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1. Introduction

The specific growth rate of the fed-batch processes determines the nomi-
nal biotechnological condition [14, [16]. The complexity of the biotechnological
fermentation process makes difficult the determination of the “best” process pa-
rameters. The incomplete information sometimes is compensated by the use
of imprecise human estimations [&, [12, [13]. People’s preferences contain char-
acteristics of subjective and probabilistic uncertainty. This makes difficult the
mathematical incorporation of human preferences in complex systems. The ne-
cessity of a merger of empirical knowledge with mathematical exactness and
descriptions causes difficulties. Possible approach for solution of these problems
is the stochastic approximation (|1, 4, 5]). The uncertainty of the subjective
preferences could be viewed as a noise which can be eliminated as typical for
the stochastic approximation procedures. A main requirement of the stochastic
assessment is the analytical presentation of the qualitative nature of the human’s
preferences and notions (|1, [12, [18]).

Our experience is that the human estimation of the process parameters of
a cultivation process contains uncertainty in the range from 10% to 30%. Here
a mathematical utility evaluation procedure for elimination of the uncertainty
in the decision-maker’s (DM) preferences and evaluation of the DM’s utility is
proposed |1, [12, [15, [18]. The approach permits iterative and precise evaluation
of the “best” growth rate of the fed-batch process in agreement with the DM’s
preferences as maximum of this utility function [15]. In the paper is presented
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mathematical methodology that is useful for dealing with the uncertainty of
human behavior and judgment in complex control problems and mathematical
description of the complex system “technologist-fed-batch process” . The dia-
logue “DM - computer” realizes a machine learning on the base of the DMs
preferences.

2. Description of fed-batch extended Monod kinetic model

Mathematical unstructured models of fed-batch process can be written based
on mass balance equations [14, [19, 20]. Unstructured models take cell mass as
a uniform quality without internal dynamic. The reaction rates depend only
upon the macroscopic conditions in the liquid phase of the bioreactor. Below
we investigate an extended form Wang-Monod model |20]. In Monod kinetic
model the acetate and the ethanol production are included [16, 19, 20]. In the
case of E-coli cultivation the equation describing the ethanol production can be
omitted. The dynamics of the specific growth rate in the modification proposed
by Wang in Wang-Monod model is described as a first order lag process with a
rate constant in response to the deviation in the growth rate [20]:
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where X is the concentration of biomass, [g/l]; S - the concentration of
substrate (glucose), [g/l]; V - bioreactor volume, [l]; F- substrate feed rate
(control input), [h™1]; Sy - substrate concentration in the feed, [g/1]; tmaz-
maximum specific growth rate, [h™!]; Kg - saturation constant, [g/1]; k, k2
and k3 - constants, [g/g]; m-coeflicient [-]; E- the concentration of ethanol,
[g/1]; A - the concentration of actate, [g/1]. We preserve the notation U(-) fot
the criteria for optimization (a unimodal polynomial utility functionof degree
6 in this investigation|1d, [16]. The system parameters are as follows: p,, =
0.59[h~1], Kg = 0.045 [g/1], m = 3 [-], So = 100 [g/1], k2 = 3.79 [-], k3 = 1/71
[, kg = 50 [-], Frmaz = 0.59 [h71], Viuae = 1 [I]. The 50 equation describes
the production of ethanol (E). The last equation describes the production of
acetate (A). This equation is dynamically equivalent to the first one after the
implementation of a simple transformation (X = (1/ks)A). The initial state



variables are taken as follows:

X;(0) = 0.99; S5(0) = 0.01; 5(0) = 0.1; E(0) = 0.01; V;(0) = 0.5.

3. Value and Utility Functions

We begin with the simplest case, the value functions ([8,[12]). Let X be the
set of alternatives (X C R™). A “value” function is a function u*(-) for which
it is fulfilled ( Keeney & Raiffa, 1976):

(z,y) € X2 2 = y) & (u™(x) > u"(y)) (2)

The decision maker’s (DM’s) preferences over X are expressed by (>). A
value function gives us only the possibilities for determination of the maxi-
mum or minimum of a solution. The analytical presentation of a value function
could be used in optimal control problem for description and control of complex
dynamical biotechnological problems. Mathematical expectations with value
functions are not possible. The description of a utility function is more difficult.
Let X be a set of alternatives and P is a subset of discrete probability distri-
butions over X. A utility function is any function wu(-) for which it is fulfilled

(I8]):
(p-q (p,g €eP?) & ((/u(-) dp > /U(-) dq) , PEP, qu) (3)

According to Von Neumann and Morgenstern the above formula means that the
mathematical expectation of u(-) is a quantitative measure in the interval scale
with regard to the expert’s preferences for probability distributions P over X
(8, 12, [18]). The DM’s preferences over P, including those over X, (X C P)
are expressed by(>-). The indifference realtion ~ is defined as

(z~y) & (@ -y)V(z=<y).

It is well known that the existence of an utility function u(-) over X determines
the “preference” relaton (>) as a as a negatively transitive and asymmetric one

(I&])

Proposition 1. If the relation () is negatively transitive and asymmetric, the
“indifferenece” relation (~) is transitive.

Corollary 1. If the relation (>) is negatively transitive and reflexive, the “in-
differenece” relation (~) is an “equivalence” [8] .

Every discrete probability distribution over X is called a “lottery”. We de-
note the lottery as (z,y, a) where « is the probability of the appearance of the
alternative 2 and (1—«)- the probability of the alternative y. The most used ap-
proach in assessment of the utility uses the following comparisons: z ~ (z,y, a),
where (z = z = y), a € [0,1], (z,y,2) € X3 (|7, 12, 1§]). The weak points of



these approaches are the so called “certainty effect” and “probability distortion”
identified by Kahneman and Tversky ( [10,[11,113] ). The determination of the
best alternative z and the worst alternative y on condition that (z > y > 2)
where z is the analyzed alternative is not easy. The transitivity violations of
the “indifference” relation lead to the declinations in the assessments (Cohen,
& Jaffray, 1988). They explain the DM behaviour observed in the famous Allais
Paradox that arises from the “independence” axiom ([§]):

(p-q¢0<a<1,(pqr)eP?) = ((ap+(1—a)) = (ag+(1—a)r)) (4)

The utility function u(-) over X is determined with the accuracy of the affine
transformation (interval scale), according to the following proposition (|&]):

Proposition 2. If (x € X,((p(z) = 1) = (p € P))) and ((¢,p) € P2 =
ap+ (1 —aq) € P,a € [0,1]) are realized, then u(-) is defined with precision up
to the affine transformation (uq(-) ~ uz(-)) < (u1(-) = auz(-)+b,a > 0Ab € R).

This property is essential for the application of the utility theory, since it
allows a decomposition of the multiattribute utility functions into simpler func-
tions [12]. The first condition in Proposition[2 can be interpreted as a capability
of the DM to imagine one alternative independently on the others. The second
condition is a capability of the DM to report on the uncertainty of the results.
This proposition reveals that the utility measurement scale of the utility func-
tion is equivalent to the temperature scale (interval scale). Several non-expected
utility theories have been developed in response of the displayed transitivity vi-
olations [10, [11, [13]. Among these theories the rank dependent utility model
and its derivative cumulative prospect theory are currently the most popular.
In the rank dependents utility (RDU) the decision weight of an outcome is not
just the probability associated with this outcome. It is a function of both the
probability and the rank (the alternative) . For example the RDU of the lottery

(p1, 215 P2, T25 - - - Py Ty I8

RDU =W (p;)u(w:).

i=1

Based on empirical researches several authors have argued that the probability
weighting function W (-) has inverse S-shaped form, which starts on concave and
then becomes convex. Our approach permits accounting for this particular case
and evaluations in the conceptions of RDU.

4. Utility evaluation and stochastic approximation
The following notations will be used:
Ay = {2y, 2)| aulw) + (1 - a)uly) > u(=)}
By ={(a,z,y,2)| au(z) + (1 — a)u(y) <wu(z)}

The expected DM utility is constructed by pattern-recognition of A, and B,
[1,115]. Key element in this solution is the next proposition [15]:

(5)



Proposition 3. If A,, = A, then ui(-) = aus(-) +b,a > 0.

The following presents the procedure for evaluation of the utility functions:

The DM compares the “lottery” (x,y,a) with the simple alternative z,z € X
(“better - —, f(x,y,z, &) =17, “worse - <, f(x,y,2,a) = —1" or “can not
answer or equivalent - ~, f(x,y,z,a) =07, f(-) denotes the qualitative DM
answer). This determines a learning point ((x,y,z, ), f(x,y,z,«)). The fol-
lowing recurrent stochastic algorithm constructs the utility polynomial approxi-
mation u(z) =Y, ®;(x)

e = o[£ = T B ()|

Z% = -i-oo,Z%QI < 400, Vn, 7, >0 (6)

In the formula the following notations (based on A,,) are used: ¢t = (x,y, z, a),
Yi(t) = iz, y, 2, @) = a®i(z) + (1 — a)P;(y) — P;(2), where (P;(x)) is a family
of polynomials. The line above § = (¢",¥(t)) meansy =1if y > 1,5 = (—1) if
y<(-1)andy=vyif (-1) <y <1 [L,15]. The learning points are set with
a pseudo random sequence. The expert relates intuitively the “learning point”
(z,y, 2, ) to the set A, with probability D (z,y, z,a) or to the set B, with
probability Ds(x,y, z, ). The probabilities D;(x,y, z, @) and Ds(x,y, z, ) are
mathematical expectation of f(-) over the set of positive answers - A,, and over
the set of negative answers-B,,, respectively, Dy (z,y, z,a) = M(f|x,y, z, @), if
M(flz,y,z,) > 0, Da(z,y,2z,a) = (=M (fl|x,y, z,a)), if M(f|z,y,z,a) < 0.
Let D'(x,y, z, a) is the random value:

Di(z,y,z,0)  if M(f|z,y,z,a) > 0;
D/(‘Tuya'z?a): —DQ(I,y,Z,O[) 1fM(f|Iay7Z7a)<O7
0, if M(flz,y, 2 0) = 0.
The following decomposition is used in (6l):

f(tn+1) _ [D/(tn+1) 4 é-n-l-l} (7)

In the formula above £ denotes the uncertainty in the expert answers. We
approximate D’ (x,y, z, @) by a function of the type:

G(z,y,z,0) = (ag(z) + (1 — a)g(y) — 9(2)), g(x) = Z ci®;()

The function g(x) is an approximation of the utility u(-). The coefficients
c take part in:

N
7M@) = 3 (), (" V(1) = ag™(@) +(1-a)g"(y) —g"(2) = G"(x., 7, 0).
=1

(8)
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Figure 1: Utility function evaluation

The function G"(z,y, z, ) is positive over A, and negative over B,, depending
on the degree of approximation of D’(z,y, z,«). The convergence of the proce-
dure is analyzed in[l]. The learning points ((z,y, z, ), f(z,y, 2, &)) are set with
a pseudo random L, sequence and this defines a priori the number of learning
points in the procedure (p € N, n = 2P 64,128, 256, .. .).

The proposed procedure and its modifications are machine learning ﬂ, |E]
The computer is taught to have the same preferences as the DM. The DM is
comparatively quick in learning to operate with the procedure. For example a
session with 128 questions (learning points) takes approximately no more than
45 minutes and the utility function is evaluated with mathematical precision.

5. Growth rate evaluation of a cultivation process

The complexity of the biotechnological fermentation processes makes dif-
ficult the determination of the optimal process parameters. The incomplete
information is compensated with the participation of imprecise expert estima-
tions. Our experience is that the human estimation of the process parameters
of a fermentation process contains uncertainty in the range of 10% to 25%.

Let Z be the set of alternatives (Z = specific growth rates — p = [0, 0.6))
and P be a convex subset of discrete probability distributions over Z. The expert
“preference” relation over P is expressed through (=) and this is also true for
those over Z(Z C P). As mentioned above the utility function is defined with
precision up to affine transformation (interval scale). A decision support system
for subjective utility evaluations is built and used. The results are shown on
Fig.1. The utility function is approximated by a polynomial:
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The polynomial representation permits exact analytical determination of the
derivative of the utility function and determination of the optimal technological
parameters, optimal specific growth rate (optimal set point) (Fig.1) [15]. The
utility is evaluated with 64 learning points. This number of questions is for a
primary orientation. The seesaw line (Fig.2) is pattern recognition of A, and
B,. This seesaw line recognizes correctly more than 97% of the expert answers.
The polynomial approximation of the DM utility w(p) is the smooth line in
Fig. 2. The expert utility recognizes correctly more than 81% of the expert
answers (learning points). The maximum of the utility function determines the
optimal set point of the fed-batch process after the technologist. The pattern
recognition is stochastic because A, N B, = (), since the human uncertainty
appears in the mathematical presentation as additive noise.

6. Control design and stabilization in the “best” growth rate

The presentation of the control design follows the presentations in papers
[15, [16, [17]. We preserve the notation U(-) for the DM utility. The control
design is based on the solution of the following optimal control problem:



Max (U (p)), where the variable p is the specific growth rate, (u € (0, tbyy0], D €
[0, Dimaz])- Here U(p) is an aggregation objective function (the utility function)
and D is the control input (the dilution rate):
max(u(p)), p € [0, pimax]; t € [0, Tint], D € [0, Dinay]
X =uX - DX
S =—kuX +(So— S)D (10)

The differential equation in (I0) describes a a continuous fermentation
process . The Monod-Wang model permits exact linearization to Brunovsky
normal form following the procedures in papers |3, [17]. The optimal solution is
determined with the use of the Brunovsky normal form of model (I0I):

V=Y,
Yo=Y, (11)
Yy = W.

In the formula above, W denotes the control input of the Brunovsky model ({II).
The vector (Y7, Ya,Y3) is the new state vector [15]:

Y1 =w
Y2 = us(uy — ku%)
U
X
U1 So—S
uz | =9(X,S, p) = S
us3 H

The derivative of the function Y3 determines the interconnection between
W and D. The control design is a design based on the Brunovsky normal form
and the application of the Pontrjagins maximum principle step by step for suf-
ficiently small time periods T |2, [11, [15, [16]. The reason for the choice of such
optimal control design is that the input control set in the Brunovsky form is
time-dependent [9]. The interval T' could be the step of discretization of the
differential equation solver. The optimal control law has the analytical form
[15, 116]):

6
Doy = sign <<Z icm(il)) (T — 1) {(T — t)u(21 —2kY1) 1]) Do

i=1
where
sign (r)=1, r >0, sign (r) =0, <0
(13)
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Figure 3: Stabilization of the fed-batch process

The sum is the derivative of the utility function. It is clear that the optimal
“time-minimization” control is determined from the sign of the utility derivative.
The control input is D = Dyax or D = 0. The solution is in fact a “time-
minimization” control (if the time period T}, is sufficiently small). The control
brings the system back to the set point for minimal time in any case of specific
growth rate deviations |15, [L6]. The control law of the fed-batch process has
the same form because D(t) is replaced with F'(¢)/V (t) in Monod-Wang model
). Thus, the feeding rate F(t) takes F'(t) = Fiax or F(t) = 0, depending on
D(t) which takes D = Dy or D = 0.

We conclude that the control law ([I3) brings the system to the set point
(optimal growth rate) with a “time minimization” control, starting from any
deviation of the specific growth rate. We use this control law as a main part in
a more complex chattering control law solution for stabilization of the system in
the “best” growth rate position |6, 15, 16].

This type of control may be used only for cumulative criteria for which the
Bellman principle is valid in the optimal control [9]. For example, such are the
amount of biomass at the end of the process and the time-minimization optimal
control.

The deviation of the fed-batch process with this chattering control is shown
on Fig.3. After the stabilization of the system in equivalent sliding mode control
position the system can be maintained around the optimal parameters with
sliding mode control (Fig.3) [6, 15, [16]. The iterative utility function design
and the iterative corrections in the DM preferences permit adjustment of the
control law and of the optimal control final results in agreement with the changes
in the opinion of biotechnologist. The procedure could be interprets as learning
procedure in the two opposite directions, in direction to biotechnologist or in



Selection of an appropriate mathematical model of the process

Extracting expert knowledge by
constructing the utility function

for the relevant parameter Negative

Designing the optimal control |—> Expert assessment

Applying the optimal control

Figure 4: The methodology for extracting experts knowledge for the design of the control law

direction to the final optimal solution.

7. Final remarks

Here we would like to present a flow-chart of the methodology used to once
more emphasize the generality of such approach which can be used succesffuly
in other areas. The flowchart on Fig. 4 will serve as a basis for a detailed
generalized net ([21]) model of the methodology to be developed in future work.
Here we present only the main steps, as the technical details are specific for each
process and implementation. For instance, the degree of the polynomial used to
approximate the utility function may vary. What is important to note is that
the human preferences are quantified by the construction of the utility function
and at the same time the expert may further input new preferences based on
the observed result, so with each iteration both the quantified evaluations and
the qualitative reasoning of the expert are improved.

8. Conclusions

In the paper a mathematical utility evaluation procedure for elimination of
the uncertainty in the decision-makers preferences and evaluation of the “best”
technological conditions is proposed. The approach permits iterative and pre-
cise evaluation of the “best” specific growth rate of the fed-batch process and
iterative control design in agreement with the DMs preferences as maximum of
this utility function.
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