A measure extension theorem

Petra Mazureková and Beloslav Riečan

Faculty of Natural Sciences

Matej Bel University

Tajovského 40

SK-974 01 Banská Bystrica, Slovakia

and

Mathematical Institute of Slovak Academy of Sciences

Stefánikova 49

SK-81473 Bratislava

e-mail: korcova@fpv.umb.sk, riecan@fpv.umb.sk

Abstract

In the paper continuous set functions are considered where the additional condition is substituted by max-min condition: $\mu(A \cup B) = \max(\mu(A), \mu(B))$, $\mu(A \cap B) = \min(\mu(A), \mu(B))$. For such functions the extension theorem is proved from an algebra to the generalized σ -algebra.

1 Introduction

The notion of maxitive measure was introduced by Shilkret $\mu(A \cup B) = max(\mu(A), \mu(B))$. In our approach we prefer a symmetric notion.

Let \mathcal{R} be an algebra of subsets of space Ω .

We shall study M-measure $\mu: \mathcal{R} \longrightarrow [0,1]$ satisfying the following properties:

- 1. $\mu(\Omega) = 1$, $\mu(\emptyset) = 0$;
- 2. $\mu(A \cup B) = \max(\mu(A), \mu(B)),$ $\mu(A \cap B) = \min(\mu(a), \mu(B))$ for any A,B $\in \mathcal{R}$;
- 3. If $A_n \nearrow A$, $B_n \searrow B$, $A_n, B_n \in \mathcal{R}$, (n=1,2,...), $A, B \in \mathcal{R}$, then $\mu(A_n) \nearrow \mu(A)$ and $\mu(B_n) \searrow \mu(B)$.

Remark 1.1 Let
$$A_n \in \mathcal{R}$$
, $(n = 1, 2, ...)$, $A_n \subset A_{n+1}$ and $\bigcup_{n=1}^{\infty} A_n = A$ then $A_n \nearrow A$.
Let $B_n \in \mathcal{R}$, $(n = 1, 2, ...)$, $B_n \supset B_{n+1}$ and $\bigcap_{n=1}^{\infty} B_n = B$ then $B_n \searrow B$.

The main result of the paper is the following theorem.

Theorem: To any M-measure μ defined on an algebra \mathcal{R} there exists exactly one M-measure $\overline{\mu}$ on $\sigma(\mathcal{R})$ extending μ .

2 Proof of theorem

Denote by \mathcal{R}^+ the family of all sets A that can be presented in the form

$$A = \bigcup_{n=1}^{\infty} A_n, \ A_n \subset A_{n+1}, \ A_n \in \mathcal{R} \ (n = 1, 2, ...).$$

Evidently $\mu(A_n) \leq \mu(A_{n+1}) \leq \mu(\Omega) \leq 1 \ (n = 1, 2, ...)$, hence there exists $\lim_{n \to \infty} (A_n)$.

We want to prove that the limit does not depend on the choice of the sequence (A_n) but only the set A.

Lemma 2.1 Let
$$A_n, B_m \in \mathcal{R}$$
 $(m, n = 1, 2...), A_n \nearrow A, B_m \nearrow A$.
Then $\lim_{n \to \infty} \mu(A_n) = \lim_{m \to \infty} \mu(B_m)$.

Proof.

At first we fix an index m.

Then

$$A_n \cap B_m \nearrow A \cap B_m = B_m$$

hence

$$\mu(B_m) = \lim_{n \to \infty} \mu(A_n \cap B_m) \le \lim_{n \to \infty} \mu(A_n).$$

Since the inequality holds for any m, we obtain

$$\lim_{m \to \infty} \mu(B_m) \le \lim_{n \to \infty} \mu(A_n).$$

Now we fix an index n and analogue we obtained

$$\lim_{m \to \infty} \mu(A_n) \le \lim_{n \to \infty} \mu(B_m),$$

hence $\lim_{n \to \infty} \mu(A_n) = \lim_{m \to \infty} \mu(B_m)$.

Definition 2.2 Denote by \mathcal{R}^+ the set of all $A \subset \Omega$ such that there exist $A_n \in \mathcal{R}$ $(n = 1, 2, ...), A_n \nearrow A$. Then we define $\mu^+(A) = \lim_{n \to \infty} \mu(A_n)$.

Proposition 2.3 If $A_n \in \mathcal{R}^+$, $A_n \nearrow A$, then $A \in \mathcal{R}^+$ and $\lim_{n \to \infty} \mu^+(A_n) = \mu^+(A)$.

Proof.

Since $A_n \in \mathcal{R}^+$, there are $A_{n,i} \in \mathcal{R}$ such that $A_{n,i} \nearrow A_n$, $(i \longrightarrow \infty)$. Put

$$B_n = \bigcup_{i=1}^n A_{i,n} \ (n = 1, 2, ...).$$

Then $B_n \in \mathcal{R} \ (n = 1, 2, ..),$

$$B_n = \bigcup_{i=1}^n A_{i,n} \subset \bigcup_{i=1}^n A_{i,n+1} \subset \bigcup_{i=1}^{n+1} A_{i,n+1} = B_{n+1}.$$

Moreover

$$B_n = \bigcup_{i=1}^n A_{i,n} \subset \bigcup_{i=1}^n A_i = A_n \subset A,$$

hence

$$\mu^{+}(A) = \lim_{n \to \infty} \mu^{+}(B_n) \le \lim_{n \to \infty} \mu^{+}(A_n) \le \mu^{+}(A).$$

Since μ is self dual, also the dual notion can be defined.

Definition 2.4 Denote by \mathcal{R}^- the set of all $A \in \Omega$ such that there exists $A_n \in \mathcal{R}$ $(n = 1, 2, ...), A_n \setminus A$. Then we define $\mu^-(A) = \lim_{n \to \infty} \mu(A_n)$.

Proposition 2.5 If $A_n \in \mathcal{R}^-$, $A_n \setminus A$, then $A \in \mathcal{R}^-$, and $\lim_{n \to \infty} \mu^-(A_n) = \mu^-(A)$.

Proposition 2.6 If $A, B \in \mathbb{R}^+$, $C, D \in \mathbb{R}^-$ then

$$A \cup B \in \mathcal{R}^+, A \cap B \in \mathcal{R}^+, C \cup D \in \mathcal{R}^-, C \cap D \in \mathcal{R}^-$$

and

$$\mu^{+}(A \cup B) = \max(\mu^{+}(A), \mu^{+}(B)), \quad \mu^{+}(A \cap B) = \min(\mu^{+}(A), \mu^{+}(B))$$

$$\mu^{-}(C \cup D) = \max(\mu^{-}(C), \mu^{-}(D)), \quad \mu^{-}(C \cap D) = \min(\mu^{-}(C), \mu^{-}(D)).$$

Proof

Let $A_n, B_n \in \mathcal{R}, A_n \nearrow A, B_n \nearrow B$.

Then

$$A_n \cup B_n \nearrow A \cup B, \ A_n \cap B_n \nearrow A \cap B$$

and

$$\mu^{+}(A \cup B) = \lim_{n \to \infty} \mu(A_n \cup B_n) = \lim_{n \to \infty} \max(\mu(A_n), \mu(B_n)) = \max(\lim_{n \to \infty} \mu(A_n), \lim_{n \to \infty} \mu(B_n)) = \max(\mu^{+}(A), \mu^{+}(B)).$$

$$\mu^{+}(A \cap B) = \lim_{n \to \infty} \mu(A_n \cap B_n) = \lim_{n \to \infty} \min(\mu(A_n), \mu(B_n)) = \min(\lim_{n \to \infty} \mu(A_n), \lim_{n \to \infty} \mu(B_n)) = \min(\mu^{+}(A), \mu^{+}(B)).$$

The dual assertion can be proved analogously.

Proposition 2.7 If $B \in \mathbb{R}^+$, $C \in \mathbb{R}^-$ and $C \subset B$, then $\mu^-(C) \leq \mu^+(B)$.

Proof.

Let $B_n \in \mathcal{R}, B_n \nearrow B$.

Then

$$C = (C \setminus B_n) \cup (C \cap B_n),$$

hence

$$\mu^{-}(C) = \mu^{-}((C \setminus B_n) \cup (C \cap B_n)) = \max(\mu^{-}(C \setminus B_n), \mu^{-}(C \cap B_n)) \le$$
$$\le \max(\mu^{-}(C \setminus B_n), \mu(B_n)) \le \max(\mu^{-}(C \setminus B_n), \mu^{+}(B)).$$

On the other hand

$$C \setminus B_n \in \mathcal{R}$$
, then $C \setminus B_n \setminus C \setminus B$ and $C \setminus B = \emptyset$.

Therefore

$$\mu^{-}(C) \le \max(\lim_{n \to \infty} \mu^{-}(C \setminus B_n), \mu^{+}(B)) = \max(0, \mu^{+}(B)) = \mu^{+}(B).$$

Definition 2.8 For any $A \subset \Omega$ put

$$\mu^*(A) = \inf\{\mu^+(B); B \in \mathcal{R}^+, B \supset A\},\$$

$$\mu_*(A) = \sup\{\mu^-(C); C \in \mathcal{R}^-, C \subset A\}.$$

Proposition 2.9 For any $A \in \Omega$ $\mu_*(A) \leq \mu^*(A)$.

Proof.

Let $C \in \mathcal{R}^-$, $C \subset A$, $B \in \mathcal{R}^+$, $B \supset A$.

By Prop. 2.7 $\mu^-(C) \le \mu^+(B)$, hence

$$\mu_*(A) = \sup\{\mu^-(C); C \in \mathcal{R}^-, C \subset A\} \le \mu^+(B)$$

and therefore

$$\mu_*(A) \le \inf\{\mu^+(B); B \in \mathcal{R}^+, A \subset B\} = \mu^*(A).$$

Proposition 2.10 If $A_n \nearrow A$, $B_n \searrow B$, then $\mu^*(A_n) \nearrow \mu^*(A)$, $\mu_*(B_n) \searrow \mu_*(B)$.

Proof.

Since $A_n \subset A$ evidently $\mu^*(A_n) \leq \mu^*(A)$, hence $\lim_{n \to \infty} \mu^*(A_n) \leq \mu^*(A)$. On the other hand to any $\varepsilon > 0$ there exists $B_n \in \mathcal{R}^+$, $B_n \supset A_n$ such that

$$\mu^*(A_n) + \varepsilon > \mu^+(B_n).$$

Put
$$C_n = \bigcup_{i=1}^n (B_i)$$
. Then $C_n \in \mathcal{R}^+$, $C_n \supset \bigcup_{i=1}^n (A_i) = A_n$ and

$$\mu^+(C_n) = \max_{1 \le i \le n} \mu^+(B_i) < \max_{1 \le i \le n} (\mu^*(A_i) + \varepsilon) = \max_{1 \le i \le n} (\mu^*(A_i)) + \varepsilon = \mu^*(A_n) + \varepsilon.$$

Therefore

$$\mu^*(A) \le \mu^+(\bigcup_{n=1}^{\infty} C_n) = \lim_{n \to \infty} \mu^+(C_n) \le \lim_{n \to \infty} \mu^*(A_n) + \varepsilon.$$

Since the inequality holds for $\varepsilon > 0$, we obtain

$$\mu^*(A) \le \lim_{n \to \infty} \mu^*(A_n)$$

Then it is true, that

$$\lim_{n \to \infty} \mu^*(A_n) = \mu^*(A).$$

The dual assertion can be proved similarly.

Definition 2.11 Define $\mathcal{M} = \{A \in \Omega; \ \mu^*(A) = \mu_*(A)\}.$

Proposition 2.12 \mathcal{M} is a monotone family, i.e. $A_n, B_n \in \mathcal{M}$ $(n = 1, 2, ...), A_n \nearrow A$, $B_n \searrow B$ implies that $A \in \mathcal{M}$, $B \in \mathcal{M}$.

Proof.

We have

$$\mu_*(A) \le \mu^*(A) = \lim_{n \to \infty} \mu^*(A_n) = \lim_{n \to \infty} \mu_*(A_n) \le \mu_*(A)$$

hence

$$\mu_*(A) = \mu^*(A), \ A \in \mathcal{M}.$$

Similarly

$$\mu_*(B) = \lim_{n \to \infty} \mu_*(B_n) = \lim_{n \to \infty} \mu^*(B_n) \ge \mu^*(B)$$

Then also $B \in \mathcal{M}$.

Proposition 2.13 $\mathcal{R} \subset \mathcal{M}$, μ^* is an extension of μ .

Proof.

Evidently $\mu(A) = \mu^+(A) = \mu^-(A)$. Therefore $\mu^*(A) \le \mu^+(A) = \mu^-(A) \le \mu_*(A)$, but also $\mu^*(A) \ge \mu_*(A)$.

Then $\mu(A) = \mu^*(A) = \mu_*(A)$.

Proposition 2.14 If $\sigma(\mathcal{R})$ is the σ -algebra generated by \mathcal{R} , then $\sigma(\mathcal{R}) \subset \mathcal{M}$.

Proof.

We have proved that $\mathcal{R} \subset \mathcal{M}, \mathcal{M}$ is a monotone family. Therefore \mathcal{M} contains the monotone family generated by \mathcal{R} , and this family coincides with $\sigma(\mathcal{R})$.

Proposition 2.15 Let $\overline{\mu} = \mu^* \mid \sigma(\mathcal{R})$. Then $\overline{\mu}$ is an M-measure, $\overline{\mu} \mid \mathcal{R} = \mu$.

Proof.

Since $\overline{\mu} = \mu^* \mid \sigma(\mathcal{R}), \ \mu = \mu^* \mid \mathcal{R}$, we have $\mu = \overline{\mu} \mid \mathcal{R}$, hence $\overline{\mu}(\Omega) = 1, \ \overline{\mu}(\emptyset) = 0$. By Prop.2.12 we obtain that $\overline{\mu}$ is continuous.

Finally to any $A, B \in \sigma(\mathcal{R})$ and any $\varepsilon > 0$ there are $C \in \mathcal{R}^+$, $D \in \mathcal{R}^+$, $C \supset A$, $D \supset B$ such that

$$\overline{\mu}(A) + \varepsilon = \mu^*(A) + \varepsilon > \mu^+(C),$$

$$\overline{\mu}(B) + \varepsilon = \mu^*(B) + \varepsilon > \mu^+(D).$$

Therefore

$$\max(\overline{\mu}(A) + \varepsilon, \ \overline{\mu}(B) + \varepsilon) > \max(\mu^+(C), \mu^+(D)) =$$
$$= \mu^+(C \cup D) \ge \mu^+(A \cup B) = \overline{\mu}(A \cup B).$$

Since the inequality holds for any $\varepsilon > 0$, we have $\max(\overline{\mu}(A), \overline{\mu}(B)) \ge \overline{\mu}(A \cup B)$. The opposite inequality can be proved similarly.

Then we obtained, that

$$\max(\overline{\mu}(A), \ \overline{\mu}(B)) = \overline{\mu}(A \cup B)$$

and

$$\min(\overline{\mu}(A), \ \overline{\mu}(B)) = \overline{\mu}(A \cap B)$$

Proof of Theorem

The existence of $\overline{\mu}$ was proved in *Proposition 2.15*, now we shall prove the uniqueness. Let $\nu : \sigma(\mathcal{R}) \longrightarrow [0,1]$ be an M-measure $\nu \mid \mathcal{R} = \mu$. Put

$$\mathcal{K} = \{ A \in \sigma(\mathcal{R}); \nu(A) = \overline{\mu}(A) \}.$$

By the assumption $\mathcal{K} \supset \mathcal{R}$. Evidently \mathcal{K} is a monotone family. Therefore \mathcal{K} contains the monotone family generated by \mathcal{R} , but this family coincides with $\sigma(\mathcal{R})$. Hence there exists exactly one measure $\overline{\mu}$ on $\sigma(\mathcal{R})$, which is extending of measure μ .

Acknowledgements: This paper was supported by Grant VEGA 1/2002/05.

References

- [1] Krachounov, M.: Intuitionistic probability and intuitionistic fuzzy sets. In: First International Workshop on Intuitionistic Fuzzy Sets, Generalized Nets and Knowledge Engeneering (E. El-Darzi. R. Atanassov, P. Chountas eds.) Univ.of Westminister, London 2006, 18-24.
- [2] Pap, E.: Pseudodditive measures and their applications. In: Handbook of Measure Theory (E. Pap ed.). Elsevier, Amsterdam 2002, 1403 1465.
- [3] Riečanová, Z.: About δ -additive and δ -maxitive measures. Math. Slovaca 32, 1982, 413 -436.
- [4] Shilkret, N.: Maxitive measure and integration. Indag.Math. 33 (1971), 109 116.