On α - and α^{*} - separation axioms in intuitionistic fuzzy topological spaces

Rekha Srivastava and Amit Kumar Singh

Department of Applied Mathematics,Institute of Technology
Banaras Hindu University,Varanasi, 221005, India
E-mails: rekhasri@bhu.ac.in, amitkitbhu@gmail.com

Abstract

In this paper we introduce the gradation of the separation axioms T_{0}, T_{1} and T_{2} in an intuitionistic fuzzy topological space in the sense of Mondal and Samanta [6]. Using these concepts we have defined α - and α^{*} - T_{i} intuitionistic fuzzy topological spaces, $i=0,1,2$, and studied them in detail.

Keywords: Intuitionistic fuzzy set, Intuitionistic fuzzy topological space, Separation axioms, Bifuzzy topological space.
AMS Classification: 54A40, 03E72

1 Introduction

In [1], Atanassov introduced intuitionistic fuzzy sets in a set X. In [6], Mondal and Samanta gave the concept of intuitionistic gradation of openness of fuzzy sets in X and using this, they defined an intuitionistic fuzzy topological space (IFTS, in short). Yue and Fang, in [15] considered the separation axioms T_{0}, T_{1} and T_{2} in an I-fuzzy topological space in the sense of Šostak [8] and Kubiak [4]. We extend and study these separation axioms in an intuitionistic fuzzy topological space in the sense of Mondal and Samanta [6]. In addition, we also define α - and α^{*} - separation axioms in this setting.

It is observed that if an IFTS $\left(X, \tau, \tau^{*}\right)$ is $\alpha-T_{i}$ or $\alpha^{*}-T_{i}$, then $T_{i}\left(X, \tau, \tau^{*}\right) \geq \alpha$ where $T_{i}\left(X, \tau, \tau^{*}\right)$ denotes the degree to which $\left(X, \tau, \tau^{*}\right)$ is $T_{i}, i=0,1,2$. Further it is proved that all these separation properties satisfy the hereditary, productive and projective properties.

2 Preliminaries

Let X be a nonempty set. By I^{X}, where $I=[0,1]$, we denote the set of all fuzzy sets in X i.e. all functions from X to I. For a fuzzy set $A \in I^{X} A^{\prime}$ will denotes its (Zadeh [16]) complement. For $\alpha \in I, \underline{\alpha}$ will denote the α-valued constant fuzzy set in X. Each $Y \subseteq X$ will be identified with the fuzzy set in X which is its I-valued characteristic function, which too will be denoted as Y.

Definition 2.1. (Wong [14]). A fuzzy point x_{r} in X is a fuzzy set in X taking value $r \in(0,1)$ at x and zero elsewhere. A fuzzy singleton (Zadeh [17]) x_{r} in X is a fuzzy set in X taking value $r \in(0,1]$. Here x and r are respectively called the support and value of x_{r}.
A fuzzy point x_{r} is said to belong to a fuzzy set A if $r<A(x)$. It can be easily seen that $x_{r} \in \cup_{i \in \Lambda} A_{i} \Leftrightarrow x_{r} \in A_{i}$ for some $i \in \Lambda$.
Two fuzzy points/fuzzy singletons are said to be distinct if their supports are distinct.

Definition 2.2. (Pu and Liu [5]). Let x_{r} be a fuzzy singleton in X and $A \in I^{X}$. Then x_{r} is said to be quasi-coincident with A (notation: $x_{r} q A$) if $A(x)+r>1$. Two fuzzy sets A, B in X are said to be quasi-coincident (notation: AqB) if $A(x)+B(x)>1$ for some $x \in X$. The relation (is not quasi-coincident) is denoted by $\urcorner q$.

We use the well known notion of 'fuzzy topology'as given in Chang [2]
Definition 2.3. (Pu and Liu [5]). Let (X, τ) be a fuzzy topological space in the sense of Chang and x_{r} be a fuzzy singleton. Then a Q-neighborhood (in short, Q-nbd) of a fuzzy singleton x_{r} is a fuzzy set $N \in I^{X}$ such that there exists $U \in \tau$ with $x_{r} q U \subseteq N$.
Definition 2.4. (Sostak [8], Kubiak [4]). An I - fuzzy topology on a set X is a map $\tau: I^{X} \longrightarrow I$ such that
(i) $\tau(\underline{1})=\tau(\underline{0})=1$;
(ii) $\tau(U \cap V) \geq \tau(U) \wedge \tau(V), \forall U, V \in I^{X}$;
(iii) $\tau\left(\bigcup_{i \in \Lambda} U_{i}\right) \geq \bigwedge_{i \in \Lambda} \tau\left(U_{i}\right), \forall U_{i} \in I^{X}, i \in \Lambda$.

The pair (X, τ) is called an I - fuzzy topological space.
Definition 2.5. (Mondal and Samanta [6]). Let X be a nonempty set. An intuitionistic gradation of openness (in short, IGO) of fuzzy sets of X is an ordered pair $\left(\tau, \tau^{*}\right)$ of functions from I^{X} to I such that
(i) $\tau(U)+\tau^{*}(U) \leq 1, \forall U \in I^{X}$;
(ii) $\tau(\underline{0})=\tau(\underline{1})=1, \tau^{*}(\underline{0})=\tau^{*}(\underline{1})=0$;
(iii) $\tau\left(U_{1} \cap U_{2}\right) \geq \tau\left(U_{1}\right) \wedge \tau\left(U_{2}\right)$ and $\tau^{*}\left(U_{1} \cap U_{2}\right) \leq \tau^{*}\left(U_{1}\right) \vee \tau^{*}\left(U_{2}\right), U_{i} \in I^{X}, i=1,2$;
(iv) $\tau\left(\bigcup_{i \in \Lambda} U_{i}\right) \geq \bigwedge_{i \in \Lambda} \tau\left(U_{i}\right)$ and $\tau^{*}\left(\bigcup_{i \in \Lambda} U_{i}\right) \leq \bigvee_{i \in \Lambda} \tau\left(U_{i}\right), U_{i} \in I^{X}, i \in \Lambda$.

The triplet $\left(X, \tau, \tau^{*}\right)$ is called an intuitionistic fuzzy topological space (IFTS, in short), where τ and τ^{*} may be interpreted as gradation of openness and gradation of non openness respectively.
Proposition 2.1. (Mondal and Samanta [6]). Let $\left(X, \tau, \tau^{*}\right)$ be an IFTS. Then,

$$
\tau_{r}=\tau^{-1}[r, 1] \text { and } \tau_{r}^{*}=\left(\tau^{*}\right)^{-1}[0,1-r], r \in I_{0}
$$

are two descending families of fuzzy topologies on X such that $\tau_{r} \subseteq \tau_{r}^{*}$.
Definition 2.6. (Mondal and Samanta [6]).
(1) Let $\left(X, \tau, \tau^{*}\right)$ be an IFTS and $Y \subseteq X$. Then, the IFTS $\left(Y, \tau_{Y}, \tau_{Y}^{*}\right)$ is called a subspace of $\left(X, \tau, \tau^{*}\right)$ where $\tau_{Y}: I^{Y} \longrightarrow I$ and $\tau_{Y}^{*}: I^{Y} \longrightarrow I$ are defined as follows:
$\tau_{Y}(U)=\vee\left\{\tau(V): V \in I^{Y}, V \mid Y=U\right\}$ and $\tau_{Y}^{*}(U)=\wedge\left\{\tau^{*}(V): V \in I^{Y}, V \mid Y=U\right\}$.
(2) Let $\left\{\left(X_{j}, \tau_{j}, \tau_{j}^{*}\right): j \in J\right\}$ be a family of IFTSs, $X=\Pi_{j \in J} X_{j}$ and $\left\{p_{j}: X \longrightarrow\left(X_{j}, \tau_{j}, \tau_{j}^{*}\right)\right\}_{j \in J}$ be the projection mappings. Then, the product IGO on X, denoted by $\left(\Pi_{j \in J} \tau_{j}, \Pi_{j \in J} \tau_{j}^{*}\right)$, which is defined as follows:
$\left(\Pi \tau_{j}\right)(U)=\vee\left\{r: U \in T_{r}\right\}$ and $\left(\Pi \tau_{j}^{*}\right)(U)=\wedge\left\{1-r: U \in T_{r}^{*}\right\}$,
where T_{r} and T_{r}^{*} are fuzzy topologies on X, generated respectively by $\bigcup_{j \in J} T_{j, r}$ and $\bigcup_{j \in J} T_{j, r}^{*}$ where $T_{j, r}=\left\{p_{j}^{-1}(U): U \in\left(\tau_{j}\right)_{r}\right\}$ and $T_{j, r}^{*}=\left\{p_{j}^{-1}(U): U \in\left(\tau_{j}^{*}\right)_{r}\right\}$.
$\left(X, \Pi_{j \in J} \tau_{j}, \Pi_{j \in J} \tau_{i j}^{*}\right)$ is called the product IFTS of the family $\left\{\left(X_{j}, \tau_{j}, \tau_{j}^{*}\right)\right\}_{j \in J}$.
(3) Let $\left(X, \tau, \tau^{*}\right)$ and $\left(Y, \delta, \delta^{*}\right)$ be two IFTSs and $f: X \longrightarrow Y$ be a mapping. Then, f is called a gradation preserving map (gp-map, in short) if for each $V \in I^{Y}$,

$$
\delta(V) \leq \tau\left(f^{-1}(V)\right) \text { and } \delta^{*}(V) \geq \tau^{*}\left(f^{-1}(V)\right)
$$

Definition 2.7. (Abu Safia et al. [7]). Let X be a nonempty set and τ_{1}, τ_{2} be two fuzzy topologies on X. Then $\left(X, \tau_{1}, \tau_{2}\right)$ is called a bifuzzy topological space (BFTS, in short).

Definition 2.8. A fuzzy topological space (X, τ) is called
(a) T_{0} if $\forall x, y \in X, x \neq y$, there exists $U \in \tau$ such that either $U(x)=1, U(y)=0$ or $U(y)=1$, $U(x)=0$.
(b) T_{1} if $\forall x, y \in X, x \neq y$, there exist $U, V \in \tau$ such that $U(x)=1, U(y)=0, V(y)=1$ and $V(x)=1$.
(c) T_{2} (Hausdorff) if \forall pair of distinct fuzzy points x_{r}, y_{s} in X, there exist $U, V \in \tau$ such that $x_{r} \in U, y_{s} \in V$ and $U \cap V=\underline{0}$.

Here, definitions $(a),(b)$ and (c) are from [11], [12] and [10], respectively.
Definition 2.9. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be a BFTS. Then it is called
(a) T_{0} if $\forall x, y \in X, x \neq y$, there exists $U \in \tau_{1} \cup \tau_{2}$ such that $U(x)=1, U(y)=0$ or $U(x)=0$, $U(y)=1$.
(b) T_{1} if $\forall x, y \in X, x \neq y$, there exist $U \in \tau_{1}$ and $V \in \tau_{2}$ such that $U(x)=1, U(y)=0$ and $V(x)=0, V(y)=1$.
(c) T_{2} if \forall pair of distinct fuzzy points x_{r}, y_{s} in X, there exist $U \in \tau_{1}$ and $V \in \tau_{2}$ such that $x_{r} \in U, y_{s} \in V$ and $U \cap V=\underline{0}$.

Here definitions (a) and (b) are from [9] and (c) is from [13].
Definition 2.10. Let $\left(X, \tau, \tau^{*}\right)$ be an IFTS and x_{r} be a fuzzy singleton in X. Fang [3] defined $Q_{x_{r}}: I^{X} \longrightarrow I$ as follows:

$$
Q_{x_{r}}(U)=\left\{\begin{array}{lll}
\bigvee_{x_{r} q V \leq U} \tau(V), & \text { if } & x_{r} q U \\
0 & \text { if } & x_{r} \neg q U
\end{array}\right.
$$

Here, $Q_{x_{r}}(U)$ is called the degree to which U is a Q-nbd of x_{r}.
We define $Q_{x_{r}}^{*}: I^{X} \longrightarrow I$ as follows:

$$
Q_{x_{r}}^{*}(U)=\left\{\begin{array}{lll}
\bigwedge_{x_{r} q V \leq U} \tau^{*}(V), & \text { if } & x_{r} q U \\
1 & \text { if } & x_{r} \neg q U
\end{array}\right.
$$

$Q_{x_{r}}^{*}(U)$ will be called the degree to which U is a non Q-nbd of x_{r}.
We have,

$$
Q_{x_{r}}(U)+Q_{x_{r}}^{*}(U) \leq 1, \forall U \in I^{X}
$$

$3 \alpha-T_{0}, \alpha-T_{1}$ and $\alpha-T_{2}$ separation axioms in intuitionistic fuzzy topological spaces

Definition 3.1. Let $\left(X, \tau, \tau^{*}\right)$ be an IFTS and x_{r}, y_{s} be two distinct fuzzy singletons in X. Then,
(a) The degree to which x_{r}, y_{s} are T_{0} is defined as

$$
T_{0}\left(x_{r}, y_{s}\right)=\left(\bigvee_{y_{s} \neg q U} Q_{x_{r}}(U)\right) \vee\left(\bigvee_{\left.x_{r}\right\urcorner q V}\left(1-Q_{y_{s}}^{*}(V)\right)\right) \vee\left(\bigvee_{x_{r} \neg q V} Q_{y_{s}}(V)\right) \vee\left(\bigvee_{y_{s} \neg q U}\left(1-Q_{x_{r}}^{*}(U)\right)\right)
$$

and the degree to which $\left(X, \tau, \tau^{*}\right)$ is T_{0}, is defined as

$$
T_{0}\left(X, \tau, \tau^{*}\right)=\bigwedge\left\{T_{0}\left(x_{r}, y_{s}\right): x_{r}, y_{s} \text { are distinct fuzzy singletons in } \mathrm{X}\right\} .
$$

(b) The degree to which x_{r}, y_{s} are T_{1} is defined as

$$
T_{1}\left(x_{r}, y_{s}\right)=\left(\bigvee_{y_{s} \neg q U} Q_{x_{r}}(U)\right) \wedge\left(\bigvee_{\left.x_{r}\right\urcorner q V}\left(1-Q_{y_{s}}^{*}(V)\right)\right) \wedge\left(\bigvee_{x_{r} \neg q V} Q_{y_{s}}(V)\right) \wedge\left(\bigvee_{y_{s} \neg q U}\left(1-Q_{x_{r}}^{*}(U)\right)\right)
$$

and the degree to which $\left(X, \tau, \tau^{*}\right)$ is T_{1} is defined as

$$
T_{1}\left(X, \tau, \tau^{*}\right)=\bigwedge\left\{T_{1}\left(x_{r}, y_{s}\right): x_{r}, y_{s} \text { are distinct fuzzy singletons in } \mathrm{X}\right\} .
$$

(c) The degree to which x_{r}, y_{s} are T_{2} is defined as

$$
T_{2}\left(x_{r}, y_{s}\right)=\left[\bigvee_{U \cap V=\underline{0}}\left\{Q_{x_{r}}(U) \wedge\left(1-Q_{y_{s}}^{*}(V)\right)\right\} \wedge \bigvee_{U \cap V=\underline{0}}\left\{Q_{y_{s}}(V) \wedge\left(1-Q_{x_{r}}^{*}(U)\right)\right\}\right]
$$

and the degree to which $\left(X, \tau, \tau^{*}\right)$ is T_{2} is defined as

$$
T_{2}\left(X, \tau, \tau^{*}\right)=\bigwedge\left\{T_{2}\left(x_{r}, y_{s}\right): x_{r}, y_{s} \text { are distinct fuzzy singletons in } \mathrm{X}\right\} .
$$

It is easy to see that
(i) $T_{2}\left(X, \tau, \tau^{*}\right) \leq T_{1}\left(X, \tau, \tau^{*}\right) \leq T_{0}\left(X, \tau, \tau^{*}\right)$
but none of the implications are reversible.
(ii) If $\tau^{*}(U)=(1-\tau(U)), \forall U \in I^{X}$ then the above definitions reduce to corresponding definitions in Yue and Fang [15].

Definition 3.2. An IFTS $(X, \tau, \tau *)$ is called
(a) $\alpha-T_{0}, \alpha \in I_{0}$ (resp. $\left.\alpha^{*}-T_{0}, \alpha \in I_{1}\right)$ if there exists $U \in I^{X}$ such that $\tau(U) \geq \alpha, \tau^{*}(U) \leq$ $(1-\alpha)$ (resp. $\left.\tau(U)>\alpha, \tau^{*}(U)<(1-\alpha)\right)$ such that $U(x)=1, U(y)=0$ or $U(x)=0$, $U(y)=1, \forall x, y \in X, x \neq y$.
(b) $\alpha-T_{1}, \alpha \in I_{0}$ (resp. $\alpha^{*}-T_{1}, \alpha \in I_{1}$) if there exist $U, V \in I^{X}$ such that $\tau(U) \geq \alpha, \tau^{*}(V) \leq$ $(1-\alpha)\left(\right.$ resp. $\left.\tau(U)>\alpha, \tau^{*}(V)<(1-\alpha)\right)$ such that $U(x)=1, U(y)=0$ and $V(x)=0$, $V(y)=1, \forall x, y \in X, x \neq y$.
(c) $\alpha-T_{2}$ (i.e. α-Hausdorff), $\alpha \in I_{0}$ (resp. α^{*} - T_{2} i.e. α^{*}-Hausdorff, $\alpha \in I_{1}$) if \forall distinct pair of fuzzy points x_{r}, y_{s} in X, there exist $U, V \in I^{X}$ such that $\tau(U) \geq \alpha, \tau^{*}(V) \leq(1-\alpha)$ (resp. $\left.\tau(U)>\alpha, \tau^{*}(V)<(1-\alpha)\right), x_{r} \in U, y_{s} \in V$ and $U \cap V=\underline{0}$.

The following propositions can be easily verified.
Proposition 3.1. An IFTS $\left(X, \tau, \tau^{*}\right)$ is $\alpha-T_{i}$ iff $\operatorname{BFTS}\left(X, \tau_{\alpha}, \tau_{\alpha}^{*}\right)$ is $T_{i}, i=0,1,2$.
Proposition 3.2. An IFTS $\left(X, \tau, \tau^{*}\right)$ is α-Hausdorff, $\alpha \in I_{0}$ (resp. α^{*}-Hausdorff, $\alpha \in I_{1}$) iff \forall distinct pair of fuzzy singletons x_{r}, y_{s} in X, there exist $U, V \in I^{X}$ such that $\tau(U) \geq \alpha$, $\tau^{*}(V) \leq(1-\alpha)\left(\right.$ resp. $\left.\tau(U)>\alpha, \tau^{*}(V)<(1-\alpha)\right), x_{r} q U, y_{s} q V$ and $U \cap V=\underline{0}$.
Proposition 3.3. If an IFTS $\left(X, \tau, \tau^{*}\right)$ is $\alpha-T_{i}, \alpha \in I_{0}\left(\right.$ resp. $\left.\alpha^{*}-T_{i}, \alpha \in I_{1}\right)$ then $T_{i}\left(X, \tau, \tau^{*}\right) \geq \alpha$, $i \in 0,1,2$.

Proof: Let us first suppose that $\left(X, \tau, \tau^{*}\right)$ is $\alpha-T_{0}$ then $\left(X, \tau_{\alpha}, \tau_{\alpha}^{*}\right)$ is T_{0}. Choose any two distinct fuzzy singletons x_{r}, y_{s} in X. Then $x \neq y$ and therefore there exists $U \in \tau_{\alpha} \cup \tau_{\alpha}^{*}$ such that $U(x)=1, U(y)=0$ or $U(x)=0, U(y)=1$. Let $U \in \tau_{\alpha}$ and be such that $U(x)=1, U(y)=0$. Then $\tau(U) \geq \alpha, x_{r} q U, y_{s} \neg q U \Rightarrow \bigvee_{y_{s} \neg q U} Q_{x_{r}}(U) \geq \alpha \Rightarrow T_{0}\left(x_{r}, y_{s}\right) \geq \alpha$ $\Rightarrow \bigwedge\left\{T_{0}\left(x_{r}, y_{s}\right): x_{r}, y_{s}\right.$ are distinct fuzzy singletons in $\left.X\right\} \geq \alpha$ i.e. $T_{0}\left(X, \tau, \tau^{*}\right) \geq \alpha$. Now let $U \in \tau_{\alpha}$ be such that $U(x)=0, U(y)=1$. Then $\bigvee_{x_{r} \neg q U} Q_{y_{s}}(U) \geq \alpha \Rightarrow T_{0}\left(x_{r}, y_{s}\right) \geq \alpha$ $\Rightarrow T_{0}\left(X, \tau, \tau^{*}\right) \geq \alpha$. Further if $U \in \tau_{\alpha}^{*}$ and is such that $U(x)=1, U(y)=0 \Rightarrow Q_{x_{r}}^{*}(U) \leq(1-\alpha)$ $\Rightarrow\left(1-Q_{x_{r}}^{*}(U)\right) \geq \alpha \Rightarrow \bigvee_{y_{s} \neg q U}\left(1-Q_{x_{r}}^{*}\right)(U) \geq \alpha \Rightarrow T_{0}\left(x_{r}, y_{s}\right) \geq \alpha \Rightarrow T_{0}\left(X, \tau, \tau^{*}\right) \geq \alpha$ and if $U \in \tau_{\alpha}^{*}$ such that $U(x)=0, U(y)=1$ then $\bigvee_{x_{r} \neg q U}\left(1-Q_{y_{s}}^{*}\right)(U) \geq \alpha \Rightarrow T_{0}\left(x_{r}, y_{s}\right) \geq \alpha$ $\Rightarrow T_{0}\left(X, \tau, \tau^{*}\right) \geq \alpha$.

Next, let $\left(X, \tau, \tau^{*}\right)$ be $\alpha-T_{1}$. Then, $\left(X, \tau_{\alpha}, \tau_{\alpha}^{*}\right)$ is T_{1}. Choose any pair of distinct fuzzy singletons x_{r}, y_{s} in X. Then $x \neq y$, hence there exist $U \in \tau_{\alpha}, V \in \tau_{\alpha}^{*}$ such that $U(x)=1, U(y)=0$, $V(x)=0, V(y)=1$. So we have $x_{r} q U, y_{s} \neg q U, x_{r} \neg q V, y_{s} q V, \tau(U) \geq \alpha, \tau^{*}(V) \leq(1-\alpha)$ $\Rightarrow \bigvee_{y_{s} \neg q U} Q_{x_{r}}(U) \geq \alpha$ and $Q_{y_{s}}^{*}(V) \leq(1-\alpha) \Rightarrow\left(1-Q_{y_{s}}^{*}(V)\right) \geq \alpha \Rightarrow \bigvee_{x_{r} \neg q V}\left(1-Q_{y_{s}}^{*}\right)(V) \geq \alpha$. Similarly, for the distinct pair of fuzzy singletons y_{s} and x_{r} in X, since $y \neq x$, there exist $U \in \tau_{\alpha}$, $V \in \tau_{\alpha}^{*}$ such that $U(x)=0, U(y)=1, V(x)=1, V(y)=0 \Rightarrow \bigvee_{x_{r} \neg q U} Q_{y_{s}}(U) \geq \alpha$ and $\bigvee_{y_{s} \neg q V}\left(1-Q_{x_{r}}^{*}\right)(V) \geq \alpha$. Therefore, $T_{1}\left(x_{r}, y_{s}\right) \geq \alpha \Rightarrow \bigwedge\left\{T_{1}\left(x_{r}, y_{s}\right): x_{r}, y_{s}\right.$ are distinct fuzzy singletons in $X\} \geq \alpha$, i.e. $T_{1}\left(X, \tau, \tau^{*}\right) \geq \alpha$.

Finally, suppose that $\left(X, \tau, \tau^{*}\right)$ is $\alpha-T_{2}$. Then $\left(X, \tau_{\alpha}, \tau_{\alpha}^{*}\right)$ is T_{2}. Choose any pair of distinct fuzzy singletons x_{r}, y_{s} in X. Then there exist $U \in \tau_{\alpha}, V \in \tau_{\alpha}^{*}$ such that $x_{r} q U, y_{s} q V$ and $U \cap V=\underline{0}$. Hence

$$
\bigvee_{U \cap V=\underline{0}}\left\{Q_{x_{r}}(U) \wedge\left(1-Q_{y_{s}}^{*}(V)\right)\right\} \geq \alpha
$$

Similarly considering the pair of fuzzy singletons y_{s}, x_{r} in X, there exist $U_{1} \in \tau_{\alpha}, V_{1} \in \tau_{\alpha}^{*}$ such that $y_{s} q U_{1}, x_{r} q V_{1}$ and $U_{1} \cap V_{1}=\underline{0}$. Therefore

$$
\bigvee_{U_{1} \cap V_{1}=\underline{0}}\left\{Q_{y_{s}}\left(U_{1}\right) \wedge\left(1-Q_{x_{r}}^{*}\left(V_{1}\right)\right)\right\} \geq \alpha
$$

Thus $T_{2}\left(x_{r}, y_{s}\right) \geq \alpha \Rightarrow \bigwedge\left\{T_{2}\left(x_{r}, y_{s}\right): x_{r}, y_{s}\right.$ are distinct fuzzy singletons in $\left.X\right\} \geq \alpha$ i.e. $T_{1}\left(X, \tau, \tau^{*}\right) \geq \alpha$.

On similar lines, it can be proved that if $\left(X, \tau, \tau^{*}\right)$ is $\alpha^{*}-T_{i}$ then $T_{i}\left(X, \tau, \tau^{*}\right) \geq \alpha, i=0,1,2$.

Proposition 3.4. The separation properties $\alpha-T_{i}$ (resp. $\left.\alpha^{*}-T_{i}\right), i=0,1,2$ are hereditary.
The proof is easy and hence is omitted.
Theorem 3.1. Let $\left\{\left(X_{i}, \tau_{i}, \tau_{i}^{*}\right): i \in J\right\}$ be a family of IFTSs. Then, their product IFTS $\left(X, \tau, \tau^{*}\right)$ is $\alpha^{*}-T_{1}$ iff $\left(X_{i}, \tau_{i}, \tau_{i}^{*}\right)$ is $\alpha^{*}-T_{1}, \forall i \in J$.

Proof: First let us suppose that each coordinate space $\left(X_{i}, \tau_{i}, \tau_{i}^{*}\right)$ is $\alpha^{*}-T_{1}$. To show that the product IFTS $\left(X, \tau, \tau^{*}\right)$ is $\alpha^{*}-T_{1}$, choose any two distinct points $x, y \in X$. Let $x=\Pi x_{i}$, $y=\Pi y_{i}$. Since $x \neq y$, there exist $j \in J$ such that $x_{j} \neq y_{j}$. Now since $\left(X_{j}, \tau_{j}, \tau_{j}^{*}\right)$ is $\alpha^{*}-T_{1}$, there exist $U_{j}, V_{j} \in I^{X_{j}}$ such that $\tau_{j}\left(U_{j}\right)>\alpha, \tau_{j}^{*}\left(V_{j}\right)<(1-\alpha), U_{j}\left(x_{j}\right)=1, U_{j}\left(y_{j}\right)=0, V_{j}\left(x_{j}\right)=$ $0, V_{j}\left(y_{j}\right)=1$. Now consider $p_{j}^{-1}\left(U_{j}\right)$ and $p_{j}^{-1}\left(V_{j}\right)$. Since p_{j} is a gp-map, $\tau\left(p_{j}^{-1}\left(U_{j}\right)\right)>\alpha$, $\tau^{*}\left(p_{j}^{-1}\left(V_{j}\right)\right)<(1-\alpha)$ and further, we have $p_{j}^{-1}\left(U_{j}\right)(x)=1, p_{j}^{-1}\left(U_{j}\right)(y)=0, p_{j}^{-1}\left(V_{j}\right)(y)=1$, $p_{j}^{-1}\left(V_{j}\right)(x)=0$. Hence $\left(X, \tau, \tau^{*}\right)$ is $\alpha^{*}-T_{1}$.
Conversely, let the product IFTS $\left(X, \tau, \tau^{*}\right)$ be $\alpha^{*}-T_{1}$. To show that $\left(X_{j}, \tau_{j}, \tau_{j}^{*}\right)$ is $\alpha^{*}-T_{1}$, choose any two distinct points x_{j}, y_{j} in X_{j}. Consider the distinct points $x=\Pi x_{i}, y=\Pi y_{i}$ in X where $x_{i}=y_{i}$ for $i \neq j$ and the j-th coordinate of x, y are x_{j}, y_{j}, respectively. Then there exist $U, V \in I^{X}$ such that $\tau(U)>\alpha, \tau^{*}(V)<(1-\alpha), U(x)=1, U(y)=0, V(x)=0, V(y)=1$. Now $\tau(U)=\wedge\left\{t: U \in T_{t}\right\}>\alpha, \tau^{*}(V)=\vee\left\{(1-t): V \in T_{t}^{*}\right\} \Rightarrow \exists t_{1}>\alpha$ such that $U \in T_{t_{1}}$ and there exist $t_{2}>\alpha$ such that $V \in T_{t_{2}}^{*}$. Now consider the distinct fuzzy points x_{r} and y_{r}. Then there exist basic fuzzy open sets ΠU_{i}^{r} and ΠV_{i}^{r} in $T_{t_{1}}$ and $T_{t_{2}}$ respectively such that $x_{r} \in \Pi U_{i}^{r} \subseteq U$ and $y_{r} \in \Pi V_{i}^{r} \subseteq V$. Hence, $r<\Pi U_{i}^{r}(x) \leq U(x), r<\Pi V_{i}^{r}(y) \leq V(y)$. Therefore,

$$
\begin{equation*}
r<\inf \left\{U_{k_{1}}^{r}\left(x_{k_{1}}\right), U_{k_{2}}^{r}\left(x_{k_{2}}\right), \ldots, U_{k_{m}}^{r}\left(x_{k_{m}}\right)\right\} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
r<\inf \left\{V_{l_{1}}^{r}\left(y_{l_{1}}\right), V_{l_{2}}^{r}\left(y_{l_{2}}\right), \ldots, V_{l_{n}}^{r}\left(y_{l_{n}}\right)\right\} . \tag{2}
\end{equation*}
$$

Now we claim that

$$
\begin{equation*}
j \in\left\{k_{1}, k_{2}, \ldots, k_{m}\right\} \wedge\left\{l_{1}, l_{2}, \ldots, l_{n}\right\} \tag{3}
\end{equation*}
$$

Since if it is not so, then $x_{l_{1}}=y_{l_{1}}, x_{l_{2}}=y_{l_{2}}, \ldots, x_{l_{n}}=y_{l_{n}}$ and hence in view of (2),

$$
r<\inf \left\{V_{l_{1}}^{r}\left(x_{l_{1}}\right), V_{l_{2}}^{r}\left(x_{l_{2}}\right), \ldots, V_{l_{n}}^{r}\left(x_{l_{n}}\right)\right\}
$$

Therefore, $\Pi V_{i}^{r}(x)>0$. Hence, $V(x)>0$, which is a contradiction. Similarly, it can be shown that $U(y)>0$, a contradiction. Thus, $U_{j}^{r}\left(x_{j}\right)>r$ and $V_{j}^{r}\left(y_{j}\right)>r$ implying that $\left(x_{j}\right)_{r} \in U_{j}^{r}$, $\left(y_{j}\right)_{r} \in V_{j}^{r}$. Now, consider $U_{j}=\cup_{r \in I_{0}} U_{j}^{r}, V_{j}=\cup_{r \in I_{0}} V_{j}^{r}$. Then, $U_{j}\left(x_{j}\right)=1, V_{j}\left(y_{j}\right)=1$. Now, it remains to show that $U_{j}\left(y_{j}\right)=0, V_{j}\left(x_{j}\right)=0$. Since $U(y)=0, \Pi U_{i}^{r}(y)=0 \Rightarrow$ $\inf \left\{U_{k_{1}}^{r}\left(y_{k_{1}}\right), U_{k_{2}}^{r}\left(y_{k_{2}}\right), \ldots, U_{k_{m}}^{r}\left(y_{k_{m}}\right)\right\}=0 \Rightarrow U_{j}^{r}\left(y_{j}\right)=0$ in view of (1), (3) and the fact that $x_{i}=y_{i}$ for $i \neq j, \forall r \in I_{0}$. Hence, $U_{j}\left(y_{j}\right)=\sup U_{j}^{r}\left(y_{j}\right)=0$. Similarly, it can be shown that $V_{j}\left(x_{j}\right)=0$. Further $\forall r \in I_{0}, \tau_{j}\left(U_{j}^{r}\right) \geq t_{1}>\alpha$ and $\tau_{j}^{*}\left(V_{j}^{r}\right) \leq\left(1-t_{2}\right)<(1-\alpha)$. Therefore, $\tau_{j}\left(\cup_{r} U_{j}^{r}\right) \geq \wedge_{r} \tau_{j}\left(U_{j}^{r}\right) \geq t_{1}>\alpha$ and $\tau_{j}^{*}\left(\cup_{r} V_{j}^{r}\right) \leq \vee_{r} \tau_{j}^{*}\left(V_{j}^{r}\right) \leq\left(1-t_{2}\right)<(1-\alpha)$.
Hence, $\tau_{j}\left(U_{j}\right)>\alpha$ and $\tau_{j}^{*}\left(V_{j}\right)<(1-\alpha)$. Thus, $\left(X, \tau_{j}, \tau_{j}^{*}\right)$ is $\alpha^{*}-T_{1}$.
The following theorem can be proved on similar lines.
Theorem 3.2. Let $\left\{\left(X_{i}, \tau_{i}, \tau_{i}^{*}\right): i \in J\right\}$ be a family of IFTSs. Then, their product IFTS $\left(X, \tau, \tau^{*}\right)$ is $\alpha^{*}-T_{0}$ iff each coordinate space is $\alpha^{*}-T_{0}$.

Theorem 3.3. Let $\left\{\left(X_{i}, \tau_{i}, \tau_{i}^{*}\right): i \in J\right\}$ be a family of IFTSs. Then their product IFTS (X, τ, τ) is α^{*}-Hausdorff iff each coordinate space $\left(X_{i}, \tau_{i}, \tau_{i}^{*}\right)$ is α^{*}-Hausdorff.

Proof: Let each coordinate space $\left(X_{i}, \tau_{i}, \tau_{i}^{*}\right)$ be α^{*}-Hausdorff. Then to show that the product IFTS $\left(X, \tau, \tau^{*}\right)$ is α^{*}-Hausdorff, consider any two distinct fuzzy points x_{r}, y_{s} in X. Then $x \neq y$. Let $x=\Pi x_{i}$ and $y=\Pi y_{i}$ then there exists $j \in J$ such that $x_{j} \neq y_{j}$. Now, consider the distinct fuzzy points $\left(x_{j}\right)_{r}$ and $\left(y_{j}\right)_{s}$ in X_{j}. Since $\left(X_{j}, \tau_{j}, \tau_{j}^{*}\right)$ is α^{*}-Hausdorff, there exist $U_{j}, V_{j} \in I^{X_{j}}$ such that $\tau_{j}\left(U_{J}\right)>\alpha, \tau_{j}^{*}\left(V_{j}\right)<(1-\alpha)$ and $\left(x_{j}\right)_{r} \in U_{j},\left(y_{j}\right)_{s} \in V_{j}$ and $U_{j} \cap V_{j}=\underline{0}$.

Let $U=p_{j}^{-1}\left(U_{j}\right)$ and $V=p_{j}^{-1}\left(V_{j}\right)$. Then since p_{j} is a gp-map, $\tau(U) \geq \tau_{j}\left(U_{j}\right)>\alpha$ and $\tau^{*}(V) \leq \tau_{j}^{*}\left(V_{j}\right)<(1-\alpha)$. Further, $x_{r} \in p_{j}^{-1}\left(U_{j}\right), y_{s} \in p_{j}^{-1}\left(V_{j}\right), p_{j}^{-1}\left(U_{j}\right) \cap p_{j}^{-1}\left(V_{j}\right)=\underline{0}$. Hence, $\left(X, \tau, \tau^{*}\right)$ is α^{*}-Hausdorff.
Conversely, let $\left(X, \tau, \tau^{*}\right)$ be α^{*}-Hausdorff. To show that $\left(X_{j}, \tau_{j}, \tau_{j}^{*}\right)$ is α^{*}-Hausdorff, choose any two distinct fuzzy points $\left(x_{j}\right)_{r},\left(y_{j}\right)_{s}$ in X_{j}. Then, $x_{j} \neq y_{j}$. Consider $x=\Pi x_{i}, y=\Pi y_{i}$ where $x_{i}=y_{i}$ for $i \neq j$ and the $j^{t h}$ coordinate of x, y are x_{j} and y_{j} respectively. Consider the distinct fuzzy points x_{r} and y_{s} in X. Since $\left(X, \tau, \tau^{*}\right)$ is α^{*}-Hausdorff, there exist $U, V \in I^{X}$ such that $\tau(U)>\alpha, \tau^{*}(V)<(1-\alpha), x_{r} \in U, y_{s} \in V$ and $U \cap V=\underline{0}$.
Now $\tau(U)=\vee\left\{t: U \in T_{t}\right\}>\alpha$ and $\tau^{*}(V)=\wedge\left\{(1-t): V \in T_{t}^{*}\right\}<(1-\alpha)$ which implies that there exists $t_{1}>\alpha$ such that $U \in T_{t_{1}}$ and there exists $t_{2}>\alpha$ such that $V \in T_{t_{2}}^{*}$. Since $U \in T_{t_{1}}$ and $x_{r} \in U$, there exists a basic fuzzy open set

$$
W_{1}=p_{k_{1}}^{-1}\left(U_{k_{1}}\right) \cap p_{k_{2}}^{-1}\left(U_{k_{2}}\right), \ldots, \cap p_{k_{m}}^{-1}\left(U_{k_{m}}\right)
$$

in $T_{t_{1}}$ such that $x_{r} \in W_{1} \subseteq U$ which implies that

$$
r<\inf \left\{p_{k_{1}}^{-1}\left(U_{k_{1}}\right)(x), p_{k_{2}}^{-1}\left(U_{k_{2}}\right)(x), \ldots, p_{k_{m}}^{-1}\left(U_{k_{m}}\right)(x)\right\}
$$

i.e.

$$
\begin{equation*}
r<\inf \left\{U_{k_{1}}\left(x_{k_{1}}\right), U_{k_{2}}\left(x_{k_{2}}\right), \ldots, U_{k_{m}}\left(x_{k_{m}}\right)\right\} \tag{4}
\end{equation*}
$$

Similarly since $y_{s} \in V$ and $V \in T_{t_{2}}^{*}$, there exists a basic fuzzy open set

$$
W_{2}=p_{l_{1}}^{-1}\left(V_{l_{1}}\right) \cap p_{l_{2}}^{-1}\left(V_{l_{2}}\right), \ldots, \cap p_{l_{n}}^{-1}\left(V_{l_{n}}\right)
$$

in $T_{t_{2}}^{*}$ such that $y_{s} \in W_{2} \subseteq V$ which implies that

$$
s<\inf \left\{p_{l_{1}}^{-1}\left(V_{l_{1}}\right)(y), p_{l_{2}}^{-1}\left(V_{l_{2}}\right)(y), \ldots, p_{l_{n}}^{-1}\left(V_{l_{n}}\right)(y)\right\}
$$

i.e.

$$
\begin{equation*}
s<\inf \left\{V_{l_{1}}\left(y_{l_{1}}\right), V_{l_{2}}\left(y_{l_{2}}\right), \ldots, V_{l_{n}}\left(y_{l_{n}}\right)\right\} \tag{5}
\end{equation*}
$$

Now we claim that $j \in\left\{k_{1}, k_{2}, \ldots, k_{m}\right\} \cap\left\{l_{1}, l_{2}, \ldots, l_{n}\right\}$. Since if it not so, then $x_{l_{1}}=y_{l_{1}}, x_{l_{2}}=$ $y_{l_{2}}, \ldots, x_{l_{m}}=y_{l_{m}}$. Hence, in view of (5), we have $s<\left\{V_{l_{1}}\left(x_{l_{1}}\right), V_{l_{2}}\left(x_{l_{2}}\right), \ldots, V_{l_{n}}\left(x_{l_{n}}\right)\right\} \Rightarrow$ $W_{2}(x)>0 \Rightarrow V(x)>0 \Rightarrow U \cap V(x)>0$. which is a contradiction to the fact that $U \cap V=\underline{0}$. Hence, $U_{j}\left(x_{j}\right)>r, V_{j}\left(y_{j}\right)>s \Rightarrow\left(x_{j}\right)_{r} \in U_{j},\left(y_{j}\right)_{s} \in V_{j}$. Now we show that $U_{j} \cap V_{j}=\underline{0}$. If $U_{j} \cap V_{j} \neq \underline{0}$, there exists $z_{j} \in X_{j}$ such that

$$
\begin{equation*}
U_{j}\left(z_{j}\right)>0, V_{j}\left(z_{j}\right)>0 \tag{6}
\end{equation*}
$$

Now, consider $z=\Pi z_{i}$ where $z_{i}=x_{i}=y_{i}$ for $i \neq j$ and the j-th coordinate is z_{j}. Then in view of (4), (5) and (6) we get $W_{1}(z)>0, W_{2}(z)>0$ which implies that $W_{1} \cap W_{2} \neq \underline{0}$. Therefore, $U \cap V \neq \underline{0}$, again a contradiction. Hence, $U_{j} \cap V_{j}=\underline{0}$. Further, $\tau_{j}\left(U_{j}\right) \geq t_{1}>\alpha$ and $\tau_{j}^{*}\left(V_{j}\right) \leq\left(1-t_{2}\right)<(1-\alpha)$ showing that $\left(X_{j}, \tau_{j}, \tau_{j}^{*}\right)$ is α^{*}-Hausdorff.
Proposition 3.5. Let $\left\{\left(X_{j}, \tau_{j}, \tau_{j}^{*}\right): j \in J\right\}$ be a family of IFTSs, $\left(X, \tau, \tau^{*}\right)$ be their product IFTS. Let T_{t} denote the product fuzzy topology $\Pi\left(T_{j}\right)_{t}$ and let T_{t}^{*} denote the product fuzzy topology $\Pi\left(T_{j}\right)_{t}^{*}$ on X. Then,
(i) $\bigcap_{s<r} T_{s}=T_{r}$.
(ii) $\bigcap_{s<r} T_{s}^{*}=T_{r}^{*}$.

Proof:

(i) Since $T_{r} \subset T_{s}$, for all $s<r$, we have $T_{r} \subseteq \bigcap_{s<r} T_{s}$.

Conversely, $U \in \bigcap_{s<r} T_{s} \Rightarrow U \in T_{s}, \forall s<r$. Hence,
$\tau(U)=\vee\left\{t: U \in T_{t}\right\} \geq s$, for all $s<r$ i.e., $\tau(U) \geq r \Rightarrow U \in T_{r}$
Therefore, $\bigcap_{s<r} T_{s} \subseteq T_{r}$. Thus, $\bigcap_{s<r} T_{s}=T_{r}$.
(ii) $T_{r}^{*} \subseteq T_{s}^{*}$, for all $s<r, \Rightarrow T_{r}^{*} \subseteq \bigcap_{s<r} T_{s}^{*}$

Conversely, let $V \in \bigcap_{s<r} T_{s}^{*} \Rightarrow V \in T_{s}^{*}$, for all $s<r$. Hence,
$\tau^{*}(V)=\bigvee\left\{(1-t): V \in T_{t}^{*}\right\} \leq(1-s)$, for all $s<r$ i.e. $\tau^{*}(V) \leq(1-r) \Rightarrow V \in T_{r}^{*}$. Therefore, $\bigcap_{s<r} T_{s}^{*} \subseteq T_{r}^{*}$. Thus $\bigcap_{s<r} T_{s}^{*}=T_{r}^{*}$.

Theorem 3.4. If $\left\{\left(X_{j}, \tau_{j}, \tau_{j}^{*}\right): j \in J\right\}$ is a family of IFTSs and $\left(X, \tau, \tau^{*}\right)$ is their product IFTS. Then $\tau_{r}=\Pi\left(\tau_{j}\right)_{r}, \tau_{r}^{*}=\Pi\left(\tau_{j}^{*}\right)_{r}$.

The proof follows from Theorem 2.15, Definition 5.5 of (Mondal and Samanta [6]) and the previous proposition.

Theorem 3.5. Let $\left\{\left(X_{j}, \tau_{j}, \tau_{j}^{*}\right): j \in J\right\}$ be a family of IFTSs and $\left(X, \tau, \tau^{*}\right)$ be their product IFTS. Then, $\left(X, \tau, \tau^{*}\right)$ is $\alpha-T_{i}$ iff each coordinate space $\left(X_{j}, \tau_{j}, \tau_{j}^{*}\right)$ is $\alpha-T_{i}, i=0,1,2$.

Proof: $\left(X, \tau, \tau^{*}\right)$ is $\alpha-T_{i} \Leftrightarrow\left(X, \tau_{\alpha}, \tau_{\alpha}^{*}\right)$ is T_{i} $\Leftrightarrow\left(X, \Pi\left(\tau_{j}\right)_{\alpha}, \Pi\left(\tau_{j}\right)_{\alpha}^{*}\right)$ is T_{i}
$\Leftrightarrow\left(X_{j},\left(\tau_{j}\right)_{\alpha},\left(\tau_{j}\right)_{\alpha}^{*}\right)$ is $T_{i}, \forall j \in J$
$\Leftrightarrow\left(X_{j}, \tau_{j}, \tau_{j}^{*}\right)$ is $\alpha-T_{i}, \forall j \in J, i=0,1,2$.

References

[1] Atanassov, K.T. Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1986) 87-96.
[2] Chang, C.L. Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968) 182-190.
[3] Fang, J. I-FTOP is isomorphic to I-FQN and I-AITOP, Fuzzy Sets and Systems 147 (2004) 317-325.
[4] Kubiak, T. On fuzzy topologies, Ph.D Thesis, A. Mickiewicz, Poznan, Poland, 1985.
[5] Pu, P.-M. Y.-M. Liu. Fuzzy topology. I. Neighborhood structure of a fuzzy point and MooreSmith convergence, J. Math. Anal. Appl. 76 (1980) 571-599.
[6] Mondal, T.K. , S.K. Samanta. On intuitionistic gradation of openness, Fuzzy Sets and Systems 131 (2002) 323-336.
[7] Abu Safiya, A.S. , A.A. Fora, M.W. Warner. Fuzzy separation axioms and fuzzy continuity in fuzzy bitopological spaces, Fuzzy Sets and Systems 62 (1994) 367-373.
[8] Šostak, A.P. On fuzzy topological structure, Rend. Circ. Mat. Palermo (Suppl. Ser. II) 11 (1985) 89-103.
[9] Srivastava, M., R. Srivastava. On fuzzy pairwise - T_{0} and fuzzy pairwise - T_{1} bitopological spaces, Indian J. Pure Appl. Math. 32 (2001) 387-396.
[10] Srivastava, R., S.N. Lal, and A.K. Srivastava. Fuzzy Hausdorff topological spaces, J. Math. Anal. Appl. 81 (1981) 497-506.
[11] Srivastava, R., S.N. Lal, A.K. Srivastava. On fuzzy T_{0} and R_{0} topological spaces, J. Math. Anal. Appl. 136 (1988) 66-73.
[12] Srivastava, R., S.N. Lal, A.K. Srivastava.On fuzzy T_{1} - topological spaces, J. Math. Anal. Appl. 136 (1988) 124-130.
[13] Srivastava, R., M. Srivastava. On pairwise Hausdorff fuzzy bitopological spaces, J. Fuzzy Math. 5 (1997) 553-564.
[14] Wong, C.K. Fuzzy points and local properties of fuzzy topology, J. Math. Anal. Appl. 46 (1974) 316-328.
[15] Yue,Y., J. Fang. On separation axioms in I-fuzzy topological spaces, Fuzzy Sets and Systems 157 (2006) 780-793.
[16] Zadeh, L.A. Fuzzy sets, Inform. and Control 8 (1965) 338-353.
[17] Zadeh, L.A. A fuzzy set theoretic interpretation of linguistic hedges, Memorandum No. ERLM335 University of California, Berkeley (1972).

