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1 Introduction
In [1], Atanassov introduced intuitionistic fuzzy sets in a setX . In [6], Mondal and Samanta gave
the concept of intuitionistic gradation of openness of fuzzy sets in X and using this, they defined
an intuitionistic fuzzy topological space (IFTS, in short). Yue and Fang, in [15] considered the
separation axioms T0, T1 and T2 in an I-fuzzy topological space in the sense of Šostak [8] and
Kubiak [4]. We extend and study these separation axioms in an intuitionistic fuzzy topological
space in the sense of Mondal and Samanta [6]. In addition, we also define α- and α∗- separation
axioms in this setting.

It is observed that if an IFTS (X, τ, τ ∗) is α-Ti or α∗-Ti, then Ti(X, τ, τ
∗) ≥ α where

Ti(X, τ, τ
∗) denotes the degree to which (X, τ, τ ∗) is Ti, i = 0, 1, 2. Further it is proved that

all these separation properties satisfy the hereditary, productive and projective properties.

2 Preliminaries
Let X be a nonempty set. By IX , where I = [0, 1], we denote the set of all fuzzy sets in X i.e. all
functions from X to I . For a fuzzy set A ∈ IX A

′ will denotes its (Zadeh [16]) complement. For
α ∈ I , α will denote the α-valued constant fuzzy set in X . Each Y ⊆ X will be identified with
the fuzzy set in X which is its I-valued characteristic function, which too will be denoted as Y .

Definition 2.1. (Wong [14]). A fuzzy point xr in X is a fuzzy set in X taking value r ∈ (0, 1)
at x and zero elsewhere. A fuzzy singleton (Zadeh [17]) xr in X is a fuzzy set in X taking value
r ∈ (0, 1]. Here x and r are respectively called the support and value of xr.
A fuzzy point xr is said to belong to a fuzzy set A if r < A(x). It can be easily seen that
xr ∈ ∪i∈ΛAi ⇔ xr ∈ Ai for some i ∈ Λ.
Two fuzzy points/fuzzy singletons are said to be distinct if their supports are distinct.
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Definition 2.2. (Pu and Liu [5]). Let xr be a fuzzy singleton in X and A ∈ IX . Then xr is said
to be quasi-coincident with A (notation: xrqA) if A(x) + r > 1. Two fuzzy sets A, B in X are
said to be quasi-coincident (notation: AqB) if A(x) +B(x) > 1 for some x ∈ X. The relation (is
not quasi-coincident) is denoted by ¬q.

We use the well known notion of ‘fuzzy topology’as given in Chang [2]

Definition 2.3. (Pu and Liu [5]). Let (X, τ) be a fuzzy topological space in the sense of Chang
and xr be a fuzzy singleton. Then a Q-neighborhood (in short, Q-nbd) of a fuzzy singleton xr is
a fuzzy set N ∈ IX such that there exists U ∈ τ with xrqU ⊆ N .

Definition 2.4. (Sostak [8], Kubiak [4]). An I- fuzzy topology on a set X is a map τ : IX −→ I
such that

(i) τ(1) = τ(0) = 1;

(ii) τ(U ∩ V ) ≥ τ(U) ∧ τ(V ), ∀U, V ∈ IX ;

(iii) τ(
⋃
i∈Λ Ui) ≥

∧
i∈Λ τ(Ui), ∀Ui ∈ IX , i ∈ Λ.

The pair (X, τ) is called an I- fuzzy topological space.

Definition 2.5. (Mondal and Samanta [6]). Let X be a nonempty set. An intuitionistic gradation
of openness (in short, IGO) of fuzzy sets of X is an ordered pair (τ, τ ∗) of functions from IX to
I such that

(i) τ(U) + τ ∗(U) ≤ 1, ∀U ∈ IX ;

(ii) τ(0) = τ(1) = 1, τ ∗(0) = τ ∗(1) = 0;

(iii) τ(U1 ∩ U2) ≥ τ(U1) ∧ τ(U2) and τ ∗(U1 ∩ U2) ≤ τ ∗(U1) ∨ τ ∗(U2), Ui ∈ IX , i = 1, 2;

(iv) τ(
⋃
i∈Λ Ui) ≥

∧
i∈Λ τ(Ui) and τ ∗(

⋃
i∈Λ Ui) ≤

∨
i∈Λ τ(Ui), Ui ∈ IX , i ∈ Λ.

The triplet (X, τ, τ ∗) is called an intuitionistic fuzzy topological space (IFTS, in short), where τ
and τ ∗ may be interpreted as gradation of openness and gradation of non openness respectively.

Proposition 2.1. (Mondal and Samanta [6]). Let (X, τ, τ ∗) be an IFTS. Then,

τr = τ−1[r, 1] and τ ∗r = (τ ∗)−1[0, 1− r], r ∈ I0

are two descending families of fuzzy topologies on X such that τr ⊆ τ ∗r .

Definition 2.6. (Mondal and Samanta [6]).

(1) Let (X, τ, τ ∗) be an IFTS and Y ⊆ X . Then, the IFTS (Y, τY , τ
∗
Y ) is called a subspace of

(X, τ, τ ∗) where τY : IY −→ I and τ ∗Y : IY −→ I are defined as follows:
τY (U) = ∨{τ(V ) : V ∈ IY , V | Y = U}
and τ ∗Y (U) = ∧{τ ∗(V ) : V ∈ IY , V | Y = U}.

(2) Let {(Xj, τj, τ
∗
j ) : j ∈ J} be a family of IFTSs,X = Πj∈JXj and {pj : X −→ (Xj, τj, τ

∗
j )}j∈J

be the projection mappings. Then, the product IGO on X , denoted by (Πj∈Jτj,Πj∈Jτ
∗
j ),

which is defined as follows:
(Πτj)(U) = ∨{r : U ∈ Tr} and (Πτ ∗j )(U) = ∧{1− r : U ∈ T ∗r },
where Tr and T ∗r are fuzzy topologies onX , generated respectively by

⋃
j∈J Tj,r and

⋃
j∈J T

∗
j,r

where Tj,r = {p−1
j (U) : U ∈ (τj)r} and T ∗j,r = {p−1

j (U) : U ∈ (τ ∗j )r}.
(X,Πj∈Jτj,Πj∈Jτ

∗
ij) is called the product IFTS of the family {(Xj, τj, τ

∗
j )}j∈J .
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(3) Let (X, τ, τ ∗) and (Y, δ, δ∗) be two IFTSs and f : X −→ Y be a mapping. Then, f is called
a gradation preserving map (gp-map, in short) if for each V ∈ IY ,

δ(V ) ≤ τ(f−1(V )) and δ∗(V ) ≥ τ ∗(f−1(V )).

Definition 2.7. (Abu Safia et al. [7]). Let X be a nonempty set and τ1, τ2 be two fuzzy topologies
on X . Then (X, τ1, τ2) is called a bifuzzy topological space (BFTS, in short).

Definition 2.8. A fuzzy topological space (X, τ) is called

(a) T0 if ∀x, y ∈ X , x 6= y, there exists U ∈ τ such that either U(x) = 1, U(y) = 0 or U(y) = 1,
U(x) = 0.

(b) T1 if ∀x, y ∈ X , x 6= y, there exist U, V ∈ τ such that U(x) = 1, U(y) = 0, V (y) = 1 and
V (x) = 1.

(c) T2 (Hausdorff) if ∀ pair of distinct fuzzy points xr, ys in X , there exist U, V ∈ τ such that
xr ∈ U , ys ∈ V and U ∩ V = 0.

Here, definitions (a), (b) and (c) are from [11], [12] and [10], respectively.

Definition 2.9. Let (X, τ1, τ2) be a BFTS. Then it is called

(a) T0 if ∀x, y ∈ X, x 6= y, there exists U ∈ τ1 ∪ τ2 such that U(x) = 1, U(y) = 0 or U(x) = 0,
U(y) = 1.

(b) T1 if ∀x, y ∈ X, x 6= y, there exist U ∈ τ1 and V ∈ τ2 such that U(x) = 1, U(y) = 0 and
V (x) = 0, V (y) = 1.

(c) T2 if ∀ pair of distinct fuzzy points xr, ys in X , there exist U ∈ τ1 and V ∈ τ2 such that
xr ∈ U , ys ∈ V and U ∩ V = 0.

Here definitions (a) and (b) are from [9] and (c) is from [13].

Definition 2.10. Let (X, τ, τ ∗) be an IFTS and xr be a fuzzy singleton in X. Fang [3] defined
Qxr : IX −→ I as follows:

Qxr(U) =

{∨
xrqV≤U τ(V ), if xrqU

0 if xr¬qU

Here, Qxr(U) is called the degree to which U is a Q-nbd of xr.

We define Q∗xr : IX −→ I as follows:

Q∗xr(U) =

{∧
xrqV≤U τ

∗(V ), if xrqU

1 if xr¬qU
.

Q∗xr(U) will be called the degree to which U is a non Q-nbd of xr.
We have,

Qxr(U) +Q∗xr(U) ≤ 1,∀U ∈ IX .
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3 α-T0, α-T1 and α-T2 separation axioms in intuitionistic fuzzy
topological spaces

Definition 3.1. Let (X, τ, τ ∗) be an IFTS and xr, ys be two distinct fuzzy singletons in X . Then,

(a) The degree to which xr, ys are T0 is defined as

T0(xr, ys) =
( ∨
ys¬qU

Qxr(U)
)
∨
( ∨
xr¬qV

(1−Q∗ys(V ))
)
∨
( ∨
xr¬qV

Qys(V )
)
∨
( ∨
ys¬qU

(1−Q∗xr(U))
)

and the degree to which (X, τ, τ ∗) is T0, is defined as

T0(X, τ, τ ∗) =
∧
{T0(xr, ys) : xr, ys are distinct fuzzy singletons in X }.

(b) The degree to which xr, ys are T1 is defined as

T1(xr, ys) =
( ∨
ys¬qU

Qxr(U)
)
∧
( ∨
xr¬qV

(1−Q∗ys(V ))
)
∧
( ∨
xr¬qV

Qys(V )
)
∧
( ∨
ys¬qU

(1−Q∗xr(U))
)

and the degree to which (X, τ, τ ∗) is T1 is defined as

T1(X, τ, τ ∗) =
∧
{T1(xr, ys) : xr, ys are distinct fuzzy singletons in X }.

(c) The degree to which xr, ys are T2 is defined as

T2(xr, ys) =
[ ∨
U∩V=0

{Qxr(U) ∧ (1−Q∗ys(V ))} ∧
∨

U∩V=0

{Qys(V ) ∧ (1−Q∗xr(U))}
]

and the degree to which (X, τ, τ ∗) is T2 is defined as

T2(X, τ, τ ∗) =
∧
{T2(xr, ys) : xr, ys are distinct fuzzy singletons in X }.

It is easy to see that

(i) T2(X, τ, τ ∗) ≤ T1(X, τ, τ ∗) ≤ T0(X, τ, τ ∗)
but none of the implications are reversible.

(ii) If τ ∗(U) = (1 − τ(U)), ∀U ∈ IX then the above definitions reduce to corresponding
definitions in Yue and Fang [15].

Definition 3.2. An IFTS (X, τ, τ∗) is called

(a) α-T0, α ∈ I0 (resp. α∗-T0, α ∈ I1) if there exists U ∈ IX such that τ(U) ≥ α, τ ∗(U) ≤
(1 − α) (resp. τ(U) > α, τ ∗(U) < (1 − α)) such that U(x) = 1, U(y) = 0 or U(x) = 0,
U(y) = 1, ∀ x, y ∈ X , x 6= y.

(b) α-T1, α ∈ I0 (resp. α∗-T1, α ∈ I1) if there exist U, V ∈ IX such that τ(U) ≥ α, τ ∗(V ) ≤
(1 − α) (resp. τ(U) > α, τ ∗(V ) < (1 − α)) such that U(x) = 1, U(y) = 0 and V (x) = 0,
V (y) = 1, ∀ x, y ∈ X , x 6= y.
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(c) α-T2 (i.e. α-Hausdorff), α ∈ I0 (resp. α∗-T2 i.e. α∗-Hausdorff, α ∈ I1) if ∀ distinct pair of
fuzzy points xr, ys in X , there exist U, V ∈ IX such that τ(U) ≥ α, τ ∗(V ) ≤ (1− α) (resp.
τ(U) > α, τ ∗(V ) < (1− α)), xr ∈ U , ys ∈ V and U ∩ V = 0.

The following propositions can be easily verified.

Proposition 3.1. An IFTS (X, τ, τ ∗) is α-Ti iff BFTS (X, τα, τ
∗
α) is Ti, i = 0, 1, 2.

Proposition 3.2. An IFTS (X, τ, τ ∗) is α-Hausdorff, α ∈ I0 (resp. α∗-Hausdorff, α ∈ I1) iff
∀ distinct pair of fuzzy singletons xr, ys in X , there exist U, V ∈ IX such that τ(U) ≥ α,
τ ∗(V ) ≤ (1− α) (resp. τ(U) > α, τ ∗(V ) < (1− α)), xrqU , ysqV and U ∩ V = 0.

Proposition 3.3. If an IFTS (X, τ, τ ∗) is α-Ti, α ∈ I0 (resp. α∗-Ti, α ∈ I1) then Ti(X, τ, τ ∗) ≥ α,
i ∈ 0, 1, 2.

Proof: Let us first suppose that (X, τ, τ ∗) is α-T0 then (X, τα, τ
∗
α) is T0. Choose any two

distinct fuzzy singletons xr, ys in X . Then x 6= y and therefore there exists U ∈ τα ∪ τ ∗α
such that U(x) = 1, U(y) = 0 or U(x) = 0, U(y) = 1. Let U ∈ τα and be such that
U(x) = 1, U(y) = 0. Then τ(U) ≥ α, xrqU , ys¬qU ⇒

∨
ys¬qU Qxr(U) ≥ α⇒ T0(xr, ys) ≥ α

⇒
∧
{T0(xr, ys) : xr, ys are distinct fuzzy singletons in X} ≥ α i.e. T0(X, τ, τ ∗) ≥ α. Now

let U ∈ τα be such that U(x) = 0, U(y) = 1. Then
∨
xr¬qU Qys(U) ≥ α ⇒ T0(xr, ys) ≥ α

⇒ T0(X, τ, τ ∗) ≥ α. Further ifU ∈ τ ∗α and is such thatU(x) = 1, U(y) = 0⇒ Q∗xr(U) ≤ (1−α)
⇒ (1 − Q∗xr(U)) ≥ α ⇒

∨
ys¬qU(1 − Q∗xr)(U) ≥ α ⇒ T0(xr, ys) ≥ α ⇒ T0(X, τ, τ ∗) ≥ α

and if U ∈ τ ∗α such that U(x) = 0, U(y) = 1 then
∨
xr¬qU(1 − Q∗ys)(U) ≥ α⇒ T0(xr, ys) ≥ α

⇒ T0(X, τ, τ ∗) ≥ α.

Next, let (X, τ, τ ∗) be α-T1. Then, (X, τα, τ
∗
α) is T1. Choose any pair of distinct fuzzy singletons

xr, ys in X . Then x 6= y, hence there exist U ∈ τα, V ∈ τ ∗α such that U(x) = 1, U(y) = 0,
V (x) = 0, V (y) = 1. So we have xrqU , ys¬qU , xr¬qV , ysqV , τ(U) ≥ α, τ ∗(V ) ≤ (1 − α)
⇒
∨
ys¬qU Qxr(U) ≥ α andQ∗ys(V ) ≤ (1−α)⇒ (1−Q∗ys(V )) ≥ α⇒

∨
xr¬qV (1−Q∗ys)(V ) ≥ α.

Similarly, for the distinct pair of fuzzy singletons ys and xr in X , since y 6= x, there exist U ∈ τα,
V ∈ τ ∗α such that U(x) = 0, U(y) = 1, V (x) = 1, V (y) = 0 ⇒

∨
xr¬qU Qys(U) ≥ α and∨

ys¬qV (1−Q∗xr)(V ) ≥ α. Therefore, T1(xr, ys) ≥ α⇒
∧
{T1(xr, ys) : xr, ys are distinct fuzzy

singletons in X} ≥ α, i.e. T1(X, τ, τ ∗) ≥ α.

Finally, suppose that (X, τ, τ ∗) is α-T2. Then (X, τα, τ
∗
α) is T2. Choose any pair of distinct fuzzy

singletons xr, ys in X . Then there exist U ∈ τα, V ∈ τ ∗α such that xrqU , ysqV and U ∩ V = 0.
Hence ∨

U∩V=0

{Qxr(U) ∧ (1−Q∗ys(V ))} ≥ α.

Similarly considering the pair of fuzzy singletons ys, xr in X , there exist U1 ∈ τα, V1 ∈ τ ∗α such
that ysqU1, xrqV1 and U1 ∩ V1 = 0. Therefore∨

U1∩V1=0

{Qys(U1) ∧ (1−Q∗xr(V1))} ≥ α.

Thus T2(xr, ys) ≥ α ⇒
∧
{T2(xr, ys) : xr, ys are distinct fuzzy singletons in X} ≥ α i.e.

T1(X, τ, τ ∗) ≥ α.

On similar lines, it can be proved that if (X, τ, τ ∗) is α∗-Ti then Ti(X, τ, τ ∗) ≥ α, i = 0, 1, 2.
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Proposition 3.4. The separation properties α-Ti (resp. α∗-Ti), i = 0, 1, 2 are hereditary.

The proof is easy and hence is omitted.

Theorem 3.1. Let {(Xi, τi, τ
∗
i ) : i ∈ J} be a family of IFTSs. Then, their product IFTS (X, τ, τ ∗)

is α∗-T1 iff (Xi, τi, τ
∗
i ) is α∗-T1, ∀i ∈ J .

Proof: First let us suppose that each coordinate space (Xi, τi, τ
∗
i ) is α∗-T1. To show that

the product IFTS (X, τ, τ ∗) is α∗-T1, choose any two distinct points x, y ∈ X . Let x = Πxi,
y = Πyi. Since x 6= y, there exist j ∈ J such that xj 6= yj . Now since (Xj, τj, τ

∗
j ) is α∗-T1, there

exist Uj, Vj ∈ IXj such that τj(Uj) > α, τ ∗j (Vj) < (1 − α), Uj(xj) = 1, Uj(yj) = 0, Vj(xj) =

0, Vj(yj) = 1. Now consider p−1
j (Uj) and p−1

j (Vj). Since pj is a gp-map, τ(p−1
j (Uj)) > α,

τ ∗(p−1
j (Vj)) < (1 − α) and further, we have p−1

j (Uj)(x) = 1, p−1
j (Uj)(y) = 0, p−1

j (Vj)(y) = 1,
p−1
j (Vj)(x) = 0. Hence (X, τ, τ ∗) is α∗-T1.

Conversely, let the product IFTS (X, τ, τ ∗) be α∗-T1. To show that (Xj, τj, τ
∗
j ) is α∗-T1, choose

any two distinct points xj, yj in Xj . Consider the distinct points x = Πxi, y = Πyi in X
where xi = yi for i 6= j and the j-th coordinate of x, y are xj, yj, respectively. Then there exist
U, V ∈ IX such that τ(U) > α, τ ∗(V ) < (1 − α), U(x) = 1, U(y) = 0, V (x) = 0, V (y) = 1.
Now τ(U) = ∧{t : U ∈ Tt} > α, τ ∗(V ) = ∨{(1 − t) : V ∈ T ∗t } ⇒ ∃ t1 > α such that
U ∈ Tt1 and there exist t2 > α such that V ∈ T ∗t2 . Now consider the distinct fuzzy points xr
and yr. Then there exist basic fuzzy open sets ΠU r

i and ΠV r
i in Tt1 and Tt2 respectively such

that xr ∈ ΠU r
i ⊆ U and yr ∈ ΠV r

i ⊆ V . Hence, r < ΠU r
i (x) ≤ U(x), r < ΠV r

i (y) ≤ V (y).
Therefore,

r < inf{U r
k1

(xk1), U
r
k2

(xk2), ..., U
r
km(xkm)} (1)

and
r < inf{V r

l1
(yl1), V

r
l2

(yl2), ..., V
r
ln(yln)}. (2)

Now we claim that
j ∈ {k1, k2, ..., km} ∧ {l1, l2, ..., ln}. (3)

Since if it is not so, then xl1 = yl1 , xl2 = yl2 , ..., xln = yln and hence in view of (2),

r < inf{V r
l1

(xl1), V
r
l2

(xl2), ..., V
r
ln(xln)}

Therefore, ΠV r
i (x) > 0. Hence, V (x) > 0, which is a contradiction. Similarly, it can be shown

that U(y) > 0, a contradiction. Thus, U r
j (xj) > r and V r

j (yj) > r implying that (xj)r ∈ U r
j ,

(yj)r ∈ V r
j . Now, consider Uj = ∪r∈I0U r

j , Vj = ∪r∈I0V r
j .Then, Uj(xj) = 1, Vj(yj) = 1.

Now, it remains to show that Uj(yj) = 0, Vj(xj) = 0. Since U(y) = 0, ΠU r
i (y) = 0 ⇒

inf {U r
k1

(yk1), U
r
k2

(yk2), ..., U
r
km

(ykm)} = 0 ⇒ U r
j (yj) = 0 in view of (1), (3) and the fact that

xi = yi for i 6= j, ∀r ∈ I0. Hence, Uj(yj) = sup U r
j (yj) = 0. Similarly, it can be shown that

Vj(xj) = 0. Further ∀r ∈ I0, τj(U r
j ) ≥ t1 > α and τ ∗j (V r

j ) ≤ (1 − t2) < (1 − α). Therefore,
τj(∪rU r

j ) ≥ ∧rτj(U r
j ) ≥ t1 > α and τ ∗j (∪rV r

j ) ≤ ∨rτ ∗j (V r
j ) ≤ (1− t2) < (1− α).

Hence, τj(Uj) > α and τ ∗j (Vj) < (1− α). Thus, (X, τj, τ
∗
j ) is α∗-T1.

The following theorem can be proved on similar lines.

Theorem 3.2. Let {(Xi, τi, τ
∗
i ) : i ∈ J} be a family of IFTSs. Then, their product IFTS (X, τ, τ ∗)

is α∗-T0 iff each coordinate space is α∗-T0.

Theorem 3.3. Let {(Xi, τi, τ
∗
i ) : i ∈ J} be a family of IFTSs. Then their product IFTS (X, τ, τ)

is α∗-Hausdorff iff each coordinate space (Xi, τi, τ
∗
i ) is α∗-Hausdorff.

40



Proof: Let each coordinate space (Xi, τi, τ
∗
i ) be α∗-Hausdorff. Then to show that the product

IFTS (X, τ, τ ∗) is α∗-Hausdorff, consider any two distinct fuzzy points xr, ys in X . Then x 6= y.
Let x = Πxi and y = Πyi then there exists j ∈ J such that xj 6= yj . Now, consider the distinct
fuzzy points (xj)r and (yj)s in Xj . Since (Xj, τj, τ

∗
j ) is α∗-Hausdorff, there exist Uj, Vj ∈ IXj

such that τj(UJ) > α, τ ∗j (Vj) < (1− α) and (xj)r ∈ Uj , (yj)s ∈ Vj and Uj ∩ Vj = 0.
Let U = p−1

j (Uj) and V = p−1
j (Vj). Then since pj is a gp-map, τ(U) ≥ τj(Uj) > α and

τ ∗(V ) ≤ τ ∗j (Vj) < (1−α). Further, xr ∈ p−1
j (Uj), ys ∈ p−1

j (Vj), p−1
j (Uj)∩p−1

j (Vj) = 0. Hence,
(X, τ, τ ∗) is α∗-Hausdorff.
Conversely, let (X, τ, τ ∗) be α∗-Hausdorff. To show that (Xj, τj, τ

∗
j ) is α∗-Hausdorff, choose any

two distinct fuzzy points (xj)r, (yj)s in Xj.Then, xj 6= yj . Consider x = Πxi, y = Πyi where
xi = yi for i 6= j and the jth coordinate of x, y are xj and yj respectively. Consider the distinct
fuzzy points xr and ys in X . Since (X, τ, τ ∗) is α∗-Hausdorff, there exist U, V ∈ IX such that
τ(U) > α, τ ∗(V ) < (1− α), xr ∈ U , ys ∈ V and U ∩ V = 0.
Now τ(U) = ∨{t : U ∈ Tt} > α and τ ∗(V ) = ∧{(1 − t) : V ∈ T ∗t } < (1 − α) which implies
that there exists t1 > α such that U ∈ Tt1 and there exists t2 > α such that V ∈ T ∗t2 . Since
U ∈ Tt1 and xr ∈ U , there exists a basic fuzzy open set

W1 = p−1
k1

(Uk1) ∩ p−1
k2

(Uk2), ...,∩p−1
km

(Ukm)

in Tt1 such that xr ∈ W1 ⊆ U which implies that

r < inf{p−1
k1

(Uk1)(x), p−1
k2

(Uk2)(x), ..., p−1
km

(Ukm)(x)}

i.e.
r < inf{Uk1(xk1), Uk2(xk2), ..., Ukm(xkm)} (4)

Similarly since ys ∈ V and V ∈ T ∗t2 , there exists a basic fuzzy open set

W2 = p−1
l1

(Vl1) ∩ p−1
l2

(Vl2), ...,∩p−1
ln

(Vln)

in T ∗t2 such that ys ∈ W2 ⊆ V which implies that

s < inf{p−1
l1

(Vl1)(y), p−1
l2

(Vl2)(y), ..., p−1
ln

(Vln)(y)}
i.e.

s < inf{Vl1(yl1), Vl2(yl2), ..., Vln(yln)} (5)

Now we claim that j ∈ {k1, k2, ..., km} ∩ {l1, l2, ..., ln}. Since if it not so, then xl1 = yl1 , xl2 =
yl2 , ..., xlm = ylm . Hence, in view of (5), we have s < {Vl1(xl1), Vl2(xl2), ..., Vln(xln)} ⇒
W2(x) > 0⇒ V (x) > 0⇒ U ∩ V (x) > 0. which is a contradiction to the fact that U ∩ V = 0.
Hence, Uj(xj) > r, Vj(yj) > s⇒ (xj)r ∈ Uj, (yj)s ∈ Vj . Now we show that Uj ∩ Vj = 0. If
Uj ∩ Vj 6= 0, there exists zj ∈ Xj such that

Uj(zj) > 0, Vj(zj) > 0. (6)

Now, consider z = Πzi where zi = xi = yi for i 6= j and the j-th coordinate is zj . Then in
view of (4), (5) and (6) we get W1(z) > 0, W2(z) > 0 which implies that W1 ∩ W2 6= 0.
Therefore, U ∩ V 6= 0, again a contradiction. Hence, Uj ∩ Vj = 0. Further, τj(Uj) ≥ t1 > α and
τ ∗j (Vj) ≤ (1− t2) < (1− α) showing that (Xj, τj, τ

∗
j ) is α∗-Hausdorff.

Proposition 3.5. Let {(Xj, τj, τ
∗
j ) : j ∈ J} be a family of IFTSs, (X, τ, τ ∗) be their product IFTS.

Let Tt denote the product fuzzy topology Π(Tj)t and let T ∗t denote the product fuzzy topology
Π(Tj)

∗
t on X . Then,
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(i)
⋂
s<r Ts = Tr.

(ii)
⋂
s<r T

∗
s = T ∗r .

Proof:

(i) Since Tr ⊂ Ts, for all s < r, we have Tr ⊆
⋂
s<r Ts.

Conversely, U ∈
⋂
s<r Ts ⇒ U ∈ Ts, ∀ s < r. Hence,

τ(U) = ∨{t : U ∈ Tt} ≥ s, for all s < r i.e., τ(U) ≥ r⇒ U ∈ Tr
Therefore,

⋂
s<r Ts ⊆ Tr. Thus,

⋂
s<r Ts = Tr.

(ii) T ∗r ⊆ T ∗s , for all s < r,⇒ T ∗r ⊆
⋂
s<r T

∗
s

Conversely, let V ∈
⋂
s<r T

∗
s ⇒ V ∈ T ∗s , for all s < r. Hence,

τ ∗(V ) =
∨
{(1− t) : V ∈ T ∗t } ≤ (1− s), for all s < r i.e. τ ∗(V ) ≤ (1− r)⇒ V ∈ T ∗r .

Therefore,
⋂
s<r T

∗
s ⊆ T ∗r . Thus

⋂
s<r T

∗
s = T ∗r .

Theorem 3.4. If {(Xj, τj, τ
∗
j ) : j ∈ J} is a family of IFTSs and (X, τ, τ ∗) is their product IFTS.

Then τr = Π(τj)r, τ ∗r = Π(τ ∗j )r.

The proof follows from Theorem 2.15, Definition 5.5 of (Mondal and Samanta [6]) and the
previous proposition.

Theorem 3.5. Let {(Xj, τj, τ
∗
j ) : j ∈ J} be a family of IFTSs and (X, τ, τ ∗) be their product

IFTS. Then, (X, τ, τ ∗) is α-Ti iff each coordinate space (Xj, τj, τ
∗
j ) is α-Ti, i = 0, 1, 2.

Proof: (X, τ, τ ∗) is α-Ti⇔ (X, τα, τ
∗
α) is Ti

⇔ (X,Π(τj)α,Π(τj)
∗
α) is Ti

⇔ (Xj, (τj)α, (τj)
∗
α) is Ti, ∀ j ∈ J

⇔ (Xj, τj, τ
∗
j ) is α-Ti, ∀ j ∈ J , i = 0, 1, 2.
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