On $\alpha\text{-}$ and $\alpha^*\text{-}$ separation axioms in intuitionistic fuzzy topological spaces

Rekha Srivastava and Amit Kumar Singh

Department of Applied Mathematics, Institute of Technology Banaras Hindu University, Varanasi, 221005, India E-mails: rekhasri@bhu.ac.in, amitkitbhu@gmail.com

Abstract: In this paper we introduce the gradation of the separation axioms T_0 , T_1 and T_2 in an intuitionistic fuzzy topological space in the sense of Mondal and Samanta [6]. Using these concepts we have defined α - and α^* - T_i intuitionistic fuzzy topological spaces, i = 0, 1, 2, and studied them in detail.

Keywords: Intuitionistic fuzzy set, Intuitionistic fuzzy topological space, Separation axioms, Bifuzzy topological space.

AMS Classification: 54A40, 03E72

1 Introduction

In [1], Atanassov introduced intuitionistic fuzzy sets in a set X. In [6], Mondal and Samanta gave the concept of intuitionistic gradation of openness of fuzzy sets in X and using this, they defined an intuitionistic fuzzy topological space (IFTS, in short). Yue and Fang, in [15] considered the separation axioms T_0, T_1 and T_2 in an *I*-fuzzy topological space in the sense of Šostak [8] and Kubiak [4]. We extend and study these separation axioms in an intuitionistic fuzzy topological space in the sense of Mondal and Samanta [6]. In addition, we also define α - and α^* - separation axioms in this setting.

It is observed that if an IFTS (X, τ, τ^*) is α - T_i or α^* - T_i , then $T_i(X, \tau, \tau^*) \ge \alpha$ where $T_i(X, \tau, \tau^*)$ denotes the degree to which (X, τ, τ^*) is T_i , i = 0, 1, 2. Further it is proved that all these separation properties satisfy the hereditary, productive and projective properties.

2 Preliminaries

Let X be a nonempty set. By I^X , where I = [0, 1], we denote the set of all fuzzy sets in X i.e. all functions from X to I. For a fuzzy set $A \in I^X A'$ will denotes its (Zadeh [16]) complement. For $\alpha \in I$, $\underline{\alpha}$ will denote the α -valued constant fuzzy set in X. Each $Y \subseteq X$ will be identified with the fuzzy set in X which is its I-valued characteristic function, which too will be denoted as Y.

Definition 2.1. (Wong [14]). A fuzzy point x_r in X is a fuzzy set in X taking value $r \in (0, 1)$ at x and zero elsewhere. A fuzzy singleton (Zadeh [17]) x_r in X is a fuzzy set in X taking value $r \in (0, 1]$. Here x and r are respectively called the support and value of x_r .

A fuzzy point x_r is said to belong to a fuzzy set A if r < A(x). It can be easily seen that $x_r \in \bigcup_{i \in \Lambda} A_i \Leftrightarrow x_r \in A_i$ for some $i \in \Lambda$.

Two fuzzy points/fuzzy singletons are said to be distinct if their supports are distinct.

Definition 2.2. (Pu and Liu [5]). Let x_r be a fuzzy singleton in X and $A \in I^X$. Then x_r is said to be quasi-coincident with A (notation: x_rqA) if A(x) + r > 1. Two fuzzy sets A, B in X are said to be quasi-coincident (notation: AqB) if A(x) + B(x) > 1 for some $x \in X$. The relation (is not quasi-coincident) is denoted by $\neg q$.

We use the well known notion of 'fuzzy topology'as given in Chang [2]

Definition 2.3. (Pu and Liu [5]). Let (X, τ) be a fuzzy topological space in the sense of Chang and x_r be a fuzzy singleton. Then a Q-neighborhood (in short, Q-nbd) of a fuzzy singleton x_r is a fuzzy set $N \in I^X$ such that there exists $U \in \tau$ with $x_r q U \subseteq N$.

Definition 2.4. (Sostak [8], Kubiak [4]). An *I*-fuzzy topology on a set X is a map $\tau : I^X \longrightarrow I$ such that

- (i) $\tau(\underline{1}) = \tau(\underline{0}) = 1;$
- (*ii*) $\tau(U \cap V) \ge \tau(U) \land \tau(V), \forall U, V \in I^X;$

(*iii*)
$$\tau(\bigcup_{i\in\Lambda} U_i) \ge \bigwedge_{i\in\Lambda} \tau(U_i), \forall U_i \in I^X, i \in \Lambda.$$

The pair (X, τ) is called an *I*-fuzzy topological space.

Definition 2.5. (Mondal and Samanta [6]). Let X be a nonempty set. An intuitionistic gradation of openness (in short, IGO) of fuzzy sets of X is an ordered pair (τ, τ^*) of functions from I^X to I such that

(i)
$$\tau(U) + \tau^*(U) \le 1, \forall U \in I^X;$$

(*ii*)
$$\tau(\underline{0}) = \tau(\underline{1}) = 1, \tau^*(\underline{0}) = \tau^*(\underline{1}) = 0;$$

$$(iii) \ \tau(U_1 \cap U_2) \ge \tau(U_1) \land \tau(U_2) \text{ and } \tau^*(U_1 \cap U_2) \le \tau^*(U_1) \lor \tau^*(U_2), U_i \in I^X, i = 1, 2;$$

$$(iv) \ \tau(\bigcup_{i \in \Lambda} U_i) \ge \bigwedge_{i \in \Lambda} \tau(U_i) \text{ and } \tau^*(\bigcup_{i \in \Lambda} U_i) \le \bigvee_{i \in \Lambda} \tau(U_i), U_i \in I^X, i \in \Lambda.$$

The triplet (X, τ, τ^*) is called an intuitionistic fuzzy topological space (IFTS, in short), where τ and τ^* may be interpreted as gradation of openness and gradation of non openness respectively.

Proposition 2.1. (Mondal and Samanta [6]). Let (X, τ, τ^*) be an IFTS. Then,

$$au_r = au^{-1}[r, 1] \text{ and } au_r^* = (au^*)^{-1}[0, 1-r], r \in I_0$$

are two descending families of fuzzy topologies on X such that $\tau_r \subseteq \tau_r^*$.

Definition 2.6. (Mondal and Samanta [6]).

- (1) Let (X, τ, τ^*) be an IFTS and $Y \subseteq X$. Then, the IFTS (Y, τ_Y, τ_Y^*) is called a subspace of (X, τ, τ^*) where $\tau_Y : I^Y \longrightarrow I$ and $\tau_Y^* : I^Y \longrightarrow I$ are defined as follows: $\tau_Y(U) = \lor \{\tau(V) : V \in I^Y, V \mid Y = U\}$ and $\tau_Y^*(U) = \land \{\tau^*(V) : V \in I^Y, V \mid Y = U\}$.
- (2) Let $\{(X_j, \tau_j, \tau_j^*) : j \in J\}$ be a family of IFTSs, $X = \prod_{j \in J} X_j$ and $\{p_j : X \longrightarrow (X_j, \tau_j, \tau_j^*)\}_{j \in J}$ be the projection mappings. Then, the product IGO on X, denoted by $(\prod_{j \in J} \tau_j, \prod_{j \in J} \tau_j^*)$, which is defined as follows: $(\Pi \tau_j)(U) = \lor \{r : U \in T_r\}$ and $(\Pi \tau_j^*)(U) = \land \{1 - r : U \in T_r^*\}$, where T_r and T_r^* are fuzzy topologies on X, generated respectively by $\bigcup_{j \in J} T_{j,r}$ and $\bigcup_{j \in J} T_{j,r}^*$ where $T_{j,r} = \{p_j^{-1}(U) : U \in (\tau_j)_r\}$ and $T_{j,r}^* = \{p_j^{-1}(U) : U \in (\tau_j^*)_r\}$. $(X, \Pi_{j \in J} \tau_j, \Pi_{j \in J} \tau_{ij}^*)$ is called the product IFTS of the family $\{(X_j, \tau_j, \tau_j^*)\}_{j \in J}$.

(3) Let (X, τ, τ^*) and (Y, δ, δ^*) be two IFTSs and $f : X \longrightarrow Y$ be a mapping. Then, f is called a gradation preserving map (gp-map, in short) if for each $V \in I^Y$,

 $\delta(V) \le \tau(f^{-1}(V)) \text{ and } \delta^*(V) \ge \tau^*(f^{-1}(V)).$

Definition 2.7. (Abu Safia et al. [7]). Let X be a nonempty set and τ_1, τ_2 be two fuzzy topologies on X. Then (X, τ_1, τ_2) is called a bifuzzy topological space (BFTS, in short).

Definition 2.8. A fuzzy topological space (X, τ) is called

- (a) T_0 if $\forall x, y \in X, x \neq y$, there exists $U \in \tau$ such that either U(x) = 1, U(y) = 0 or U(y) = 1, U(x) = 0.
- (b) T_1 if $\forall x, y \in X$, $x \neq y$, there exist $U, V \in \tau$ such that U(x) = 1, U(y) = 0, V(y) = 1 and V(x) = 1.
- (c) T_2 (Hausdorff) if \forall pair of distinct fuzzy points x_r, y_s in X, there exist $U, V \in \tau$ such that $x_r \in U, y_s \in V$ and $U \cap V = \underline{0}$.

Here, definitions (a), (b) and (c) are from [11], [12] and [10], respectively.

Definition 2.9. Let (X, τ_1, τ_2) be a BFTS. Then it is called

- (a) T_0 if $\forall x, y \in X, x \neq y$, there exists $U \in \tau_1 \cup \tau_2$ such that U(x) = 1, U(y) = 0 or U(x) = 0, U(y) = 1.
- (b) T_1 if $\forall x, y \in X, x \neq y$, there exist $U \in \tau_1$ and $V \in \tau_2$ such that U(x) = 1, U(y) = 0 and V(x) = 0, V(y) = 1.
- (c) T_2 if \forall pair of distinct fuzzy points x_r, y_s in X, there exist $U \in \tau_1$ and $V \in \tau_2$ such that $x_r \in U, y_s \in V$ and $U \cap V = \underline{0}$.

Here definitions (a) and (b) are from [9] and (c) is from [13].

Definition 2.10. Let (X, τ, τ^*) be an IFTS and x_r be a fuzzy singleton in X. Fang [3] defined $Q_{x_r}: I^X \longrightarrow I$ as follows:

$$Q_{x_r}(U) = \begin{cases} \bigvee_{x_r q V \le U} \tau(V), & if \quad x_r q U \\ 0 & if \quad x_r \neg q U \end{cases}$$

Here, $Q_{x_r}(U)$ is called the degree to which U is a Q-nbd of x_r .

We define $Q_{x_r}^*: I^X \longrightarrow I$ as follows:

$$Q_{x_r}^*(U) = \begin{cases} \bigwedge_{x_r q V \le U} \tau^*(V), & if \quad x_r q U\\ 1 & if \quad x_r \neg q U \end{cases}.$$

 $Q_{x_r}^*(U)$ will be called the degree to which U is a non Q-nbd of x_r . We have,

$$Q_{x_r}(U) + Q_{x_r}^*(U) \le 1, \forall U \in I^X.$$

3 α - T_0 , α - T_1 and α - T_2 separation axioms in intuitionistic fuzzy topological spaces

Definition 3.1. Let (X, τ, τ^*) be an IFTS and x_r, y_s be two distinct fuzzy singletons in X. Then,

(a) The degree to which x_r , y_s are T_0 is defined as

$$T_0(x_r, y_s) = \Big(\bigvee_{y_s \neg qU} Q_{x_r}(U)\Big) \lor \Big(\bigvee_{x_r \neg qV} (1 - Q_{y_s}^*(V))\Big) \lor \Big(\bigvee_{x_r \neg qV} Q_{y_s}(V)\Big) \lor \Big(\bigvee_{y_s \neg qU} (1 - Q_{x_r}^*(U))\Big)$$

and the degree to which (X, τ, τ^*) is T_0 , is defined as

$$T_0(X,\tau,\tau^*) = \bigwedge \{T_0(x_r, y_s) : x_r, y_s \text{ are distinct fuzzy singletons in } \mathbf{X} \}$$

(b) The degree to which x_r , y_s are T_1 is defined as

$$T_1(x_r, y_s) = \Big(\bigvee_{y_s \neg qU} Q_{x_r}(U)\Big) \land \Big(\bigvee_{x_r \neg qV} (1 - Q_{y_s}^*(V))\Big) \land \Big(\bigvee_{x_r \neg qV} Q_{y_s}(V)\Big) \land \Big(\bigvee_{y_s \neg qU} (1 - Q_{x_r}^*(U))\Big)$$

and the degree to which (X, τ, τ^*) is T_1 is defined as

 $T_1(X,\tau,\tau^*) = \bigwedge \{T_1(x_r,y_s) : x_r, y_s \text{ are distinct fuzzy singletons in } \mathbf{X} \}.$

(c) The degree to which x_r , y_s are T_2 is defined as

$$T_2(x_r, y_s) = \left[\bigvee_{U \cap V = \underline{0}} \{Q_{x_r}(U) \land (1 - Q_{y_s}^*(V))\} \land \bigvee_{U \cap V = \underline{0}} \{Q_{y_s}(V) \land (1 - Q_{x_r}^*(U))\}\right]$$

and the degree to which (X, τ, τ^*) is T_2 is defined as

$$T_2(X,\tau,\tau^*) = \bigwedge \{T_2(x_r, y_s) : x_r, y_s \text{ are distinct fuzzy singletons in X} \}$$

It is easy to see that

- (i) $T_2(X, \tau, \tau^*) \leq T_1(X, \tau, \tau^*) \leq T_0(X, \tau, \tau^*)$ but none of the implications are reversible.
- (ii) If $\tau^*(U) = (1 \tau(U)), \forall U \in I^X$ then the above definitions reduce to corresponding definitions in Yue and Fang [15].

Definition 3.2. An IFTS $(X, \tau, \tau*)$ is called

- (a) α - T_0 , $\alpha \in I_0$ (resp. α^* - T_0 , $\alpha \in I_1$) if there exists $U \in I^X$ such that $\tau(U) \ge \alpha$, $\tau^*(U) \le (1 \alpha)$ (resp. $\tau(U) > \alpha$, $\tau^*(U) < (1 \alpha)$) such that U(x) = 1, U(y) = 0 or U(x) = 0, U(y) = 1, $\forall x, y \in X$, $x \neq y$.
- (b) α - $T_1, \alpha \in I_0$ (resp. α^* - $T_1, \alpha \in I_1$) if there exist $U, V \in I^X$ such that $\tau(U) \ge \alpha, \tau^*(V) \le (1 \alpha)$ (resp. $\tau(U) > \alpha, \tau^*(V) < (1 \alpha)$) such that U(x) = 1, U(y) = 0 and $V(x) = 0, V(y) = 1, \forall x, y \in X, x \neq y$.

(c) α - T_2 (i.e. α -Hausdorff), $\alpha \in I_0$ (resp. α^* - T_2 i.e. α^* -Hausdorff, $\alpha \in I_1$) if \forall distinct pair of fuzzy points x_r , y_s in X, there exist $U, V \in I^X$ such that $\tau(U) \ge \alpha$, $\tau^*(V) \le (1 - \alpha)$ (resp. $\tau(U) > \alpha$, $\tau^*(V) < (1 - \alpha)$), $x_r \in U$, $y_s \in V$ and $U \cap V = \underline{0}$.

The following propositions can be easily verified.

Proposition 3.1. An IFTS (X, τ, τ^*) is α - T_i iff BFTS $(X, \tau_\alpha, \tau_\alpha^*)$ is T_i , i = 0, 1, 2.

Proposition 3.2. An IFTS (X, τ, τ^*) is α -Hausdorff, $\alpha \in I_0$ (resp. α^* -Hausdorff, $\alpha \in I_1$) iff \forall distinct pair of fuzzy singletons x_r , y_s in X, there exist $U, V \in I^X$ such that $\tau(U) \geq \alpha$, $\tau^*(V) \leq (1 - \alpha)$ (resp. $\tau(U) > \alpha, \tau^*(V) < (1 - \alpha)$), $x_r q U, y_s q V$ and $U \cap V = \underline{0}$.

Proposition 3.3. If an IFTS (X, τ, τ^*) is α - $T_i, \alpha \in I_0$ (resp. α^* - $T_i, \alpha \in I_1$) then $T_i(X, \tau, \tau^*) \ge \alpha$, $i \in [0, 1, 2]$.

Proof: Let us first suppose that (X, τ, τ^*) is α - T_0 then $(X, \tau_\alpha, \tau_\alpha^*)$ is T_0 . Choose any two distinct fuzzy singletons x_r , y_s in X. Then $x \neq y$ and therefore there exists $U \in \tau_\alpha \cup \tau_\alpha^*$ such that U(x) = 1, U(y) = 0 or U(x) = 0, U(y) = 1. Let $U \in \tau_\alpha$ and be such that U(x) = 1, U(y) = 0. Then $\tau(U) \geq \alpha$, $x_r q U$, $y_s \neg q U \Rightarrow \bigvee_{y_s \neg q U} Q_{x_r}(U) \geq \alpha \Rightarrow T_0(x_r, y_s) \geq \alpha$ $\Rightarrow \bigwedge \{T_0(x_r, y_s) : x_r, y_s \text{ are distinct fuzzy singletons in } X\} \geq \alpha$ i.e. $T_0(X, \tau, \tau^*) \geq \alpha$. Now let $U \in \tau_\alpha$ be such that U(x) = 0, U(y) = 1. Then $\bigvee_{x_r \neg q U} Q_{y_s}(U) \geq \alpha \Rightarrow T_0(x_r, y_s) \geq \alpha$ $\Rightarrow T_0(X, \tau, \tau^*) \geq \alpha$. Further if $U \in \tau_\alpha^*$ and is such that U(x) = 1, $U(y) = 0 \Rightarrow Q_{x_r}^*(U) \leq (1-\alpha)$ $\Rightarrow (1 - Q_{x_r}^*(U)) \geq \alpha \Rightarrow \bigvee_{y_s \neg q U} (1 - Q_{x_r}^*)(U) \geq \alpha \Rightarrow T_0(x_r, y_s) \geq \alpha$ and if $U \in \tau_\alpha^*$ such that U(x) = 0, U(y) = 1 then $\bigvee_{x_r \neg q U} (1 - Q_{y_s}^*)(U) \geq \alpha \Rightarrow T_0(x_r, y_s) \geq \alpha$

Next, let (X, τ, τ^*) be α - T_1 . Then, $(X, \tau_\alpha, \tau_\alpha^*)$ is T_1 . Choose any pair of distinct fuzzy singletons x_r , y_s in X. Then $x \neq y$, hence there exist $U \in \tau_\alpha$, $V \in \tau_\alpha^*$ such that U(x) = 1, U(y) = 0, V(x) = 0, V(y) = 1. So we have $x_r q U$, $y_s \neg q U$, $x_r \neg q V$, $y_s q V$, $\tau(U) \geq \alpha$, $\tau^*(V) \leq (1 - \alpha) \Rightarrow \bigvee_{y_s \neg q U} Q_{x_r}(U) \geq \alpha$ and $Q_{y_s}^*(V) \leq (1 - \alpha) \Rightarrow (1 - Q_{y_s}^*(V)) \geq \alpha \Rightarrow \bigvee_{x_r \neg q V} (1 - Q_{y_s}^*)(V) \geq \alpha$. Similarly, for the distinct pair of fuzzy singletons y_s and x_r in X, since $y \neq x$, there exist $U \in \tau_\alpha$, $V \in \tau_\alpha^*$ such that U(x) = 0, U(y) = 1, V(x) = 1, $V(y) = 0 \Rightarrow \bigvee_{x_r \neg q U} Q_{y_s}(U) \geq \alpha$ and $\bigvee_{y_s \neg q V} (1 - Q_{x_r}^*)(V) \geq \alpha$. Therefore, $T_1(x_r, y_s) \geq \alpha \Rightarrow \bigwedge \{T_1(x_r, y_s) : x_r, y_s \text{ are distinct fuzzy singletons in } X\} \geq \alpha$, i.e. $T_1(X, \tau, \tau^*) \geq \alpha$.

Finally, suppose that (X, τ, τ^*) is α - T_2 . Then $(X, \tau_\alpha, \tau_\alpha^*)$ is T_2 . Choose any pair of distinct fuzzy singletons x_r , y_s in X. Then there exist $U \in \tau_\alpha$, $V \in \tau_\alpha^*$ such that $x_r q U$, $y_s q V$ and $U \cap V = \underline{0}$. Hence

$$\bigvee_{U \cap V = \underline{0}} \{ Q_{x_r}(U) \land (1 - Q_{y_s}^*(V)) \} \ge \alpha.$$

Similarly considering the pair of fuzzy singletons y_s , x_r in X, there exist $U_1 \in \tau_{\alpha}$, $V_1 \in \tau_{\alpha}^*$ such that $y_s q U_1$, $x_r q V_1$ and $U_1 \cap V_1 = \underline{0}$. Therefore

$$\bigvee_{U_1 \cap V_1 = \underline{0}} \{ Q_{y_s}(U_1) \land (1 - Q_{x_r}^*(V_1)) \} \ge \alpha.$$

Thus $T_2(x_r, y_s) \ge \alpha \Rightarrow \bigwedge \{T_2(x_r, y_s) : x_r, y_s \text{ are distinct fuzzy singletons in } X\} \ge \alpha$ i.e. $T_1(X, \tau, \tau^*) \ge \alpha$.

On similar lines, it can be proved that if (X, τ, τ^*) is $\alpha^* - T_i$ then $T_i(X, \tau, \tau^*) \ge \alpha$, i = 0, 1, 2.

Proposition 3.4. The separation properties α - T_i (resp. α^* - T_i), i = 0, 1, 2 are hereditary.

The proof is easy and hence is omitted.

Theorem 3.1. Let $\{(X_i, \tau_i, \tau_i^*) : i \in J\}$ be a family of IFTSs. Then, their product IFTS (X, τ, τ^*) is α^* - T_1 iff (X_i, τ_i, τ_i^*) is α^* - T_1 , $\forall i \in J$.

Proof: First let us suppose that each coordinate space (X_i, τ_i, τ_i^*) is $\alpha^* \cdot T_1$. To show that the product IFTS (X, τ, τ^*) is $\alpha^* \cdot T_1$, choose any two distinct points $x, y \in X$. Let $x = \prod x_i$, $y = \prod y_i$. Since $x \neq y$, there exist $j \in J$ such that $x_j \neq y_j$. Now since (X_j, τ_j, τ_j^*) is $\alpha^* \cdot T_1$, there exist $U_j, V_j \in I^{X_j}$ such that $\tau_j(U_j) > \alpha$, $\tau_j^*(V_j) < (1 - \alpha)$, $U_j(x_j) = 1$, $U_j(y_j) = 0$, $V_j(x_j) =$ $0, V_j(y_j) = 1$. Now consider $p_j^{-1}(U_j)$ and $p_j^{-1}(V_j)$. Since p_j is a gp-map, $\tau(p_j^{-1}(U_j)) > \alpha$, $\tau^*(p_j^{-1}(V_j)) < (1 - \alpha)$ and further, we have $p_j^{-1}(U_j)(x) = 1$, $p_j^{-1}(U_j)(y) = 0$, $p_j^{-1}(V_j)(y) = 1$, $p_j^{-1}(V_j)(x) = 0$. Hence (X, τ, τ^*) is $\alpha^* \cdot T_1$.

Conversely, let the product IFTS (X, τ, τ^*) be $\alpha^* \cdot T_1$. To show that (X_j, τ_j, τ_j^*) is $\alpha^* \cdot T_1$, choose any two distinct points x_j, y_j in X_j . Consider the distinct points $x = \Pi x_i, y = \Pi y_i$ in Xwhere $x_i = y_i$ for $i \neq j$ and the *j*-th coordinate of x, y are x_j, y_j , respectively. Then there exist $U, V \in I^X$ such that $\tau(U) > \alpha, \tau^*(V) < (1 - \alpha), U(x) = 1, U(y) = 0, V(x) = 0, V(y) = 1$. Now $\tau(U) = \wedge \{t : U \in T_t\} > \alpha, \tau^*(V) = \vee \{(1 - t) : V \in T_t^*\} \Rightarrow \exists t_1 > \alpha$ such that $U \in T_{t_1}$ and there exist $t_2 > \alpha$ such that $V \in T_{t_2}^*$. Now consider the distinct fuzzy points x_r and y_r . Then there exist basic fuzzy open sets ΠU_i^r and ΠV_i^r in T_{t_1} and T_{t_2} respectively such that $x_r \in \Pi U_i^r \subseteq U$ and $y_r \in \Pi V_i^r \subseteq V$. Hence, $r < \Pi U_i^r(x) \leq U(x), r < \Pi V_i^r(y) \leq V(y)$. Therefore,

$$r < inf\{U_{k_1}^r(x_{k_1}), U_{k_2}^r(x_{k_2}), ..., U_{k_m}^r(x_{k_m})\}$$

$$\tag{1}$$

and

$$r < \inf\{V_{l_1}^r(y_{l_1}), V_{l_2}^r(y_{l_2}), \dots, V_{l_n}^r(y_{l_n})\}.$$
(2)

Now we claim that

$$j \in \{k_1, k_2, \dots, k_m\} \land \{l_1, l_2, \dots, l_n\}.$$
(3)

Since if it is not so, then $x_{l_1} = y_{l_1}, x_{l_2} = y_{l_2}, \dots, x_{l_n} = y_{l_n}$ and hence in view of (2),

$$r < inf\{V_{l_1}^r(x_{l_1}), V_{l_2}^r(x_{l_2}), ..., V_{l_n}^r(x_{l_n})\}$$

Therefore, $\Pi V_i^r(x) > 0$. Hence, V(x) > 0, which is a contradiction. Similarly, it can be shown that U(y) > 0, a contradiction. Thus, $U_j^r(x_j) > r$ and $V_j^r(y_j) > r$ implying that $(x_j)_r \in U_j^r$, $(y_j)_r \in V_j^r$. Now, consider $U_j = \bigcup_{r \in I_0} U_j^r$, $V_j = \bigcup_{r \in I_0} V_j^r$. Then, $U_j(x_j) = 1$, $V_j(y_j) = 1$. Now, it remains to show that $U_j(y_j) = 0$, $V_j(x_j) = 0$. Since U(y) = 0, $\Pi U_i^r(y) = 0 \Rightarrow \inf \{U_{k_1}^r(y_{k_1}), U_{k_2}^r(y_{k_2}), ..., U_{k_m}^r(y_{k_m})\} = 0 \Rightarrow U_j^r(y_j) = 0$ in view of (1), (3) and the fact that $x_i = y_i$ for $i \neq j$, $\forall r \in I_0$. Hence, $U_j(y_j) = x_1 > \alpha$ and $\tau_j^r(V_j^r) \le (1 - t_2) < (1 - \alpha)$. Therefore, $\tau_j(\cup_r U_j^r) \ge \alpha$ and $\tau_j^r(V_j) \le (1 - \alpha)$. Thus, (X, τ_j, τ_j^r) is $\alpha^* \cdot T_1$.

The following theorem can be proved on similar lines.

Theorem 3.2. Let $\{(X_i, \tau_i, \tau_i^*) : i \in J\}$ be a family of IFTSs. Then, their product IFTS (X, τ, τ^*) is α^* - T_0 iff each coordinate space is α^* - T_0 .

Theorem 3.3. Let $\{(X_i, \tau_i, \tau_i^*) : i \in J\}$ be a family of IFTSs. Then their product IFTS (X, τ, τ) is α^* -Hausdorff iff each coordinate space (X_i, τ_i, τ_i^*) is α^* -Hausdorff.

Proof: Let each coordinate space (X_i, τ_i, τ_i^*) be α^* -Hausdorff. Then to show that the product IFTS (X, τ, τ^*) is α^* -Hausdorff, consider any two distinct fuzzy points x_r, y_s in X. Then $x \neq y$. Let $x = \prod x_i$ and $y = \prod y_i$ then there exists $j \in J$ such that $x_j \neq y_j$. Now, consider the distinct fuzzy points $(x_j)_r$ and $(y_j)_s$ in X_j . Since (X_j, τ_j, τ_j^*) is α^* -Hausdorff, there exist $U_j, V_j \in I^{X_j}$ such that $\tau_j(U_J) > \alpha$, $\tau_j^*(V_j) < (1 - \alpha)$ and $(x_j)_r \in U_j$, $(y_j)_s \in V_j$ and $U_j \cap V_j = \underline{0}$.

Let $U = p_i^{-1}(U_j)$ and $V = p_i^{-1}(V_j)$. Then since p_j is a gp-map, $\tau(U) \ge \tau_j(U_j) > \alpha$ and $\tau^*(V) \leq \tau_j^*(V_j) < (1-\alpha)$. Further, $x_r \in p_j^{-1}(U_j), y_s \in p_j^{-1}(V_j), p_j^{-1}(U_j) \cap p_j^{-1}(V_j) = \underline{0}$. Hence, (X, τ, τ^*) is α^* -Hausdorff.

Conversely, let (X, τ, τ^*) be α^* -Hausdorff. To show that (X_j, τ_j, τ_j^*) is α^* -Hausdorff, choose any two distinct fuzzy points $(x_j)_r$, $(y_j)_s$ in X_j . Then, $x_j \neq y_j$. Consider $x = \prod x_i$, $y = \prod y_i$ where $x_i = y_i$ for $i \neq j$ and the j^{th} coordinate of x, y are x_j and y_j respectively. Consider the distinct fuzzy points x_r and y_s in X. Since (X, τ, τ^*) is α^* -Hausdorff, there exist $U, V \in I^X$ such that $\tau(U) > \alpha, \, \tau^*(V) < (1 - \alpha), \, x_r \in U, \, y_s \in V \text{ and } U \cap V = \underline{0}.$

Now $\tau(U) = \bigvee \{t : U \in T_t\} > \alpha$ and $\tau^*(V) = \wedge \{(1-t) : V \in T_t^*\} < (1-\alpha)$ which implies that there exists $t_1 > \alpha$ such that $U \in T_{t_1}$ and there exists $t_2 > \alpha$ such that $V \in T_{t_2}^*$. Since $U \in T_{t_1}$ and $x_r \in U$, there exists a basic fuzzy open set

$$W_1 = p_{k_1}^{-1}(U_{k_1}) \cap p_{k_2}^{-1}(U_{k_2}), \dots, \cap p_{k_m}^{-1}(U_{k_m})$$

in T_{t_1} such that $x_r \in W_1 \subseteq U$ which implies that

$$r < \inf\{p_{k_1}^{-1}(U_{k_1})(x), p_{k_2}^{-1}(U_{k_2})(x), \dots, p_{k_m}^{-1}(U_{k_m})(x)\}$$

i.e.

$$r < inf\{U_{k_1}(x_{k_1}), U_{k_2}(x_{k_2}), ..., U_{k_m}(x_{k_m})\}$$
(4)

Similarly since $y_s \in V$ and $V \in T^*_{t_2}$, there exists a basic fuzzy open set

$$W_2 = p_{l_1}^{-1}(V_{l_1}) \cap p_{l_2}^{-1}(V_{l_2}), \dots, \cap p_{l_n}^{-1}(V_{l_n})$$

in $T_{t_2}^*$ such that $y_s \in W_2 \subseteq V$ which implies that

$$s < inf\{p_{l_1}^{-1}(V_{l_1})(y), p_{l_2}^{-1}(V_{l_2})(y), ..., p_{l_n}^{-1}(V_{l_n})(y)\}$$
$$s < inf\{V_{l_1}(y_{l_1}), V_{l_2}(y_{l_2}), ..., V_{l_n}(y_{l_n})\}$$
(5)

i.e.

that
$$j \in \{k_1, k_2, ..., k_m\} \cap \{l_1, l_2, ..., l_n\}$$
. Since if it not so, then $x_{l_1} = y_{l_1}, x_{l_2} = y_{l_1}$.

Now we claim $y_{l_2}, ..., x_{l_m} = y_{l_m}$. Hence, in view of (5), we have $s < \{V_{l_1}(x_{l_1}), V_{l_2}(x_{l_2}), ..., V_{l_n}(x_{l_n})\} \Rightarrow$ $W_2(x) > 0 \Rightarrow V(x) > 0 \Rightarrow U \cap V(x) > 0$. which is a contradiction to the fact that $U \cap V = \underline{0}$. Hence, $U_j(x_j) > r$, $V_j(y_j) > s \Rightarrow (x_j)_r \in U_j, (y_j)_s \in V_j$. Now we show that $U_j \cap V_j = 0$. If $U_j \cap V_j \neq \underline{0}$, there exists $z_j \in X_j$ such that

$$U_j(z_j) > 0, V_j(z_j) > 0.$$
 (6)

Now, consider $z = \prod z_i$ where $z_i = x_i = y_i$ for $i \neq j$ and the *j*-th coordinate is z_j . Then in view of (4), (5) and (6) we get $W_1(z) > 0$, $W_2(z) > 0$ which implies that $W_1 \cap W_2 \neq \underline{0}$. Therefore, $U \cap V \neq \underline{0}$, again a contradiction. Hence, $U_j \cap V_j = \underline{0}$. Further, $\tau_j(U_j) \ge t_1 > \alpha$ and $\tau_i^*(V_j) \leq (1-t_2) < (1-\alpha)$ showing that (X_j, τ_j, τ_i^*) is α^* -Hausdorff.

Proposition 3.5. Let $\{(X_j, \tau_j, \tau_j^*) : j \in J\}$ be a family of IFTSs, (X, τ, τ^*) be their product IFTS. Let T_t denote the product fuzzy topology $\Pi(T_j)_t$ and let T_t^* denote the product fuzzy topology $\Pi(T_i)_t^*$ on X. Then,

(i)
$$\bigcap_{s < r} T_s = T_r.$$

(ii) $\bigcap_{s < r} T_s^* = T_r^*.$

Proof:

- (i) Since $T_r \subset T_s$, for all s < r, we have $T_r \subseteq \bigcap_{s < r} T_s$. Conversely, $U \in \bigcap_{s < r} T_s \Rightarrow U \in T_s$, $\forall s < r$. Hence, $\tau(U) = \lor \{t : U \in T_t\} \ge s$, for all s < r i.e., $\tau(U) \ge r \Rightarrow U \in T_r$ Therefore, $\bigcap_{s < r} T_s \subseteq T_r$. Thus, $\bigcap_{s < r} T_s = T_r$.
- $\begin{array}{ll} (ii) & T_r^* \subseteq T_s^*, \text{ for all } s < r, \Rightarrow T_r^* \subseteq \bigcap_{s < r} T_s^* \\ & \text{Conversely, let } V \in \bigcap_{s < r} T_s^* \Rightarrow V \in T_s^*, \text{ for all } s < r. \text{ Hence,} \\ & \tau^*(V) = \bigvee \{(1 t) : V \in T_t^*\} \leq (1 s), \text{ for all } s < r \text{ i.e. } \tau^*(V) \leq (1 r) \Rightarrow V \in T_r^*. \\ & \text{Therefore, } \bigcap_{s < r} T_s^* \subseteq T_r^*. \text{ Thus } \bigcap_{s < r} T_s^* = T_r^*. \end{array}$

Theorem 3.4. If $\{(X_j, \tau_j, \tau_j^*) : j \in J\}$ is a family of IFTSs and (X, τ, τ^*) is their product IFTS. Then $\tau_r = \Pi(\tau_j)_r, \tau_r^* = \Pi(\tau_j^*)_r$.

The proof follows from Theorem 2.15, Definition 5.5 of (Mondal and Samanta [6]) and the previous proposition.

Theorem 3.5. Let $\{(X_j, \tau_j, \tau_j^*) : j \in J\}$ be a family of IFTSs and (X, τ, τ^*) be their product IFTS. Then, (X, τ, τ^*) is α - T_i iff each coordinate space (X_j, τ_j, τ_j^*) is α - T_i , i = 0, 1, 2.

Proof: (X, τ, τ^*) is $\alpha - T_i \Leftrightarrow (X, \tau_\alpha, \tau^*_\alpha)$ is T_i $\Leftrightarrow (X, \Pi(\tau_j)_\alpha, \Pi(\tau_j)^*_\alpha)$ is T_i $\Leftrightarrow (X_j, (\tau_j)_\alpha, (\tau_j)^*_\alpha)$ is $T_i, \forall j \in J$ $\Leftrightarrow (X_j, \tau_j, \tau^*_j)$ is $\alpha - T_i, \forall j \in J, i = 0, 1, 2.$

References

- [1] Atanassov, K.T. Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1986) 87–96.
- [2] Chang, C.L. Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968) 182–190.
- [3] Fang, J.*I*-FTOP is isomorphic to *I*-FQN and *I*-AITOP, Fuzzy Sets and Systems 147 (2004) 317–325.
- [4] Kubiak, T. On fuzzy topologies, Ph.D Thesis, A. Mickiewicz, Poznan, Poland, 1985.
- [5] Pu, P.-M. Y.-M. Liu. Fuzzy topology. I. Neighborhood structure of a fuzzy point and Moore-Smith convergence, J. Math. Anal. Appl. 76 (1980) 571-599.
- [6] Mondal, T.K., S.K. Samanta. On intuitionistic gradation of openness, Fuzzy Sets and Systems 131 (2002) 323–336.
- [7] Abu Safiya, A.S., A.A. Fora, M.W. Warner. Fuzzy separation axioms and fuzzy continuity in fuzzy bitopological spaces, Fuzzy Sets and Systems 62 (1994) 367–373.
- [8] Šostak, A.P. On fuzzy topological structure, Rend. Circ. Mat. Palermo (Suppl. Ser. II) 11 (1985) 89–103.

- [9] Srivastava, M., R. Srivastava. On fuzzy pairwise T_0 and fuzzy pairwise T_1 bitopological spaces, Indian J. Pure Appl. Math. 32 (2001) 387–396.
- [10] Srivastava, R., S.N. Lal, and A.K. Srivastava. Fuzzy Hausdorff topological spaces, J. Math. Anal. Appl. 81 (1981) 497-506.
- [11] Srivastava, R., S.N. Lal, A.K. Srivastava. On fuzzy T_0 and R_0 topological spaces, J. Math. Anal. Appl. 136 (1988) 66–73.
- [12] Srivastava, R., S.N. Lal, A.K. Srivastava.On fuzzy T_1 topological spaces, J. Math. Anal. Appl. 136 (1988) 124–130.
- [13] Srivastava, R., M. Srivastava. On pairwise Hausdorff fuzzy bitopological spaces, J. Fuzzy Math. 5 (1997) 553–564.
- [14] Wong, C.K. Fuzzy points and local properties of fuzzy topology, J. Math. Anal. Appl. 46 (1974) 316–328.
- [15] Yue, Y., J. Fang. On separation axioms in *I*-fuzzy topological spaces, Fuzzy Sets and Systems 157 (2006) 780–793.
- [16] Zadeh, L.A. Fuzzy sets, Inform. and Control 8 (1965) 338–353.
- [17] Zadeh, L.A. A fuzzy set theoretic interpretation of linguistic hedges, Memorandum No. ERLM335 University of California, Berkeley (1972).