_{i}) \land \mu_{B}(d_{i})) : x = \sum_{1}^{m} (a_{i}\alpha(b_{i}+a')-a_{i}\alpha a), y = \sum_{1}^{n} (c_{i}\alpha(d_{i}+c')-c_{i}\alpha c'), \\ &a_{i}, b_{i}, c_{i}, d_{i}, a', c' \in M, \alpha \in \Gamma \text{ and } m, n \in N\} \\ &= \vee \{\bigwedge_{1 \le i \le m} \mu_{A}(a_{i}) \land \mu_{B}(b_{i}) : x = \sum_{1}^{m} (a_{i}\alpha(b_{i}+a')-a_{i}\alpha a), a_{i}, b_{i}, a' \in M, \alpha \in \Gamma \text{ and } m \in N\} \\ &= \vee \{\bigwedge_{1 \le i \le m} \mu_{A}(c_{i}) \land \mu_{B}(d_{i}) : y = \sum_{1}^{n} (c_{i}\alpha(d_{i}+c')-c_{i}\alpha c'), c_{i}, d_{i}, c' \in M, \alpha \in \Gamma \text{ and } m \in N\} \\ &= \mu_{A^{OB}}(x) \land \mu_{A^{OB}}(y) \end{split}$$

$$\begin{split} v_{A\circ B}(x-y) &= \wedge \{ \bigvee_{1 \leq i \leq k} v_A(u_i) \lor v_B(v_i) : x-y = \sum_{1}^{k} (u_i \alpha(v_i+u')-u_i \alpha u'), u_i, v_i, u' \in M, \, \alpha \in \Gamma \text{ and } k \in N \} \\ &\leq \wedge \{ (\bigvee_{1 \leq i \leq k} v_A(a_i) \lor v_B(b_i)) \lor (\bigvee_{1 \leq i \leq n} v_A(-c_i) \lor v_B(d_i)) : x = \sum_{1}^{m} (a_i \alpha(b_i+a')-a_i \alpha a'), \\ &-y = \sum_{1}^{n} -(c_i \alpha(d_i+c')-c_i \alpha c'), a_i, b_i, c_i, d_i, a', c' \in M, \, \alpha \in \Gamma \text{ and } m, n \in N \} \\ &= \wedge \{ (\bigvee_{1 \leq i \leq k} v_A(a_i) \lor v_B(b_i)) \lor (\bigvee_{1 \leq i \leq n} v_A(c_i) \lor v_B(d_i)) : x = \sum_{1}^{m} (a_i \alpha(b_i+a')-a_i \alpha a'), \\ &y = \sum_{1}^{n} (c_i \alpha(d_i+c')-c_i \alpha c'), a_i, b_i, c_i, d_i, a', c' \in M, \, \alpha \in \Gamma \text{ and } m, n \in N \} \\ &= \wedge \{ \bigvee_{1 \leq i \leq k} v_A(a_i) \lor v_B(b_i) : x = \sum_{1}^{m} (a_i \alpha(b_i+a')-a_i \alpha a'), a_i, b_i, a' \in M, \, \alpha \in \Gamma \text{ and } m \in N \} \\ &= \wedge \{ \bigvee_{1 \leq i \leq k} v_A(a_i) \lor v_B(b_i) : x = \sum_{1}^{m} (a_i \alpha(b_i+a')-a_i \alpha a'), a_i, b_i, a' \in M, \, \alpha \in \Gamma \text{ and } m \in N \} \\ &= \wedge \{ \bigvee_{1 \leq i \leq k} v_A(c_i) \lor v_B(b_i) : y = \sum_{1}^{n} (c_i \alpha(d_i+c')-c_i \alpha c'), c_i, d_i, c' \in M, \, \alpha \in \Gamma \text{ and } m \in N \} \\ &= v_{A\circ B}(x) \lor v_{A\circ B}(y). \end{split}$$

 $\mu_{A^{O}B}(y+x-y) \geq \vee \{\bigwedge_{1 \leq i \leq k} \ \mu_A(u_i) \ : x = \sum_{i}^k (u_i \alpha(v_i+u') - u_i \alpha u'), u_i, v_i, u' \in M, \, \alpha \in \Gamma \text{ and } k \in N \}$

$$= \vee \{ (\bigwedge_{1 \le i \le m} \mu_A(a_i) \land \mu_B(b_i)) : x = \sum_{1}^{m} (a_i \alpha(b_i + a') - a_i \alpha a'), a_i, b_i, a' \in M, \alpha \in \Gamma \text{ and } m \in N \}$$
$$= \mu_{A^oB}(x)$$

$$\begin{split} \nu_{A^{OB}}(y+x-y) &\leq \wedge \{ \bigvee_{1 \leq i \leq k} \nu_A(u_i) : \ x = \sum_{1}^{k} (u_i \alpha(v_i + u') - u_i \alpha u'), u_i, v_i, u' \in M, \, \alpha \in \Gamma \text{ and } k \in N \} \\ &= \wedge \{ (\bigvee_{1 \leq i \leq k} \nu_A(a_i) \lor \nu_B(b_i)) : x = \sum_{1}^{m} (a_i \alpha(b_i + a') - a_i \alpha a'), a_i, b_i, a' \in M, \, \alpha \in \Gamma \text{ and } m \in N \} \\ &= \nu_{A^{OB}}(x) \,. \end{split}$$

Also

$$\begin{split} & \mu_{A^{OB}}(x) = \vee \{ \bigwedge_{1 \leq i \leq m} \mu_{A}(a_{i}) \land \mu_{B}(b_{i}) : x = \sum_{1}^{m} (a_{i}\alpha(b_{i}+a') - a_{i}\alpha a'), a_{i}, b_{i}, a' \in M, \alpha \in \Gamma \text{ and } m \in N \} \\ & \leq \vee \{ \bigwedge_{1 \leq i \leq m} \mu_{A}(a_{i}) \land \mu_{B}(b_{i}\alpha y) : (x\alpha(y+z) - x\alpha z) = \sum_{1}^{m} ((a_{i}\alpha(b_{i}+a') - a_{i}\alpha a')\alpha y), a_{i}, b_{i}\alpha y \in M, \alpha \in \Gamma \text{ and } m \in N \} \\ & = \vee \{ \bigwedge_{1 \leq i \leq m} \mu_{A}(u_{i}) \land \mu_{B}(v_{i}) : (x\alpha(y+z) - x\alpha z) = \sum_{1}^{m} (u_{i}\alpha(v_{i}+u') - u_{i}\alpha u'), u_{i}, v_{i}, u' \in M, \alpha \in \Gamma \text{ and } m \in N \} \\ & = \mu_{A^{OB}}((x\alpha(y+z) - x\alpha z)) \end{split}$$

$$\begin{split} \nu_{A\circ B}(x) &= \wedge \{ \bigvee_{1 \le i \le m} \nu_A(a_i) \lor \nu_B(b_i) : x = \sum_{1}^{m} (a_i \alpha(b_i + a') - a_i \alpha a'), a_i, b_i \in M, \, \alpha \in \Gamma \text{ and } m \in N \} \\ &\geq \wedge \{ \bigvee_{1 \le i \le m} \nu_A(a_i) \lor \nu_B(b_i \alpha y) : (x\alpha(y + z) - x\alpha z) = \sum_{1}^{m} ((a_i \alpha(b_i + a') - a_i \alpha a')\alpha y), a_i, b_i \alpha y \in M, \, \alpha \in \Gamma \text{ and } m \in N \} \\ &= \wedge \{ \bigvee_{1 \le i \le m} \nu_A(u_i) \lor \nu_B(v_i) : (x\alpha(y + z) - x\alpha z) = \sum_{1}^{m} (u_i \alpha(v_i + u') - u_i \alpha u'), u_i, v_i, u' \in M, \, \alpha \in \Gamma \text{ and } m \in N \} \\ &= \nu_{A\circ B}(x\alpha(y + z) - x\alpha z). \end{split}$$

That is, $\mu_{A^{o}B}(x\alpha(y+z) - x\alpha z) \ge \mu_{A^{o}B}(x)$ and $\nu_{A^{o}B}(x\alpha(y+z) - x\alpha z) \le \nu_{A^{o}B}(x)$. Similarly, we get $\mu_{A^{o}B}(y\alpha x) \ge \mu_{A^{o}B}(x)$ and $\nu_{A^{o}B}(y\alpha x) \le \nu_{A^{o}B}(x)$. Hence, $A_{o}B$ is an intuitionistic fuzzy ideal of M.

Definition 3.13. A function $f: M \to N$, where M and N are Γ -near-ring, is said to be a Γ -homomorphism if f(a + b) = f(a) + f(b), $f(a\alpha b) = f(a)\alpha f(b)$, for all $a, b \in M$ and $\alpha \in \Gamma$.

Definition 3.14. A function $f: M \to N$, where f is a Γ -homomorphism and M and N are Γ -near-ring, is said to be a Γ -endomorphism if $N \subseteq M$.

Definition 3.15. Let $f: X \to Y$ be a mapping of Γ -near-rings and A be an intuitionistic fuzzy set of Y. Then, the map $f^{-1}(A)$ is the pre-image of A under f, if $\mu_f^{-1}(A)(x) = \mu_A(f(x))$ and $\nu_f^{-1}(A)(x) = \nu_A(f(x))$, for all $x \in X$.

Theorem 3.16. Let f be a Γ -homomorphism of M. If the IFS $A = \langle \mu_A, \nu_A \rangle$ is an intuitionistic fuzzy left (respectively, right) ideal of M, then $B = \langle \mu_f^{-1}{}_{(A)}, \nu_f^{-1}{}_{(A)} \rangle$ is an intuitionistic fuzzy left (respectively, right) ideal of M.

Proof. For any x,
$$y \in M$$
, $\alpha \in \Gamma$, we have

$$\mu_{f}^{-1}{}_{(A)}(x - y) = \mu_{A}(f(x - y)) = \mu_{A}(f(x) - f(y))$$

$$\geq \{\mu_{A}(f(x)) \land \mu_{A}(f(y))\}$$

$$= \{\mu_{f}^{-1}{}_{(A)}(x) \land \mu_{f}^{-1}{}_{(A)}(y)\},$$

$$\mu_{f}^{-1}{}_{(A)}(y + x - y) = \mu_{A}(f(y + x - y)) = \mu_{A}(f(y) + f(x) - f(y))$$

$$\begin{array}{l} . \geq \mu_{A}(f(x)) \\ = \mu_{f}^{-1}{}_{(A)}(x) \\ \text{and} \\ \mu_{f}^{-1}{}_{(A)}(x\alpha(y+z) - x\alpha z) = \mu_{A}(f(x\alpha y)) \\ = \mu_{A}(f(x)\alpha f(y)) \\ . \geq \mu_{f}^{-1}{}_{(A)}(x). \\ \text{Similarly,} \\ \nu_{f}^{-1}{}_{(A)}(x-y) = \nu_{A}(f(x-y)) = \nu_{A}(f(x) - f(y)) \\ \leq \{\nu_{A}(f(x)) \lor \nu_{A}(f(y))\} \\ = \{\nu_{f}^{-1}{}_{(A)}(x) \lor \nu_{f}^{-1}{}_{(A)}(y)\} \text{ and} \\ \nu_{f}^{-1}{}_{(A)}(y + x - y) = \nu_{A}(f(y + x - y)) = \nu_{A}(f(y) + f(x) - f(y)) \\ \leq \nu_{A}(f(x)) \\ = \nu_{f}^{-1}{}_{(A)}(x) \\ \nu_{f}^{-1}{}_{(A)}((x\alpha(y + z) - x\alpha z)) = \nu_{A}(f(x\alpha y)) \\ = \nu_{A}(f(x)\alpha f(y)) \\ \leq \nu_{f}^{-1}{}_{(A)}(y). \end{array}$$

Hence, B is an intuitionistic fuzzy left (respectively, right) ideal of M.

Theorem 3.17. If $A = \langle \mu_A, \nu_A \rangle$ is an intuitionistic fuzzy set in M such that the non-empty sets $U(\mu_A; t)$ and $L(\nu_A; t)$ are ideals of M for all $t \in [0, 1]$, then A is an intuitionistic fuzzy left (respectively, right) ideal of M.

Proof. Suppose that there exists $x_0, y_0 \in M$ such that $\mu_A(x_0 - y_0) < \{\mu_A(x_0) \land \mu_A(y_0)\}$. Let $t_0 = \frac{1}{2} \{ \mu_A(x_0 - y_0) + (\mu_A(x_0) \land \mu_A(y_0)) \}$. Then, $(\mu_A(x_0) \land \mu_A(y_0)) \ge t_0 > \mu_A(x_0 - y_0)$. It follows that $x_0, y_0 \in U(\mu_A; t_0)$ and $x_0 - y_0 \notin U(\mu_A; t_0)$. This is a contradiction. Hence, $\mu_A(x - y) \ge {\mu_A(x) \land \mu_A(y)}$, for all x, $y \in M$. Suppose that there exists $x_0, y_0 \in M$ such that $\mu_A(y_0 + x_0 - y_0) < \mu_A(x_0)$. Let $t_0 = \frac{1}{2} \{ \mu_A(y_0 + x_0 - y_0) + \mu_A(x_0) \}$. Then $\mu_A(x_0) \ge t_0 > \mu_A(y_0 + x_0 - y_0)$. It follows that $x_0, y_0 \in U(\mu_A; t_0)$ and $y_0 + x_0 - y_0 \notin U(\mu_A; t_0)$. This is a contradiction. Hence, $\mu_A(y + x - y) \ge \mu_A(x)$, for all x, $y \in M$. Now let $x_0, y_0 \in M$ and $\alpha \in \Gamma$ such that $\mu_A(x_0\alpha((y_0 + z_0) - x_0\alpha z_0)) < \mu_A(x_0)$. Let $t_0 = \frac{1}{2} \{ \mu_A(x_0\alpha((y_0 + z_0) - x_0\alpha z_0)) + \mu_A(x_0) \}.$ Then we get $\mu_A(x_0\alpha((y_0 + z_0) - x_0\alpha z_0)) \le t_0 < \mu_A(x_0)$. It follows that $y_0 \in U(\mu_A; t_0)$ and $x_0\alpha((y_0 + z_0) - x_0\alpha z_0) \notin U(\mu_A; t_0)$. This is a contradiction. Thus, $\mu_A(x\alpha(y+z) - x\alpha z) \ge \mu_A(x)$ (respectively, $\mu_A(y\alpha x) \ge \mu_A(x)$). Similarly, suppose that there exists $x_0, y_0 \in M$ such that $v_A(x_0 - y_0) > \{v_A(x_0) \lor v_A(y_0)\}$. Let $t_0 = \frac{1}{2} \{v_A(x_0 - y_0) + (v_A(x_0) \lor v_A(y_0))\}$. Then $(v_A(x_0) \lor v_A(y_0)) \le t_0 < v_A(x_0 - y_0)$. It follows that $x_0, y_0 \in L(\mu_A; t_0)$ and $x_0 - y_0 \notin L(\mu_A; t_0)$. This is a contradiction. Hence, $v_A(x - y) \leq \{v_A(x) \lor v_A(y)\}$, for all $x, y \in M$. Suppose that there exists $x_0, y_0 \in M$ such that $v_A(y_0 + x_0 - y_0) < v_A(x_0)$. Let $t_0 = \frac{1}{2} \{v_A(y_0 + x_0 - y_0) + v_A(x_0)\}$. Then, $v_A(x_0) \ge t_0 > v_A(y_0 + x_0 - y_0)$. It follows that $x_0, y_0 \in U(\mu_A; t_0)$ and $y_0 + x_0 - y_0 \notin U(\mu_A; t_0)$. This is a contradiction. Hence, $v_A(y + x - y) \ge v_A(x)$, for all $x, y \in M$. Now let $x_0, y_0 \in M$ and $\alpha \in \Gamma$ such that $v_A(x_0\alpha((y_0 + z_0) - x_0\alpha z_0)) > v_A(x_0)$. Let $t_0 = \frac{1}{2} \{ v_A(x_0 \alpha((y_0 + z_0) - x_0 \alpha z_0)) + v_A(x_0) \}.$ Then we get $v_A(x_0\alpha((y_0 + z_0) - x_0\alpha z_0)) > t_0 > v_A(x_0)$. It follows that $y_0 \in L(\mu_A; t_0)$ and $x_0 \alpha y_0 \notin L(v_A; t_0)$. This is a contradiction. Thus, $v_A(x\alpha(y + z) - x\alpha z) \leq v_A(x_0)$ (respectively, $v_A(y\alpha x) \le v_A(x_0)$). Hence, A is an intuitionistic fuzzy left (respectively, right) ideal of M.

References

- [1] Atanassov, K. Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1), (1986), 87–96.
- [2] Booth, G. L. A note on Γ -near-rings *Stud. Sci. Math. Hung.* 23 (1988), 471–475.
- [3] Booth, G. L. Jacobson radicals of Γ-near-rings. *Proceedings of the Hobart Conference*, Longman Sci. & Technical (1987), 1–12.
- [4] Jun, Y. B., M. Sapanci, M. A. Ozturk, Fuzzy ideals in Gamma near rings, Tr. J. of Mathematics 22(1998), 449–459.
- [5] Jun, B., K. H. Kim, M. A. Ozturk, On fuzzy ideals of gamma near-rings, J. Fuzzy Math. 9(1) (2001), 51–58.
- [6] Jun, Y. B., K. H. Kim, M. A. Ozturk. Fuzzy Maximal ideals in gamma near-rings, *Tr. J. of Mathematics*, 25 (2001), 457–463.
- [7] Liu, W. Fuzzy invariant subgroups and fuzzy ideals, *Fuzzy Sets and Systems*, 8(1982), 133–139.
- [8] Palaniappan, N., P. S. Veerappan, D. Ezhilmaran, Some properties of intuitionistic fuzzy ideals in Γ-near-rings, *Journal of Indian Acad. Maths*, 31(2) (2009), 617–624.
- [9] Satyanarayana, Bh. Contributions to near-ring theory, Doctoral Thesis, Nagarjuna Univ. 1984.
- [10] Zadeh, L. A. Fuzzy sets, Information and Control, 8 (1965), 338–353.