A SET-THEORETICAL OPERATION OVER INTUITIONISTIC FUZZY SETS

Beloslav Riećan¹ and Krassimir T. Atanassov²

¹ Faculty of Natural Sciences, Matej Bel University
Department of Mathematics
Tajovského 40

974 01 Banská Bystrica, Slovakia

and

Mathematical Institute of Slovak Acad. of Sciences

Štefánikova 49

SK-81473 Bratislava

e-mails: riecan@mat.savba.sk and riecan@fpv.umb.sk

 2 CLBME - Bulgarian Academy of Sciences, Sofia-1113, P.O.Box 12 e-mail: krat@bas.bq

Let a set E be fixed. The Intuitionistic Fuzzy Set (IFS) A in E is defined by (see, e.g., [1]):

$$A = \{ \langle x, \mu_A(x), \nu_A(x) \rangle | x \in E \},\$$

where functions $\mu_A: E \to [0,1]$ and $\nu_A: E \to [0,1]$ define the degree of membership and the degree of non-membership of the element $x \in E$, respectively, and for every $x \in E$:

$$0 \le \mu_A(x) + \nu_A(x) \le 1.$$

Let for every $x \in E$:

$$\pi_A(x) = 1 - \mu_A(x) - \nu_A(x).$$

Therefore, function π determines the degree of uncertainty.

Let us define the *empty IFS*, the *totally uncertain IFS*, and the *unit IFS* (see [1]) by:

$$O^* = \{ \langle x, 0, 1 \rangle | x \in E \},\$$

$$U^* = \{ \langle x, 0, 0 \rangle | x \in E \},\$$

$$E^* = \{ \langle x, 1, 0 \rangle | x \in E \}.$$

Different relations and operations are introduced over the IFSs. Some of them are the following

$$A \subset B \quad \text{iff} \quad (\forall x \in E)(\mu_A(x) \leq \mu_B(x) \& \nu_A(x) \geq \nu_B(x)),$$

$$A = B \quad \text{iff} \quad (\forall x \in E)(\mu_A(x) = \mu_B(x) \& \nu_A(x) = \nu_B(x)),$$

$$\overline{A} \qquad = \qquad \{\langle x, \nu_A(x), \mu_A(x) \rangle | x \in E\},$$

$$A \cap B \qquad = \qquad \{\langle x, \min(\mu_A(x), \mu_B(x)), \max(\nu_A(x), \nu_B(x)) \rangle | x \in E\},$$

$$A \cup B \qquad = \qquad \{\langle x, \max(\mu_A(x), \mu_B(x)), \min(\nu_A(x), \nu_B(x)) \rangle | x \in E\},$$

$$A + B = \{ \langle x, \mu_A(x) + \mu_B(x) - \mu_A(x) \cdot \mu_B(x), \nu_A(x) \cdot \nu_B(x) \rangle | x \in E \},$$

$$A \cdot B = \{ \langle x, \mu_A(x) \cdot \mu_B(x), \nu_A(x) + \nu_B(x) - \nu_A(x) \cdot \nu_B(x) \rangle | x \in E \},$$

$$A \cdot B = \{ \langle x, \frac{\mu_A(x) + \mu_B(x)}{2}, \frac{\nu_A(x) + \nu_B(x)}{2} \rangle | x \in E \}.$$

In this short remark we introduce a new operator, defined over IFSs. It is an analogous of operations "substraction" and "division" and has the form for every two given IFSs A and B:

$$A|B = \{\langle \min(\mu_A(x), \nu_B(x)), \max(\mu_B(x), \nu_A(x)) \rangle | x \in E\}.$$

First, we must check that in a result of the operation we obtain an IFS. Really, for two given IFSs A and B and for each $x \in E$, if $\mu_B(x) \le \nu_A(x)$, then

$$\min(\mu_A(x), \nu_B(x)) + \max(\mu_B(x), \nu_A(x)) = \min(\mu_A(x), \nu_B(x)) + \nu_A(x) \le \mu_A(x) + \nu_A(x) \le 1;$$
 if $\mu_B(x) > \nu_A(x)$, then

$$\min(\mu_A(x), \nu_B(x)) + \max(\mu_B(x), \nu_A(x)) = \min(\mu_A(x), \nu_B(x)) + \mu_B(x) \le \nu_B(x) + \nu_A(x) \le 1.$$

By similar way we can prove the following assertions.

Theorem 1: For every two IFSs A and B:

- (a) $A|E^* = O^*$,
- (b) $A|O^* = A$,
- (c) $E^*|A = \overline{A}$,
- (d) $O^*|A = O^*$,
- (e) $(A|B) \cap C = (A \cap C)|B = A \cap (C|B)$,
- (f) $(A|B) \cup C = (A \cup C) \cap \overline{B|C} = (A \cup C)|(B|C),$
- (g) $(A \cap B)|C = (A|C) \cap (B|C)$,
- (h) $(A \cup B)|C = (A|C) \cup (B|C)$.

Obviously

$$O^*|U^* = O^*, \ O^*|E^* = O^*, \ U^*|O^* = U^*,$$

 $U^*|E^* = O^*, \ E^*|O^* = E^*, \ E^*|U^* = O^*.$

Two open problems at the moment are the following:

- 1. Are there relations between operations "-" and ":" from one side and operation "|" from other?
- 2. Are there relations between operations "+" and "." from one side and operation "|" from other?

Theorem 2: For every three IFSs A, B and C:

- (a) (A|B)|C = (A|C)|B,
- (b) $(A|C) \cap B = A \cap (B|C)$,
- (c) $\overline{A|B} = \overline{A \cap \overline{B}} = \overline{A} \cup B$.

References:

[1] K. Atanassov, *Intuitionistic Fuzzy Sets*, Springer, Heidelberg, 1991.