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1 Introduction

In [3], 185 intuituinistic fuzzy implications are defined. Five other intuituinistic fuzzy implica-
tions are introduced in [4—10]. Now a new intuituinistic fuzzy implication will be given.
In some definitions we shall use functions sg and sg:

1 ifxz>0 0 ifz>0

sg(x) = , sg(x) =
0 ifxz<0 1 ifz<0



Let everywhere intuitionistic fuzzy truth values of variables x and y be
x = {(a,b), y=cd).
In [3], for the variables x and y operation “conjunction” (&) is defined by:
V(z&y) = (min(a, ¢), max(b, d)).

The pair (a, b) is: a tautology if and only if (iff) a = 1 and b = 0, and is an intuitionistic fuzzy
tautology (IFT) iff a > b.

2 Main results
Let us define
T —191 Y = (a,b) = (c,d) = (sg(a — ¢)8g(d — b),sg(a — c)sg(d — b)).

For brevity, below we will write — instead of —9;.
First, we will show that the definition of the new implication is correct. Let a,b,¢,d € [0, 1]
suchthata +b < 1andc+ d < 1. Then

0 <5g(a—c)5g(d—b) <1,

0 <sg(a—c)sg(d—10b) <1,

and if
X =5g(a — ) 58(d — b) + sg(a — ¢) sg(d — b),

then, we obtain sequentially. If @ > ¢, then sg(a — ¢) = 1 and 8g(a — ¢) = 0, i.e.,
X =0+sg(d—0b) <1

If a < ¢, then, sg(a — ¢) = 0andsg(a — ¢) = 1,i.e., X =5g(d —b) < 1.
Therefore, the definition of the new implication is correct. It generates the following negation.

=(a,b) = (a,b) = (0,1) = (5g(a — 0)5g(1 — b),sg(a — 0) sg(1 — b))

= (s8(a)5g(1 — b),sg(a) sg(1 — b)) = (sg(1 — b),sg(a))
(1,0), ifa=0andb=1
(0,0), ifa=0andb<1
ora>0andb=1
(0,1), ifa>0andb<1

Theorem 1. The new implication —19;:

(a) satisfies v — x as a tautology,

(b) satisfies v — ——x as a tautology;



(c) does not satisfy ——x — x even as an IFT.
Proof. First, we see that

sg(1 - sa(a)) = { fa=0:5l) =

ifa>0:5g(0) =

se(se(1 — b) ={ SR (R)

_ fita=0:sE0)=1
Sg(@_sg(a»_{ ifa>0:5g0)=1

ifa=0:sg(0 0
se(a —sg(a)) :{ ifa>()'ng - —-1) = =0,
ifb=1:5g(0) = _1

@<@<1—b)—b)z{lfb<1 g§§
)=

ifa=0:5g(0
sg(sgla) —a) =< ifa=0:5g(0) =1
if0<a<1:5g(1)=0

ifb=0:5g(0) =1

sgb—ss(1-b) =4 ifb=1:580)=1
if0<b<1:58(1)=0

Then
—(a,b) = ~(s8(1 — b),sg(a)) = (5g(1 —sg(a)),sg(58(1 — b)))

For (a) we obtain:
z =z = (a,b) = (a,b) = (58(0)5g(0), 5g(0) sg(0)) = (1,0).
For (b) we obtain:
r — -z = (a,b) — = (a,b)
= {a,b) — (s8(1 — sg(a)), sg(sg(1 — b))
= (58(a —sg(a))sg(58(1 — b) — b),sg(a — sg(a)) sg(sg(1 — b) — b))
= (5g(s8(1 — b) — 1),0.5g(sg(1 — b) — b)) = (1,0).

For (c) we see directly that
-z — x = ——(a,b) — (a,b)

= (58(1 —sg(a)),sg(sg(1 — b))) — (a,b)
= (58(sg(1 —sg(a)) — a)sg(b —sg(58(1 — b))),sg(58(1 — sg(a)) — a) sg(b — sg(
= (58(s8(1 — sg(a)) — a) 5g(b — sg(58(1 — b)), sg(58(1 — sg(a)) — a) sg(b — sg(
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(for0 <a,b< 1)

1.e., it is not an IFT. O
Theorem 2. The new implication —19,:

(a) satisfies Modus Ponens in tautological sense,
(b) does not satisfy Modus Ponens in the [FT-sense,

(c) satisfies for every two variables x and vy,
(x&(z — y)) =y
in the IFT-sense.

Proof. (a)Let (a, b) be atautology, i.e.,a = 1 and b = 0 and let (a, b) — (c, d) be a tautology, i.e.,
(sg(a—c)5g(d—b) = 1and sg(a—c) sg(d—b) = 0. Then 1 = 5g(1—c)sg(d—0) = 5g(1—c) 58(d),
i.e. 1 =5g(1 — ¢) and hence ¢ = 1 and d = 0. Therefore (c, d) is a tautology.
(b) Let (a,b) = (0,0), i.e., an IFT. Then, (Sg(a — ¢) 5g(d —b), sg(a — ¢) sg(d — b)) will be an IFT,
e.g., for (¢, d) = (0.1,0.2), but the last pair is not an IFT.
(c) we have sequentially:

V((ak(z = 3)) = 9)

— ({a,b) & (FE(a — ) 58(d — b sg(a — ) sg(d — b)) — (e, d)
= (min(a,5g(a — ¢)sg(d — b)), max(b, sg(a — ) sg(d = b))) = (¢, d)
= (sg(min(a,58(a — ¢)5g(d — b)) — ¢)5g(d — max(b, sg(a — ¢) sg(d — b)),
sg(min(a,5g(a — ¢)5g(d — b)) — ¢) sg(d — max(b, sg(a — ¢) sg(d — b)))).
Let

X = 5g(min(a,sg(a — ¢)5g(d — b)) — ¢) Sg(d — max(b,sg(a — c) sg(d — b))

— sg(min(a,8g(a — ¢)8g(d — b)) — ¢) sg(d — max(b,sg(a — ¢) sg(d — b))).

If a > ¢, then
X = 8g(min(a,0) — ¢)sg(d — max(b,sg(d — b)) — sg(min(a,0) — ¢) sg(d — max(b,sg(d — b))

— 58(—c) 5(d — max(b,s(d — b)) — se(—c) se(d — max(b, sg(d — b))
= 5g(d — max(b,sg(d — b)) > 0.

If a < ¢, then
X = 5g(min(a,sg(d — b)) — ¢)s5g(d — max(b, 0)) — sg(min(a,5g(d — b)) — ¢) sg(d — max(b,0))

= 5g(min(a,5g(d — b)) — ¢)5g(d — b)) — sg(min(a,5g(d — b)) — ¢) sg(d - b).



If d > b, then
X =5g(min(a,0) — ¢).0 — sg(min(a, 1) —¢) = 0 — sg(a — ¢) = 0.
If d < b, then
X =sg(min(a, 1) — ¢) — sg(min(a, 1) — ¢).0 =5g(a — ¢) = 1,

1.e., the expression is an IFT. L]

Following [3], let us define for x

oz = (a,1 —a).
Theorem 3. The new implication —19; satisfies the formula
Oz —y) — (0Dx— Oy) (%)
as a tautology.
Proof. We obtain sequentially
Oz —y) — (0Dx— Oy)
= 0({(a,b) = (¢,d)) — (O{a,b) — O{c,d))
((58(a — c)sg(d — b),sg(a — ¢)sg(d = b)) = ((a,1 —a) = (¢,1 = ¢))

— ((a—c) 5E(d—b), 1-7E(a—c) 5E(d—b)) — (FE(a—c) FE(1—c—1+a), sg(a—c) sg(1—c—1+a))
= (sgla — ¢)sg(d = b),1 —5g(a — ¢)5g(d — b)) = (sg(a — ¢)sg(a — ¢),sg(a — ¢)sg(a — ¢))
(because 5g(p) 5g(p) = 58(p) and sg(p) sg(p) = sg(p) for each p € [0, 1])
sg(a —c)sg(d —b),1 —5g(a — ¢)5g(d — b)) — (58(a — ¢),sg(a —¢))
sg(a —c)sg(d — b) —5g(a — ¢)) 5g(sg(a — ¢) — 1 +5g(a — ¢)5g(d — b)),
sg(a —c)8g(d — b) —5g(a — ¢)) sg(sg(a — ¢) — 1 +5g(a — ¢)5g(d — b))).

= 0

Let
X = (sg(sg(a — ¢)sg(d — b) —5g(a — ¢))5g(sg(a — ¢) — 1 +5g(a — ¢)5g(d — b)),

sg(sg(a — ¢)sg(d — b) —5g(a — ¢)) sg(sg(a — ¢) — 1 +5g(a — ¢)5g(d — b))).
If a > ¢, then

z = (58(0.58(d — b) — 0)5g(1 — 1+ 0.5g(d — b)), 58(0.58(d — b) — 0)) sg(1 — 1 +5g(d — b)))

= (58(0) 58(0),5(0) sg(sg(d — b))) = (1,0).
If a < ¢, then

X = (se(se(d = b) — 1)sg(=1 +5g(d - b)), sg(58(d — b) — 1) sg(~1 +5g(d — b)))
(because 5g(d — b) < 1)
X = (58(0),sg(sg(d = b) = 1)) = (1,0).

Therefore formula (x) is a tautology. Hence, it is an IFT, too. [

5



3

Conclusion

In this paper we have introduced the 191-st intuitionistic fuzzy implication, and have shown that

it has intuitionistic but not classical behaviour. Several of its properties were formulated and

proved. In a future research, new properties of the new implications will be studied.

Open Problem: In [2] six Cartesian products are defined (the last of them was published in [1]).

For which index j the j-th Cartesian product satisfies equality

(A —191 B) X C = (A X C) —191 (B X C)

for every three IFSs A, B, C?
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