Notes on Intuitionistic Fuzzy Sets Print ISSN 1310–4926, Online ISSN 2367–8283 Vol. 22, 2016, No. 1, 63–77

$(\in, \in \lor q)$ -Intuitionistic fuzzy prime ideals of BCK-algebras

S. R. Barbhuiya¹ and D. K. Basnet²

¹ Department of Mathematics, Srikishan Sarda College Hailakandi, Assam–788 151, India e-mail: saidurbarbhuiya@gmail.com

² Department of Mathematical Sciences, Tezpur University Tezpur, Assam-784 028, India e-mail: dbasnet@tezu.ernet.in

Received: 15 October 2015	Revised: 23 April 2016	Accepted: 28 April 2016
---------------------------	------------------------	-------------------------

Abstract: In this paper, we introduced the concept of $(\in, \in \lor q)$ -intuitionistic fuzzification of prime ideals in commutative BCK-algebras. We state and proved some theorems in $(\in, \in \lor q)$ -intuitionistic fuzzy prime ideals in commutative BCK-algebras. Characterization of $(\in, \in \lor q)$ -intuitionistic fuzzy prime ideal and conditions for $(\in, \in \lor q)$ -intuitionistic fuzzy prime ideal to be an (\in, \in) -intuitionistic fuzzy prime ideal are provided. Relation between $(\in, \in \lor q)$ -intuitionistic fuzzy prime ideal and $(\in \lor q)$ -intuitionistic fuzzy level prime ideal were discussed.

Keywords: BCK-algebra, Prime ideal, Fuzzy prime ideal, $(\in, \in \lor q)$ -Intuitionistic fuzzy prime ideal.

AMS Classification: 06F35, 03E72, 03G25, 11R44.

1 Introduction

The concept of fuzzy sets was first initiated by Zadeh [20] in 1965. Since then these ideas have been applied to other algebraic structures such as group, semigroup, ring, vector spaces, etc. Imai and Iseki [10] introduced BCK-algebras as a generalization of notion of the concept of set theoretic difference and propositional calculus and in the same year Iseki [11] introduced the notion of BCI-algebra.

It is known that the class of BCK-algebra is a proper sub class of the class of BCI-algebras. Iseki [12] introduced the concept of prime ideal in commutative BCK-algebras. In [2], Ahsan et al. studied the theory of ideals in particular, prime ideals of a commutative BCK-algebras. Completely fuzzy prime ideals of distributed lattices was studied by Attallah [4] and Koguep et al. [13] discussed fuzzy ideals in hyperlattices. The concept of prime fuzzy ideal was first introduced by Swamy and Raju [16]. In [17, 18], Jun and Xin have studied fuzzy prime ideals and invertible fuzzy ideals in BCK-algebras. Abdullah [1] introduced the notion of intuitionistic fuzzy prime ideals of commutative BCK-algebras. The concept of fuzzy point introduced by Ming and Ming in [14] and also they introduced the idea of relation "belongs to" and "quasi coincident with" between fuzzy point and fuzzy set. Murali [15] proposed a definition of a fuzzy point belonging to fuzzy subset under natural equivalence on fuzzy subset. Bhakat and Das [8,9] used the relation of "belongs to" and "quasi-coincident" between fuzzy point and fuzzy set to introduced the concept of $(\in, \in \lor q)$ -fuzzy subgroup, $(\in, \in \lor q)$ -fuzzy subring and $(\in \lor q)$ -level subset. Basnet and Singh [5] introduced ($\in, \in \lor q$)-fuzzy ideals of BG-algebra in 2011 and some properties of $(\in, \in \lor q)$ -fuzzy ideals of d-algebra was discussed by Barbhuiya and Choudhury [6]. In [7], Barbhuiya introduced $(\in, \in \forall q)$ -intuitionistic fuzzy ideals of BCK/BCI-algebras. It is now natural to investigate similar type of generalisation of the existing fuzzy subsystem with other algebraic structure. In this paper, we introduced the notion of $(\in, \in \lor q)$ -intuitionistic fuzzy prime ideals of commutative BCK-algebras and got some interesting results.

2 Preliminaries

Definition 2.1. [1,17,18] An algebra (X, *, 0) of type (2, 0) is called a BCK-algebra if it satisfies the following axioms:

(i) ((x * y) * (x * z)) * (z * y) = 0;
(ii) (x * (x * y)) * y = 0;
(iii) x * x = 0;
(iv) 0 * x = 0;
(v) x * y = 0 and y * x = 0 ⇒ x = y for all x, y, z ∈ X.
We can define a partial ordering " ≤ " on X by x ≤ y iff x * y = 0

Definition 2.2. [1, 17, 18] A BCK-algebra X is said to be commutative if it satisfies the identity $x \land y = y \land x$ where $x \land y = y * (y * x) \forall x, y \in X$. In a commutative BCK-algebra, it is known that $x \land y$ is the greatest lower bound of x and y.

In a BCK-algebra X, the following hold:

(i) x * 0 = x; (ii) (x * y) * z = (x * z) * y; (iii) $x * y \le x$; (iv) $(x * y) * z \le (x * z) * (y * z)$; (v) $x \le y$ implies $x * z \le y * z$ and $z * y \le z * x$.

Definition 2.3. [19] A nonempty subset I of a BCK-algebra X is called an ideal of X if

(i) $0 \in I$; (ii) $x * y \in I$ and $y \in I \Rightarrow x \in I$ for all $x, y \in X$.

Definition 2.4. [19] A fuzzy set μ in BCK-algebra X is called a fuzzy ideal of X if it satisfies the following axioms:

(i) $\mu(0) \ge \mu(x)$; (ii) $\mu(x) \ge \min\{\mu(x * y), \mu(y)\}$ for all $x, y \in X$.

Definition 2.5. [1] An ideal I of a commutative BCK-algebra X is said to be prime if $x \land y \in I \Rightarrow x \in I$ or $x \in I$.

Definition 2.6. [18] A non-constant fuzzy ideal μ of a commutative BCK-algebra X is said to be fuzzy prime if $\mu(x \land y) \leq \max\{\mu(x), \mu(y)\}$ for all $x, y \in X$. Since $x \land y \leq x, y$ and μ is order reversing, it follows that $\mu(x) \leq \mu(x \land y)$ and $\mu(y) \leq \mu(x \land y)$ Therefore, a non-constant fuzzy ideal μ of a commutative BCK-algebra X is fuzzy prime iff $\mu(x \land y) = \max\{\mu(x), \mu(y)\}$ for all $x, y \in X$ or equivalently $\mu(x \land y) = \mu(x)$ or $\mu(y)$ for all $x, y \in X$.

Definition 2.7. [3] An intuitionistic fuzzy set (IFS) A in a non-empty set X is an object of the form $A = \{\langle x, \mu_A(x), \nu_A(x) \rangle | x \in X\}$ where $\mu_A : X \to [0, 1]$ and $\nu_A : X \to [0, 1]$ with the condition $0 \le \mu_A(x) + \nu_A(x) \le 1, \forall x \in X$. The numbers $\mu_A(x)$ and $\nu_A(x)$ denote respectively the degree of membership and the degree of non membership of the element x in the set A. For the sake of simplicity, we shall use the symbol $A = (\mu_A, \nu_A)$ for the intuitionistic fuzzy set $A = \{\langle x, \mu_A(x), \nu_A(x) \rangle | x \in X\}.$

Definition 2.8. [3,7] If $A = \{\langle x, \mu_A(x), \nu_A(x) \rangle | x \in X\}$ and $B = \{\langle x, \mu_B(x), \nu_B(x) \rangle | x \in X\}$ be any two IFS of a set X then: $A \subseteq B$ iff for all $x \in X, \mu_A(x) \leq \mu_B(x)$ and $\nu_A(x) \geq \nu_B(x)$; A = B iff for all $x \in X, \mu_A(x) = \mu_B(x)$ and $\nu_A(x) = \nu_B(x)$; $A \cap B = \{\langle x, (\mu_A \cap \mu_B)(x), (\nu_A \cup \nu_B)(x) \rangle | x \in X\}$, where $(\mu_A \cap \mu_B)(x) = \min\{\mu_A(x), \mu_B(x)\}$ and $(\nu_A \cup \nu_B)(x) = \max\{\nu_A(x), \nu_B(x)\}$; $A \cup B = \{\langle x, (\mu_A \cup \mu_B)(x), (\nu_A \cap \nu_B)(x) \rangle | x \in X\}$, where $(\mu_A \cup \mu_B)(x), (\nu_A \cap \nu_B)(x) \rangle | x \in X\}$, where $(\mu_A \cap \mu_B)(x) = \min\{\mu_A(x), \mu_B(x)\}$ and $(\nu_A \cup \mu_B)(x) = \max\{\mu_A(x), \mu_B(x)\}$ and $(\nu_A \cap \nu_B)(x) = \min\{\nu_A(x), \nu_B(x)\}$.

Definition 2.9. [7] An intuitionistic fuzzy set $A = (\mu_A, \nu_A)$ of a BCK-algebra X is said to be an intuitionistic fuzzy ideal of X if

(i) $\mu_A(0) \ge \mu_A(x)$ (ii) $\nu_A(0) \le \nu_A(x)$ (iii) $\mu_A(x) \ge \min \{\mu_A(x * y), \mu_A(y)\}$ (iv) $\nu_A(x) \le \max \{\nu_A(x * y), \nu_A(y)\} \quad \forall x, y \in X.$

Definition 2.10. [1] An intuitionistic fuzzy set $A = (\mu_A, \nu_A)$ of a BCK-algebra X is called an intuitionistic fuzzy prime ideal of X if

(i) $\mu_A(x \wedge y) \leq \max\{\mu_A(x), \mu_A(y)\}$ (ii) $\nu_A(x \wedge y) \geq \min\{\nu_A(x), \nu_A(y)\} \quad \forall x, y \in X.$

Definition 2.11. [8] A fuzzy set μ of the form

$$\mu(y) = \begin{cases} t & \text{if } y = x, t \in (0,1] \\ 0 & \text{if } y \neq x \end{cases}$$

is called a fuzzy point with support x and value t and it is denoted by x_t .

Definition 2.12. [8] Let μ be a fuzzy set in X and x_t be a fuzzy point then (i) If $\mu(x) \ge t$ then we say x_t belongs to μ and write $x_t \in \mu$. (ii) If $\mu(x) + t > 1$ then we say x_t quasi coincidence with μ and write $x_tq\mu$. (iii) If $x_t \in \lor q\mu \Leftrightarrow x_t \in \mu$ or $x_tq\mu$. (iv) If $x_t \in \land q\mu \Leftrightarrow x_t \in \mu$ and $x_tq\mu$.

The symbol $x_t \overline{\alpha} \mu$ means $x_t \alpha \mu$ does not hold and $\overline{\in \land q}$ means $\overline{\in} \lor \overline{q}$.

For a fuzzy point x_t and a fuzzy set μ in set X, Pu and Liu [14] gave meaning to the symbol $x_t \alpha \mu$ where $\alpha \in \{ \in, q, \in \forall q, \in \land q \}$

Definition 2.13. [19] A fuzzy set μ of a BCK-algebra X is said to be (α, β) -fuzzy ideal of X, where $\alpha, \beta \in \{ \in, q, \in \lor q, \in \land q \}$ and $\alpha \neq \in \land q$ if (i) $x_t \alpha \mu \Rightarrow 0_t \beta \mu$; (ii) $(x * y)_t, y_s \alpha \mu \Rightarrow x_{m(t,s)} \beta \mu$ for all $x, y \in X$, where $t, s \in (0, 1]$.

Example 2.14. Consider BCK-algebra $X = \{0, x, y, z\}$ with the following Cayley table.

*	0	x	y	z	w
0	0	0	0	0	0
x	x	0	x	0	x
y	y	y	0	y	0
z	z	x	z	0	z
w	w	w	y	w	0

Define a map $\mu : X \to [0, 1]$ by $\mu(0) = 0.7, \mu(x) = \mu(z) = 0.3, \mu(y) = \mu(w) = 0.2$, then μ is an $(\in, \in \lor q)$ -fuzzy ideal X.

Definition 2.15. [7] A fuzzy point x_t is said to belong to (respectively, be quasi coincident with) an intuitionistic fuzzy set $A = (\mu_A, \nu_A)$ written as $x_t \in A$ (respectively, x_tqA) if $\mu_A(x) \ge t$ (respectively, $\mu_A(x) + t > 1$ and $\nu_A(x) < t$ (respectively, $\nu_A(x) + t \le 1$). If $x_t \in A$ or x_tqA , then we write $x_t \in \lor qA$.

Note: $x_t \in A \Rightarrow x_t \in \mu_A$ and $x_t \in \overline{\nu}_A$ and $x_t q A \Rightarrow x_t q \mu_A$ and $x_t \overline{q} \nu_A$.

Definition 2.16. [7] An intuitionistic fuzzy set $A = (\mu_A, \nu_A)$ of a BCK-algebra X is said to be an (α, β) -intuitionistic fuzzy ideal of X, Where $\alpha \neq \in \land q$ if

(i) $x_t \alpha \mu_A \Rightarrow 0_t \beta \mu_A$; (ii) $x_t \overline{\alpha} \nu_A \Rightarrow 0_t \overline{\beta} \nu_A$; (iii) $(x * y)_t, y_s \alpha \mu_A \Rightarrow x_{m(t,s)} \beta \mu_A$ where $m(t,s) = \min(t,s)$ and $t, s \in (0,1]$; (iv) $(x * y)_t, y_s \overline{\alpha} \nu_A \Rightarrow x_{M(t,s)} \overline{\beta} \nu_A$ where $M(t,s) = \max(t,s)$ and $t, s \in (0,1]$ for all $x, y \in X$.

Definition 2.17. An (α, β) -fuzzy ideal μ of a BCK-algebra X is said to be (α, β) -fuzzy prime ideal of X, Where $\alpha \neq \in \land q$ if $(x \land y)_t \alpha \mu \Rightarrow x_t \beta \mu$ or $y_t \beta \mu$ for all $x, y \in X$ where $t, s \in (0, 1]$.

Definition 2.18. An $(\in, \in \lor q)$ -fuzzy ideal μ of a BCK-algebra X is said to be $(\in, \in \lor q)$ -fuzzy prime ideal of X if $(x \land y)_t \in \mu \Rightarrow x_t \in \lor q\mu$ or $y_t \in \lor q\mu$ for all $x, y \in X$, where $t \in (0, 1]$.

3 $(\in, \in \lor q)$ -Intuitionistic fuzzy prime ideals of BCK-algebra

Now onwards, let X denote a commutative BCK-algebra, unless otherwise stated.

Definition 3.1. An $(\in, \in \lor q)$ -intuitionistic fuzzy ideal $A = (\mu_A, \nu_A)$ of a BCK-algebra X is said to be an $(\in, \in \lor q)$ -intuitionistic fuzzy prime ideal of X if (i) $(x \land y)_t \in \mu_A \Rightarrow x_t \in \lor q\mu_A$ or $y_t \in \lor q\mu_A$; (ii) $(x \land y)_s \in \overline{\lor} \nu_A \Rightarrow x_s \in \overline{\lor} q\nu_A$ or $y_s \in \overline{\lor} q\nu_A$ for all $x, y \in X$, where $t, s \in (0, 1]$.

Theorem 3.2. An intuitionistic fuzzy ideal $A = (\mu_A, \nu_A)$ of a BCK-algebra X is an intuitionistic fuzzy prime ideal if and only if A is an (\in, \in) -intuitionistic fuzzy prime ideal.

Proof. Let $A = (\mu_A, \nu_A)$ be an intuitionistic fuzzy prime ideal. Therefore,

 $\mu_A(x \wedge y) \leq \max\{\mu_A(x), \mu_A(y)\} \text{ and } \nu_A(x \wedge y) \geq \min\{\nu_A(x), \nu_A(y)\}. \text{ Let}$ $(x \wedge y)_t \in \mu_A \Rightarrow \mu_A(x \wedge y) \geq t$ $\Rightarrow \max\{\mu_A(x), \mu_A(y)\} \geq \mu_A(x \wedge y) \geq t$ $\Rightarrow \mu_A(x) \geq t \text{ or } \mu_A(y) \geq t$ $\Rightarrow x_t \in \mu_A \text{ or } y_t \in \mu_A$ $(x \wedge y)_t \in \mu_A \Rightarrow x_t \in \mu \text{ or } y_t \in \mu.$ (3.1)

Again, let

$$(x \wedge y)_t \overline{\in} \nu_A \Rightarrow \nu_A(x \wedge y) < t$$

$$\Rightarrow \min\{\nu_A(x), \nu_A(y)\} \le \nu_A(x \wedge y) < t$$

$$\Rightarrow \nu_A(x) < t \text{ or } \nu_A(y) < t$$

$$\Rightarrow x_t \overline{\in} \nu_A \text{ or } y_t \overline{\in} \nu_A$$

$$(x \wedge y)_t \overline{\in} \nu_A \Rightarrow x_t \overline{\in} \nu \text{ or } y_t \overline{\in} \nu.$$
(3.2)

Therefore, from equations (3.1) and (3.2), $A = (\mu_A, \nu_A)$ is an (\in, \in) -intuitionistic fuzzy prime ideal of X.

Conversely, Let $A = (\mu_A, \nu_A)$ be an (\in, \in) -intuitionistic fuzzy prime ideal of X. Let $x, y \in X$ and $\mu_A(x \land y) = t$ where $t \in [0, 1]$, then $\mu_A(x \land y) \ge t \Rightarrow (x \land y)_t \in \mu_A$ $\Rightarrow x_t \in \mu_A$ or $y_t \in \mu_A$ $\Rightarrow \mu_A(x) \ge t$ or $\mu_A(y) \ge t$

$$\Rightarrow \max\{\mu_A(x), \mu_A(y)\} \ge t = \mu_A(x \land y) \tag{3.3}$$

Again let $x, y \in X$ such that $\nu_A(x \wedge y) = s$ where $s \in [0, 1]$, then $\nu_A(x \wedge y) \leq s$ $\Rightarrow \nu_A(x \wedge y) < s + \delta \Rightarrow (x \wedge y)_{s+\delta} \in \nu_A$ where δ is arbitrary small $\Rightarrow x_{s+\delta} \in \nu_A$ or $y_{s+\delta} \in \nu_A$ $\Rightarrow \nu_A(x) < s + \delta$ or $\nu_A(y) < s + \delta$ $\Rightarrow \nu_A(x) \leq s$ or $\nu_A(y) \leq s$ [Since δ is arbitrary] $\Rightarrow \min\{\nu_A(x), \nu_A(y)\} < s = \nu_A(x \wedge y)$ (3.4) Therefore, from equations (3.3) and (3.4) $A = (\mu_A, \nu_A)$ is an intuitionistic fuzzy prime ideal of X.

Theorem 3.3. An intuitionistic fuzzy set $A = (\mu_A, \nu_A)$ is a (q, q)-intuitionistic fuzzy prime ideal if and only if $A = (\mu_A, \nu_A)$ is an (\in, \in) -intuitionistic fuzzy prime ideal.

Proof. Let $A = (\mu_A, \nu_A)$ be a (q, q)-intuitionistic fuzzy ideal of a BCK-algebra X. Let $x, y \in X$ such that

 $(x \wedge y)_{t} \in \mu_{A}$ $\Rightarrow \mu_{A}(x \wedge y) \geq t$ $\Rightarrow \mu_{A}(x \wedge y) + \delta > t \text{ [where } \delta \text{ is arbitrary small]}$ $\Rightarrow \mu_{A}(x \wedge y) + \delta - t + 1 > 1$ $\Rightarrow (x \wedge y)_{\delta - t + 1}q\mu_{A}.$ Since $A = (\mu_{A}, \nu_{A})$ be a (q, q)- intuitionistic fuzzy ideal. Therefore, we have $x_{\delta - t + 1}q\mu_{A} \text{ or } y_{\delta - t + 1}q\mu_{A}$ $\Rightarrow \mu_{A}(x) + \delta - t + 1 > 1 \text{ or } \mu_{A}(y) + \delta - t + 1 > 1$ $\Rightarrow \mu_{A}(x) + \delta \geq t \text{ or } \mu_{A}(y) + \delta \geq t$ $\Rightarrow \mu_{A}(x) \geq t \text{ or } \mu_{A}(y) \geq t \text{ [Since } \delta \text{ is arbitrary]}$ $\Rightarrow x_{t} \in \mu_{A} \text{ or } y_{t} \in \mu_{A}.$ Therefore, $(x \wedge y)_{t} \in \mu_{A} \Rightarrow x_{t} \in \mu_{A} \text{ or } y_{t} \in \mu_{A}.$ (3.5)

Let
$$x, y \in X$$
 such that $(x \wedge y)_s \overline{\in} \nu_A$
 $\Rightarrow \nu_A(x \wedge y) < s$
 $\Rightarrow \nu_A(x \wedge y) \leq s - \delta$
 $\Rightarrow \nu_A(x \wedge y) + \delta - s + 1 \leq 1$
 $\Rightarrow (x \wedge y)_{1+\delta-s} \overline{q} \nu_A$.
Since $A = (\mu_A, \nu_A)$ be a (q, q) -intuitionistic fuzzy ideal. Therefore, we have
 $x_{1+\delta-s} \overline{q} \nu_A$ or $y_{1+\delta-s} \overline{q} \nu_A$
 $\Rightarrow \nu_A(x) + \delta - s + 1 \leq 1$ or $\nu_A(y) + \delta - s + 1 \leq 1$
 $\Rightarrow \nu_A(x) \leq s - \delta$ or $\nu_A(y) \leq s - \delta$
 $\Rightarrow \nu_A(x) < s$ or $\nu_A(y) \leq s - \delta$
 $\Rightarrow \nu_A(x) < s$ or $\nu_A(y) < s$ [Since δ is arbitrary]
 $\Rightarrow x_s \overline{\in} \nu_A$ or $y_s \overline{\in} \nu_A$.
Therefore,
 $(x \wedge y)_s \overline{\in} \nu_A \Rightarrow x_s \overline{\in} \nu_A$ or $y_s \overline{\in} \nu_A$ (3.6)

Therefore, from equations (3.5) and (3.6) $A = (\mu_A, \nu_A)$ is an (\in, \in) -intuitionistic fuzzy prime ideal of X.

Conversely, assume $A = (\mu_A, \nu_A)$ is an (\in, \in) -intuitionistic fuzzy prime ideal of X. Let $(x \land y)_t q \mu_A$ $\Rightarrow \mu_A(x \land y) + t > 1$ $\Rightarrow \mu_A(x \land y) > 1 - t$ $\Rightarrow \mu_A(x \land y) \ge \delta - t + 1 > 1 - t$ [where $\delta > 0$ is arbitrary] $\Rightarrow (x \land y)_{\delta - t + 1} \in \mu_A$. Since $A = (\mu_A, \nu_A)$ is an (\in, \in) -intuitionistic fuzzy prime ideal of X. Therefore, we have $x_{\delta-t+1} \in \mu_A$ or $y_{\delta-t+1} \in \mu_A$ $\Rightarrow \mu_A(x) \ge \delta - t + 1 > 1 - t$ or $\mu(y) \ge \delta - t + 1 > 1 - t$ $\Rightarrow \mu_A(x) > 1 - t$ or $\mu_A(y) > 1 - t$ $\Rightarrow \mu_A(x) + t > 1$ or $\mu_A(y) + t > 1$ $\Rightarrow x_t q \mu_A$ or $y_t q \mu_A$. Therefore, $(x \land y)_t \overline{q} \mu_A \Rightarrow x_t q \mu_A$ or $y_t q \mu_A$ (3.7) Let $(x \land y)_t \overline{q} \nu_A$ $\Rightarrow \nu_A(x \land y) + t \le 1$

 $\Rightarrow \nu_A(x \land y) + t \leq 1$ $\Rightarrow \nu_A(x \land y) \leq 1 - t$ $\Rightarrow \nu_A(x \land y) < \delta - t + 1 < 1 - t \text{ [where } \delta > 0 \text{ is arbitrary]}$ $\Rightarrow (x \land y)_{1+\delta-t} \overline{\in} \nu_A.$ Since $A = (\mu_A, \nu_A)$ is an (\in, \in) -intuitionistic fuzzy prime ideal of X. Therefore, we have $x_{1+\delta-t} \overline{\in} \nu_A$ or $y_{1+\delta-t} \overline{\in} \nu_A$ $\Rightarrow \nu_A(x) < 1 + \delta - t < 1 - t \text{ or } \nu(y) < 1 + \delta - t + 1 < 1 - t$ $\Rightarrow \nu_A(x) \leq 1 - t \text{ or } \nu_A(y) \leq 1 - t$ $\Rightarrow \nu_A(x) + t \leq 1 \text{ or } \nu_A(y) + t \leq 1$ $\Rightarrow x_t \overline{q} \nu_A \text{ or } y_t \overline{q} \nu_A.$ Therefore,

$$(x \wedge y)_t \overline{q} \nu_A \Rightarrow x_t \overline{q} \nu_A \text{ or } y_t \overline{q} \nu_A$$

$$(3.8)$$

Therefore, from equations (3.7) and (3.8) $A = (\mu_A, \nu_A)$ is a (q, q)-intuitionistic fuzzy prime ideal of X.

Remark 3.4. The notion of intuitionistic fuzzy prime ideal, (\in, \in) -intuitionistic fuzzy prime ideal and (q, q)- intuitionistic fuzzy prime ideals are equivalent.

Theorem 3.5. An $(\in, \in \lor q)$)-intuitionistic fuzzy ideal $A = (\mu_A, \nu_A)$ of a BCK-algebra X is an $(\in, \in \lor q)$)-intuitionistic fuzzy prime ideal of X iff

$$\max\{\mu_A(x), \mu_A(y)\} \ge \min\{\mu_A(x \land y), 0.5\} \quad \forall x, y \in X$$
(3.9)

$$\min\{\nu_A(x), \nu_A(y)\} \le \max\{\nu_A(x \land y), 0.5\} \quad \forall x, y \in X$$
(3.10)

Proof. First let $A = (\mu_A, \nu_A)$ be an $(\in, \in \lor q)$)-intuitionistic fuzzy prime ideal of X. To prove conditions (3.9) and (3.10), assume that (3.9) is not valid, then there exists some $x, y \in X$ such that

$$\max\{\mu_A(x), \mu_A(y)\} < \min\{\mu_A(x \land y), 0.5\},\$$

choose a real number t such that

$$\max\{\mu_A(x), \mu_A(y)\} < t < \min\{\mu_A(x \land y), 0.5\},$$
(3.11)

then $t \in (0, 0.5]$ and $\mu_A(x \wedge y) > t \Rightarrow (x \wedge y)_t \in \mu_A$, and also $\mu_A(x) < t$ or $\mu_A(y) < t$, i.e., $x_t \in \mu_A, y_t \in \mu_A$.

Also, $\mu_A(x) + t < 2t < 2 \times 0.5 = 1$ and $\mu_A(y) + t < 2t < 2 \times 0.5 = 1$ i.e., $x_t \overline{q} \mu_A$, $y_t \overline{q} \mu_A$. Hence, $x_t \overline{\in \forall q} \mu_A$, $y_t \overline{\in \forall q} \mu_A$ which is a contradict that $A = (\mu_A, \nu_A)$ is an $(\in, \in \forall q))$ -intuitionistic fuzzy prime ideal. Hence, we must have (3.9).

Assume that (3.10) is not valid, then there exists some $x, y \in X$ such that

$$\min\{\nu_A(x), \nu_A(y)\} > \max\{\nu_A(x \land y), 0.5\}$$

choose a real number t such that

$$\min\{\nu_A(x), \nu_A(y)\} > t > \max\{\nu_A(x \land y), 0.5\}.$$
(3.12)

Then, $t \in (0.5, 1]$ and $\nu_A(x \wedge y) < t \Rightarrow (x \wedge y)_t \in \nu_A$, and also $\nu_A(x) > t$ or $\nu_A(y) > t$ i.e., $x_t \in \nu_A, y_t \in \nu_A$.

Also, $\nu_A(x) + t > 2t > 2 \times 0.5 = 1$ and $\nu_A(y) + t > 2t > 2 \times 0.5 = 1$ i.e., $x_tq\nu_A$, $y_tq\nu_A$. Hence, $x_t \in \lor q\nu_A$, $y_t \in \lor q\nu_A$ which is a contradict that $A = (\mu_A, \nu_A)$ is an $(\in, \in \lor q)$ -intuitionistic fuzzy prime ideal. Hence, we must have (3.10).

Conversely, suppose that conditions (3.9) and (3.10) hold. Let $x, y \in X$ such that $(x \wedge y)_t \in \mu_A$ where $t \in (0, 1]$, i.e., $\mu_A(x \wedge y) \ge t$. Now (3.9) $\Rightarrow \max\{\mu_A(x), \mu_A(y)\} \ge \min\{t, 0.5\}$. Now we have

Case I: Let $t \le 0.5$, then $\max\{\mu_A(x), \mu_A(y)\} \ge t \Rightarrow \mu_A(x) \ge t \text{ or } \mu_A(y) \ge t$ $\Rightarrow x_t \in \mu_A \text{ or } y_t \in \mu_A.$

Case II: Let t > 0.5, then

 $\max\{\mu_A(x), \mu_A(y)\} \ge 0.5 \Rightarrow \mu_A(x) \ge 0.5 \text{ or } \mu_A(y) \ge 0.5$ $\Rightarrow \mu_A(x) + t \ge 0.5 + t > 0.5 + 0.5 = 1 \text{ or } \mu_A(y) + t \ge 0.5 + t > 0.5 + 0.5 = 1$ $\Rightarrow x_t q \mu_A \text{ or } y_t q \mu_A.$

Combining Case I and Case II, we get $x_t \in \forall q\mu_A$ or $y_t \in \forall q\mu_A$. Hence, $(x \land y)_t \in \mu_A \Rightarrow x_t \in \forall q\mu_A$ or $y_t \in \forall q\mu_A$. Again let $(x \land y)_t \in \nu_A$ where $t \in (0, 1]$, i.e., $\nu_A(x \land y) \leq t$. Now (3.10) $\Rightarrow \min\{\nu_A(x), \nu_A(y)\} \leq \max\{t, 0.5\}$. Now we have the following cases:

Case I: Let t > 0.5, then $\min\{\nu_A(x), \nu_A(y)\} < t \Rightarrow \nu_A(x) < t$ or $\nu_A(y) < t \Rightarrow x_t \in \nu_A$ or $y_t \in \nu_A$.

Case II: Let $t \le 0.5$, then $\min\{\nu_A(x), \nu_A(y)\} \le 0.5 \Rightarrow \nu_A(x) \le 0.5$ or $\nu_A(y) \le 0.5$ $\Rightarrow \nu_A(x) + t \le 0.5 + t \le 0.5 + 0.5 = 1$ or $\nu_A(y) + t \le 0.5 + t \le 0.5 + 0.5 = 1$ $\Rightarrow x_t \overline{q} \nu_A$ or $y_t \overline{q} \nu_A$. Combining Case I and Case II, we get $x_t \overline{\in \forall q} \nu_A$ or $y_t \overline{\in \forall q} \nu_A$. Hence, $(x \land y)_t \overline{\in} \nu_A \Rightarrow x_t \overline{\in \forall q} \nu_A$ or $y_t \overline{\in \forall q} \nu_A$. Hence, $A = (\mu_A, \nu_A)$ is an $(\in, \in \lor q)$ -intuitionistic fuzzy prime ideal of X.

Remark 3.6. Every intuitionistic fuzzy prime ideal is an $(\in, \in \lor q)$ -intuitionistic fuzzy prime ideal.

Remark 3.7. Converse of above is not true as seen from the following example.

Example 3.8. Consider the BCK-algebra $X = \{0, x, y, z\}$ with the following Cayley tables.

Table 1: Illustration	n of converse	of Remark 3.6
-----------------------	---------------	---------------

*	0	x	y	z
0	0	0	0	0
x	x	0	0	x
y	y	x	0	y
z	z	z	z	0

\wedge	0	x	y	z
0	0	0	0	0
x	0	x	x	0
y	0	x	y	0
z	0	0	0	z

The intuitionistic fuzzy set $A = (\mu_A, \nu_A)$ in X defined by $\mu_A(0) = 0.6, \mu_A(x) = 0.5, \mu_A(y) = 0.7, \mu_A(z) = 0.56$ and $\nu_A(0) = 0.3, \nu_A(x) = 0.35, \nu_A(y) = 0.4, \nu_A(z) = 0.5$ then $A = (\mu_A, \nu_A)$ is an $(\in, \in \lor q)$ -intuitionistic fuzzy prime ideal X by Theorem 3.5, but not an intuitionistic fuzzy prime ideal of X because $\mu_A(x \land z) = \mu_A(0) = 0.6 > \max\{\mu_A(x), \mu_A(z)\} = \max\{0.5, 0.56\} = 0.56$ and $\nu_A(x \land z) = \nu_A(0) = 0.3 < \min\{\nu_A(x), \nu_A(z)\} = \min\{0.35, 0.0.5\} = 0.35$

Theorem 3.9. If an intuitionistic fuzzy subset $A = (\mu_A, \nu_A)$ of a BCK-algebra X is an $(\in, \in \lor q)$ intuitionistic fuzzy prime ideal of X and $\mu_A(x) < 0.5$, $\nu_A(x) > 0.5 \forall x, y \in X$ then $A = (\mu_A, \nu_A)$ is also an (\in, \in) -intuitionistic fuzzy prime ideal of X.

Proof. Let $A = (\mu_A, \nu_A)$ be an $(\in, \in \lor q)$ -intuitionistic fuzzy prime ideal of X and $\mu_A(x) < 0.5$, $\nu_A(x) > 0.5 \forall x, y \in X$. Let $(x \land y)_t \in \mu_A \implies \mu_A(x \land y) \ge t$ Therefore, $t \le \mu_A(x \land y) < 0.5$ and also $\mu_A(x) < 0.5$, $\mu_A(y) < 0.5$ and t < 0.5 Therefore, $\mu_A(x) + t < 0.5 + 0.5 = 1$ and $\mu_A(y) + t < 0.5 + 0.5 = 1 \Rightarrow x_t \overline{q} \mu_A$ and $y_t \overline{q} \mu_A$.

Again let $(x \wedge y)_t \overline{\in} \nu_A \Rightarrow \nu_A(x \wedge y) \leq t$, Therefore, $t \geq \nu_A(x \wedge y) > 0.5$ and also $\nu_A(x) > 0.5$, $\nu_A(y) > 0.5$ and t > 0.5; Therefore, $\nu_A(x) + t > 0.5 + 0.5 = 1$ and $\nu_A(y) + t > 0.5 + 0.5 = 1$ $\Rightarrow x_t q \nu_A$ and $y_t q \nu_A$. Hence, from above $(x \wedge y)_t \in \mu_A \Rightarrow x_t \overline{q} \mu_A$ and $y_t \overline{q} \mu_A$, $(x \wedge y)_t \overline{\in} \nu_A \Rightarrow x_t q \nu_A$ and $y_t q \nu_A$.

Since $A = (\mu_A, \nu_A)$ is an $(\in, \in \lor q)$ -intuitionistic fuzzy prime ideal, so we must have $(x \land y)_t \in \mu_A \Rightarrow x_t \in \mu_A$ and $y_t \in \mu_A, (x \land y)_t \in \nu_A \Rightarrow x_t \in \nu_A$ and $y_t \in \nu_A$, i.e., $A = (\mu_A, \nu_A)$ is an (\in, \in) -intuitionistic fuzzy prime ideal of X.

Theorem 3.10. An intuitionistic fuzzy set $A = (\mu_A, \nu_A)$ of BCK-algebra X is an $(\in, \in \lor q)$ intuitionistic fuzzy prime ideal of X if and only if the set $(\mu_A)_t = \{x \in X | \mu_A(x) \ge t, t \in (0, 0.5)\}$ and $(\nu_A)_s = \{x \in X | \nu_A(x) < s, s \in (0.5, 1]\}$ are prime ideals of X.

Proof. Assume that $A = (\mu_A, \nu_A)$ is an $(\in, \in \lor q)$ -intuitionistic fuzzy prime ideal of X. Let $t \in (0, 0.5]$ and $x \land y \in (\mu_A)_t$, Therefore, $\mu_A(x \land y) \ge t$. It follows that

$$\max\{\mu_A(x), \mu_A(y)\} \ge \min\{\mu(x \land y), 0.5\} \ge \min\{t, 0.5\} = t,$$

Therefore, $\mu_A(x) \ge t$ or $\mu(y) \ge t$, that is $x \in (\mu_A)_t$, or $y \in (\mu_A)_t$ Therefore, $(\mu_A)_t$ is a prime ideal of X. Let $s \in (0.5, 1]$ and $x \land y \in (\nu_A)_s$. Therefore, $\nu_A(x \land y) < s$. It follows that

 $\min\{\nu_A(x), \nu_A(y)\} \le \max\{\nu_X \land y\}, 0.5\} < \max\{s, 0.5\} = s,$

Therefore, $\nu_A(x) < s$ or $\nu_A(y) < s$, that is $x \in (\nu_A)_s$, or $y \in (\nu_A)_s$ Therefore, $(\nu_A)_s$ is a prime ideal of X.

Conversely, let $A = (\mu_A, \nu_A)$ be an intuitionistic fuzzy set and the sets $(\mu_A)_t = \{x \in X | \mu_A(x) \ge t, t \in (0, 0.5)\}$ and $(\nu_A)_s = \{x \in X | \nu_A(x) < s, s \in (0.5, 1]\}$ are prime ideals of X. To prove $A = (\mu_A, \nu_A)$ is an $(\in, \in \lor q)$ -intuitionistic fuzzy prime ideal of X.

Suppose $A = (\mu_A, \nu_A)$ is not an $(\in, \in \lor q)$ -intuitionistic fuzzy prime ideal of X, then there exists some $a, b \in X$ such that at least one of conditions $\max\{\mu_A(a), \mu_A(b)\} < \min\{\mu_A(a \land b), 0.5\}$ and $\min\{\nu_A(a), \nu_A(b)\} > \max\{\nu_A(a \land b), 0.5\}$ hold.

Suppose $\max\{\mu_A(a), \mu_A(b)\} < \min\{\mu_A(a \land b), 0.5\}$ holds. Then choose t such that

$$\max\{\mu_A(a), \mu_A(b)\} < t < \min\{\mu_A(a \land b), 0.5\}$$
(3.13)

Inequation (3.13) implies $t < \mu_A(a \land b)$ i.e. $a \land b \in (\mu_A)_t$. Since $(\mu_A)_t$ is an ideal, it follows that $a \in (\mu_A)_t$ or $b \in (\mu_A)_t$ i.e., $\mu_A(a) > t$ or $\mu_A(b) > t$, which contradicts (3.13). Therefore, we must have $\max\{\mu_A(x), \mu_A(y)\} \ge \min\{\mu_(x \land y), 0.5\}$.

Again, if $\min\{\nu_A(a), \nu_A(b)\} > \max\{\nu_A(a \land b), 0.5\}$ holds, then choose s such that

$$\min\{\nu_A(a), \nu_A(b)\} > s > \max\{\nu_A(a \land b), 0.5\}$$
(3.14)

Inequation (3.14) implies $s > \mu_A(a \land b)$ i.e., $a \land b \in (\nu_A)_s$. Since $(\nu_A)_s$ is an ideal, it follows that $a \in (\nu_A)_s$ or $b \in (\nu_A)_s$ i.e. $\nu_A(a) < s$ or $\nu_A(b) < s$ which contradicts (3.14). Therefore, we must have $\min\{\nu_A(x), \nu_A(y)\} \le \max\{\nu_A(x \land b), 0.5\}$.

Consequently $A = (\mu_A, \nu_A)$ is an $(\in, \in \lor q)$ -intuitionistic fuzzy prime ideal of X. \Box

Theorem 3.11. Let A be a non-empty subset of a BCK-algebra X. Consider the intuitionistic fuzzy set $A = (\mu_A, \nu_A)$ in X defined by

$$\mu_A(x) = \begin{cases} 1 & \text{if } x \in A, \\ 0 & \text{otherwise} \end{cases} \quad \nu_A(x) = \begin{cases} 0 & \text{if } x \in A, \\ 1 & \text{otherwise} \end{cases}$$

Then A is a prime ideal of X iff $A = (\mu_A, \nu_A)$ is an $(\in, \in \lor q)$ -intuitionistic fuzzy prime ideal of X.

Proof. Let A be a prime ideal of X, then $(\mu_A)_t = \{x \in X | \mu_A(x) \ge t\} \forall t \in (0, 0.5] = A$, and $(\nu_A)_s = \{x \in X | \nu_A(x) \le s\} \forall s \in (0.5, 1] = A$, which is a prime ideal. Hence, by Theorem (3.10) $A = (\mu_A, \nu_A)$ is an $(\in, \in \lor q)$ -intuitionistic fuzzy prime ideal of X.

Conversely, assume that $A = (\mu_A, \nu_A)$ is an $(\in, \in \lor q)$ -intuitionistic fuzzy prime ideal of X. Let $x \land y \in A$, then $\mu_A(x \land y) = 1$.

 $\max\{\mu_A(x), \mu_A(y)\} \ge \min\{\mu_A(x \land y), 0.5\} = \min\{1, 0.5\} = 0.5$ $\Rightarrow \max\{\mu_A(x), \mu_A(y)\} \ge 0.5$ $\Rightarrow \mu_A(x) \ge 0.5 \text{ or } \mu_A(y)\} \ge 0.5$ $\Rightarrow \mu_A(x) = 1 \text{ or } \mu_A(y)\} = 1$ $\Rightarrow x \in A \text{ or } y \in A.$ Again, if $x \land y \in A$, then $\nu_A(x \land y) = 0$ $\min\{\nu_A(x), \nu_A(y)\} \le \max\{\nu_A(x \land y), 0.5\} = \max\{0, 0.5\} = 0.5$ $\Rightarrow \min\{\nu_A(x), \nu_A(y)\} \le 0.5$ $\Rightarrow \nu_A(x) = 0 \text{ or } \nu_A(y) \} = 0$ $\Rightarrow x \in A \text{ or } y \in A.$ Therefore, $x \land y \in A \Rightarrow x \in A \text{ or } y \in A$. Hence, A is a prime ideal of X.

Theorem 3.12. Let A be a prime ideal of X, then there exists an $(\in, \in \lor q)$ -intuitionistic fuzzy prime ideal $A = (\mu_A, \nu_A)$ of X, such that $(\mu_A)_t = (\nu_A)_s = S$ for every $t \in (0, 0.5]$ and $s \in (0.5, 1]$.

Proof. Let $A = (\mu_A, \nu_A)$ be an intuitionistic fuzzy set in X defined by

$$\mu_A(x) = \begin{cases} 1 & \text{if } x \in A, \\ p & \text{otherwise} \end{cases} \quad \nu_A(x) = \begin{cases} 0 & \text{if } x \in A, \\ q & \text{otherwise} \end{cases}$$

for all $x \in X$, where $p < t \in (0, 0.5]$, and $q > s \in (0.5, 1]$, $(\mu_A)_t = \{x \in X | \mu_A(x) \ge t > p\} = A$ and $(\nu_A)_s = \{x \in X | \nu_A(x) < s < q\} = A$. Hence, $(\mu_A)_t = (\nu_A)_s = S$ is a prime ideal. Now if $A = (\mu_A, \nu_A)$ is not an $(\in, \in \lor q)$ -intuitionistic fuzzy prime ideal of X. Then there exists some $a, b \in X$ such that at least one of $\max\{\mu_A(a), \mu_A(b)\} < \min\{\mu_A(a \land b), 0.5\}$ and $\min\{\nu_A(a), \nu_A(b)\} > \max\{\nu_A(a \land b), 0.5\}$ hold.

Suppose that $\max\{\mu_A(a), \mu_A(b)\} < \min\{\mu_A(a \wedge b), 0.5\}$ holds, then choose $t \in (0, 0.5)$ such that

$$\max\{\mu_A(a), \mu_A(b)\} < t < \min\{\mu_A(a \land b), 0.5\}.$$
(3.15)

Therefore, $\mu_A(a \wedge b) \ge t$ for all $a, b \in X \Rightarrow a \wedge b \in (\mu_A)_t = A$, is a prime ideal.

Therefore, $a \in A$ or $b \in A \Rightarrow \mu_A(a) = 1$ or $\mu_A(b) = 1$, which contradicts (3.15). Hence, we must have $\max\{\mu_A(x), \mu_A(y)\} \ge \min\{\mu_A(x \land y), 0.5\}$.

Again, if $\min\{\nu_A(a), \nu_A(b)\} > \max\{\nu_A(a \wedge b), 0.5\}$ holds, then choose $s \in (0.5, 1]$ such that

$$\min\{\nu_A(a), \nu_A(b)\} > s > \max\{\nu_A(a \land b), 0.5\}.$$
(3.16)

Therefore, $\nu_A(a \wedge b) \leq s$ for all $a, b \in X \Rightarrow a \wedge b \in (\nu_A)_s = A$, is a prime ideal. Therefore, $a \in A$ or $b \in A \Rightarrow \nu_A(a) = 0$ or $\nu_A(b) = 0$ which contradicts (3.16) Hence, we must have $\min\{\nu_A(x), \nu_A(y)\} \leq \max\{\nu_A(x \wedge y), 0.5\}$. Hence, $A = (\mu_A, \nu_A)$ is an $(\in, \in \lor q)$ -intuitionistic fuzzy prime ideal of X.

Definition 3.13. Let $A = (\mu_A, \nu_A)$ be an intuitionistic fuzzy set in BCK-algebra X and $t \in (0 1]$, let

$$(\mu_A)_t = \{x \in X | x_t \in \mu_A\} = \{x \in X | \mu_A(x) \ge t\},\$$
$$\langle \mu_A \rangle_t = \{x \in X | x_t q \mu_A\} = \{x \in X | \mu_A(x) + t > 1\},\$$
$$[\mu_A]_t = \{x \in X | x_t \in \lor q \mu_A\} = \{x \in X | \mu_A(x) \ge t \text{ or } \mu_A(x) + t > 1\}.$$

Here $(\mu_A)_t$ is called *t*-level set of μ_A , $\langle \mu_A \rangle_t$ is called *q*-level set of μ_A and $[\mu_A]_t$ is called $(\in \lor q)$ -level set of μ_A . Clearly,

$$[\mu_A]_t = \langle \mu_A \rangle_t \cup (\mu_A)_t$$
$$(\nu_A)_t = \{ x \in X | x_t \in \nu_A \} = \{ x \in X | \nu_A(x) < t \}$$

$$<\nu_A>_t = \{x \in X | x_t \overline{q} \nu_A\} = \{x \in X | \nu_A(x) + t \le 1\}$$
$$[\nu_A]_t = \{x \in X | x_t \overline{\in \forall q} \nu_A\} = \{x \in X | \nu_A(x) < t \text{ or } \nu_A(x) + t \le 1\}$$

Here $(\nu_A)_t$ is called *t*-level set of ν_A , $\langle \nu_A \rangle_t$ is called *q*-level set of ν_A and $[\nu_A]_t$ is called $(\in \lor q)$ -level set of ν_A . Clearly, $[\nu_A]_t = \langle \nu_A \rangle_t \cup (\nu_A)_t$.

Theorem 3.14. Let $A = (\mu_A, \nu_A)$ be a intuitionistic fuzzy set in BCK-algebra X. Then $A = (\mu_A, \nu_A)$ is an $(\in, \in \lor q)$ -intuitionistic fuzzy prime ideal of X iff $[\mu_A]_t$ and $[\nu_A]_t$ are prime ideals of X for all $t \in (0 \ 1]$. We call $[\mu_A]_t$ and $[\nu_A]_t$ as $(\in \lor q)$ -level prime ideals of A.

Proof. Assume that $A = (\mu_A, \nu_A)$ is an $(\in, \in \lor q)$ -intuitionistic fuzzy prime ideal of X. To prove $[\mu_A]_t$ and $[\nu_A]_t$ are prime ideals of X. Let $x \land y \in [\mu_A]_t$ for $t \in (0 \ 1]$ then $(x \land y)_t \in \lor q\mu_A$ then $\mu_A(x \land y) \ge t$ or $\mu_A(x \land y) + t > 1$. (Since $A = (\mu_A, \nu_A)$ is an $(\in, \in \lor q)$ -intuitionistic fuzzy prime ideal.) Therefore, $\max\{\mu_A(x), \mu_A(y)\} \ge \min\{\mu_A(x \land y), 0.5\}$. Now we have the following cases:

$$\begin{aligned} & \operatorname{Case I:} \mu_A(x \wedge y) > t \\ & \max\{\mu_A(x), \mu_A(y)\} \geq \min\{t, 0.5\} \\ & \operatorname{Subcase I:} t > 0.5 \\ & \max\{\mu_A(x), \mu_A(y)\} \geq 0.5 \\ & \Rightarrow \mu_A(x) \geq 0.5 \text{ or } \mu_A(y) \geq 0.5 \\ & \Rightarrow \mu_A(x) + t > 0.5 + 0.5 = 1 \text{ or } \mu_A(y) + t > 0.5 + 0.5 = 1 \\ & \Rightarrow x_t q \mu_A \text{ or } y_t q \mu_A \\ & \operatorname{Subcase II:} t \leq 0.5 \\ & \max\{\mu_A(x), \mu_A(y)\} \geq t \\ & \Rightarrow \mu_A(x) \geq t \text{ or } \mu_A(y) \geq t \\ & \Rightarrow x_t \in \mu_A \text{ or } y_t \in \psi_A \\ & \operatorname{Hence}_*(x \wedge y)_t \in \forall q \mu_A \Rightarrow x_t \in \forall q \mu_A \text{ or } y_t \in \forall q \mu_A. \\ & \operatorname{i.e.}, (x \wedge y)_t \in [\mu_A]_t \Rightarrow x_t \in [\mu_A]_t \text{ or } y_t \in [\mu_A]_t \\ & \operatorname{Case II:} \mu_A(x), \mu_A(y)\} \geq \min\{1 - t, 0.5\} \\ & \operatorname{Subcase II:} t \leq 0.5 \\ & \max\{\mu_A(x), \mu_A(y)\} \geq 0.5 \geq t \\ & \Rightarrow \mu_A(x) \geq t \text{ or } \mu_A(y) \geq t \\ & \Rightarrow x_t \in \mu_A \text{ or } y_t \in \mu_A \\ & \operatorname{Subcase II:} t > 0.5 \\ & \max\{\mu_A(x), \mu_A(y)\} \geq 1 - t \\ & \Rightarrow \mu_A(x) + t \geq 1 \text{ or } \mu_A(y) + t \geq 1 \\ & \Rightarrow x_t q \mu_A \text{ or } y_t q \mu_A. \\ & \operatorname{Hence}_*(x \wedge y)_t \in \forall q \mu_A \Rightarrow x_t \in \forall q \mu_A \text{ or } y_t \in \forall q \mu_A, \text{ i.e.}, (x \wedge y)_t \in [\mu_A]_t \text{ or } y_t \in [\mu_A]_t \text{ or } y_t \in [\mu_A]_t \\ & \operatorname{Hence}_*(x \wedge y)_t \in \forall q \mu_A \Rightarrow x_t \in \forall q \mu_A \text{ or } y_t \in \forall q \mu_A, \text{ i.e.}, (x \wedge y)_t \in [\mu_A]_t \Rightarrow x_t \in [\mu_A]_t \text{ or } y_t \in [\mu_A]_t. \end{aligned}$$

Similarly, we can prove $(x \wedge y)_t \overline{\in} [\nu_A]_t \Rightarrow x_t \overline{\in} [\nu_A]_t$ or $y_t \overline{\in} [\nu_A]_t$, i.e., $[\mu_A]_t, [\nu_A]_t$ both are prime ideals of X.

Conversely, let $A = (\mu_A, \nu_A)$ be an intuitionistic fuzzy set in X and $t \in (0 \ 1]$ such that $[\mu_A]_t$ and $[\nu_A]_t$ is a prime ideal of X. To prove $A = (\mu_A, \nu_A)$ is an $(\in, \in \lor q)$ -intuitionistic fuzzy prime ideal of X. If $A = (\mu_A, \nu_A)$ is not an $(\in, \in \lor q)$ -intuitionistic fuzzy prime ideal of X, then there exist some $a, b \in X$ such that at least one of $\max\{\mu_A(a), \mu_A(b)\} < \min\{\mu_A(a \land y), 0.5\}$ and $\min\{\nu_A(a), \nu_A(b)\} > \max\{\nu_A(a \land y), 0.5\}$ hold. Suppose $\max\{\mu_A(a), \mu_A(b)\} < \min\{\mu_A(a \land y), 0.5\}$ holds. Choose t such that

$$\max\{\mu_A(a), \mu_A(b)\} < t < \min\{\mu_A(a \land b), 0.5\}$$
(3.17)

 $\max\{\mu_A(a), \mu_A(b)\} < t < \min\{\mu_A(a \land b), 0.5\} \text{ then } \mu_A(a \land b) > t \Rightarrow a \land b \in (\mu_A)_t \subseteq [\mu_A]_t \text{ which is a prime ideal } \Rightarrow a \in [\mu_A]_t \text{ or } b \in [\mu_A]_t \Rightarrow \mu_A(a) \ge t \text{ or } \mu_A(a) + t > 1 \text{ or } \mu_A(b) \ge t \text{ or } \mu_A(b) + t > 1, \text{ which contradicts (3.17). Hence, we must have } \max\{\mu_A(x), \mu_A(y)\} \ge \min\{\mu_A(x \land y), 0.5\}, \text{ Again, if } \min\{\nu_A(a), \nu_A(b)\} > \max\{\nu_A(a \land y), 0.5\} \text{ holds. Proceeding as above again we get a contradiction. Hence, we must have } \min\{\nu_A(x), \nu_A(y)\} \le \max\{\nu_A(x \land y), 0.5\}.$

Therefore, $A = (\mu_A, \nu_A)$ is an $(\in, \in \lor q)$ -intuitionistic fuzzy prime ideal of X. \Box

Theorem 3.15. Let $A = (\mu_A, \nu_A)$ and $B = (\mu_B, \nu_B)$ be two $(\in, \in \lor q)$ -intuitionistic fuzzy prime ideals of X. Then $A \cup B$ is an $(\in, \in \lor q)$ -intuitionistic fuzzy prime ideal of X.

Proof. Here $A = (\mu_A, \nu_A)$ and $B = (\mu_B, \nu_B)$ both are $(\in, \in \lor q)$ -intuitionistic fuzzy prime ideals of X. Therefore, $\forall x, y \in X$.

$$\max\{\mu_{A}(x), \mu_{A}(y)\} \ge \min\{\mu_{A}(x \land y), 0.5\}, \\\min\{\nu_{A}(x), \nu_{A}(y)\} \le \max\{\nu_{A}(x \land y), 0.5\}, \\\max\{\mu_{B}(x), \mu_{B}(y)\} \ge \min\{\mu_{B}(x \land y), 0.5\}, \\\min\{\nu_{B}(x), \nu_{B}(y)\} \le \max\{\nu_{B}(x \land y), 0.5\},$$
(3.18)

We have $(A \cup B)(x) = \{ \langle x, (\mu_A \cup \mu_B)(x), (\nu_A \cap \nu_B)(x) \rangle | x \in X \}$, where $(\mu_A \cup \mu_B)(x) = \max\{\mu_A(x), \mu_B(x)\}$ and $(\nu_A \cap \nu_B)(x) = \min\{\nu_A(x), \nu_B(x)\}$.

To prove $A \cup B$ is an $(\in, \in \lor q)$ -intuitionistic fuzzy prime ideal of X. It is enough to show that $\forall x, y \in X$.

$$\max\{(\mu_A \cup \mu_B(x), (\mu_A \cup \mu_B)(y)\} \ge \min\{(\mu_A \cup \mu_B)(x \land y), 0.5\}$$
(3.19)

$$\min\{(\nu_A \cup \nu_B(x), (\nu_A \cup \nu_B)(y)\} \le \max\{(\nu_A \cup \nu_B)(x \land y), 0.5\}$$
(3.20)

Now $\max\{(\mu_A \cup \mu_B)(x), (\mu_A \cup \mu_B)(y)\}\$ = $\max\{\max\{\mu_A(x), \mu_B(x)\}, \max\{\mu_A(y), \mu_B(y)\}\}\$ = $\max\{\max\{\mu_A(x), \mu_A(y)\}, \max\{\mu_B(x), \mu_B(y)\}\}\$ $\geq \max\{\min\{\mu_A(x \land y), 0.5\}, \min\{\mu_B(x \land y), 0.5\}\}$ by (3.18)

$$\Rightarrow \max\{(\mu_A \cup \mu_B)(x), (\mu_A \cup \mu_B)(y)\} \ge \max\{\min\{\mu_A(x \land y), 0.5\}, \min\{\mu_B(x \land y), 0.5\}\}$$
(3.21)

Now we have the following cases:

Case I: $\mu_A(x \wedge y) \leq 0.5$ and $\mu_B(x \wedge y) \leq 0.5$, then

$$(3.21) \Rightarrow \max\{(\mu_A \cup \mu_B)(x), (\mu_A \cup \mu_B)(y)\} \ge \max\{\mu_A(x \land y), \mu_B(x \land y)\}$$
$$\ge (\mu_A \cup \mu_B)(x \land y)$$
$$= \min\{(\mu_A \cup \mu_B)(x \land y), 0.5\}$$

Case II: $\mu_A(x \wedge y) \leq 0.5$ and $\mu_B(x \wedge y) > 0.5$, then

$$(3.21) \Rightarrow \max\{(\mu_A \cup \mu_B)(x), (\mu_A \cup \mu_B)(y)\}\$$

$$\geq \max\{\mu_A(x \land y), 0.5\} = 0.5$$

= min{max{\$\mu_A(x \land y), \mu_B(x \land y)\$}, 0.5}
= min{{(\mu_A \cup \mu_B)(x \land y), 0.5}}

Case III: $\mu_A(x \wedge y) > 0.5$ and $\mu_B(x \wedge y) \le 0.5$

$$(3.21) \Rightarrow \max\{(\mu_A \cup \mu_B)(x), (\mu_A \cup \mu_B)(y)\} \ge$$

$$\geq \max\{0.5, \mu_B(x \land y)\} = 0.5$$

= min{max{\$\mu_A(x \land y), \mu_B(x \land y)\$}, 0.5}
= min{{(\mu_A \cup \mu_B)(x \land y), 0.5}}

Case IV: $\mu_A(x \wedge y) > 0.5$ and $\mu_B(x \wedge y) > 0.5$, then

$$(3.21) \Rightarrow \max\{(\mu_A \cup \mu_B)(x), (\mu_A \cup \mu_B)(y)\} \ge \max\{0.5, 0.5\} = 0.5$$
$$= \min\{\max\{\mu_A(x \land y), \mu_B(x \land y)\}, 0.5\}$$
$$= \min\{(\mu_A \cup \mu_B)(x \land y), 0.5\}$$

Hence, from above, (3.19) holds $\forall x, y \in X$.

Similarly, we can show (3.20) holds $\forall x, y \in X$. Hence, $(A \cup B)$ is an $(\in, \in \lor q)$ -intuitionistic fuzzy prime ideal of X.

Theorem 3.16. Let $\{A_i = (\mu_{A_i}, \nu_{A_i}) | i = 1, 2, ...\}$ be a family of $(\in, \in \lor q)$ -intuitionistic fuzzy prime ideals of X, then $\mu = \bigcup \{A_i : i = 1, 2, ...\}$ is an $(\in, \in \lor q)$ -intuitionistic fuzzy prime ideal of X, where $\bigcup A_i(x) = \{\langle x, \min(\mu_{A_i}(x) : i = 1, 2, 3, ...), \max(\mu_{A_i}(x) : i = 1, 2, 3, ...)\rangle | x \in X\}$.

References

- [1] Abdullah, S. (2014) Intuitionistic fuzzy prime ideals of BCK-algebras, *Annals of Fuzzy Mathematics and Informatics*, 7(4), 661–668.
- [2] Ahsan, J., Deeba, E. Y. & Thaheem, A. B. (1991) On prime ideal of BCK-algebras, *Mathematica Japonica*, 36, 875–882.
- [3] Atanassov, K. T. (1986) Intuitionistic Fuzzy Sets, Fuzzy Sets and Systems, 20, 87–96.
- [4] Attallah, M. (2000) Completely Fuzzy Prime Ideals of distributed lattices, *The Journal of Fuzzy Mathematics*, 8(1), 153–156.

- [5] Basnet, D. K. & Singh, L. B. (2011) $(\in, \in \lor q)$ -fuzzy ideal of *BG*-algebra, *International Journal of Algebra*, 5(15), 703–708.
- [6] Barbhuiya S. R. & Choudhury, K. D. (2014) $(\in, \in \lor q)$ -Fuzzy ideal of *d*-algebra, *International Journal of Mathematics Trends and Technology*, 9(1), 16–26.
- [7] Barbhuiya, S. R. (2015) (\in , $\in \lor q$)-Intuitionistic Fuzzy Ideals of BCK/BCI-algebra, *Notes* on *Intuitionistic Fuzzy Sets*, 21(1), 24–42.
- [8] Bhakat, S. K. & Das, P. (1996) $(\in, \in \lor q)$ -fuzzy subgroup, Fuzzy Sets and Systems, 80, 359–368.
- [9] Bhakat, S. K. (1999) $(\in \forall q)$ -level subset, *Fuzzy Sets and Systems*, 103, 529–533.
- [10] Imai, Y. & Iseki, K. (1966) On Axiom systems of Propositional calculi XIV, Proc. Japan Academy, 42, 19-22.
- [11] Iseki, K. (1966) An algebra related with a propositional calculus, *Proc. Japan Academy*, 42, 26–29.
- [12] Iseki, K. (1975) On some ideals in BCK-algebras, Math. Seminar Notes, 3, 65-70.
- [13] Koguep, B. B. N., Nkuimi, C. & Lele, C. (2008) On Fuzzy Ideals of Hyperlattice, *International Journal of Algebra*, 2(15), 739–750.
- [14] Ming, P. P. & Ming, L. Y. (1980) Fuzzy topology.I., Neighbourhood structure of a fuzzy point and Moore-Smith convergence, J. Maths. Anal. Appl., 76, 571–599.
- [15] Murali, V. (2004) Fuzzy points of equivalent fuzzy subsets, *Information Sciences*, 158, 277–288.
- [16] Swamy, U. M. & Raju, D. V. (1998) Fuzzy ideals and Congruences of lattices, *Fuzzy Sets and Systems*, 95, 249–253.
- [17] Jun, Y. B. & Xin, X. L. (2001) Involutory and invertible fuzzy BCK-algebras, *Fuzzy Sets and Systems*, 117, 463–469.
- [18] Jun, Y. B. & Xin, X. L. (2001) Fuzzy prime ideals and invertible fuzzy ideals in BCKalgebras, *Fuzzy Sets and Systems*, 117, 471–476.
- [19] Jun, Y. B. (2004) On (α, β) -Fuzzy ideals of BCK/BCI-Algebras, *Scientiae Mathematicae Japonicae, online,* 101–105.
- [20] Zadeh, L. A. (1965) Fuzzy sets, Information and Control, 8, 338–353.