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1 Introduction

The idea of fuzzy sets introduced by L. A. Zadeh [20] is an approach to mathematical repre-
sentation of vagueness in everyday curriculum. In 1971, A. Rosenfeld [19] initiated the study
of applying the notion of fuzzy sets in group theory. Later, K. T. Atanassov [1] in 1983 intro-
duced the notion of intuitionistic fuzzy sets, which is a generalization of fuzzy sets. In 1984 K.
T. Atanassov and S. Stoeva [2] introduced intuitionistic L-fuzzy sets which is a generalization of
L-fuzzy sets. The foundation laid by K. T. Atanassov, by introducing intuitionistic fuzzy sets,
has tremendously inspired researchers of the boarder frame work of fuzzy setting, which further
flourished fuzzy mathematics. The idea of intuitionistic fuzzy subgroup initiated by R. Biswas in
[7] illustrates the application of intuitionistic fuzzy sets in group theory. Likewise in [6] Baner-
jee and Basnet introduced Intuitionstic fuzzy subrings and ideals. H. Bustince and P. Burillo
[8] introduced the concept of intuitionistic fuzzy relations on a set and studied some properties.
In [12, 13, 14, 15] Kul Hur and his colleagues investigated intuitionistic fuzzy equivalence re-
lation on a set and intuitionistic fuzzy congruence on a groupoid (semigroup or lattice). Many
researchers have applied the notion of intuitionistic fuzzy sets to the fields of Sociometry, Medical
diagnosis, Decision Making, Logic Programming, Artificial Intelligence etc [9, 11, 16, 21].
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In this paper we generalize the work of earlier authors in the framework of intuitionistic
L-fuzzy sets. We discuss some properties of intuitionistic L-fuzzy equivalence relation on a ring.
Further we introduce intuitionistic L-fuzzy transitive closure of an intuitionistic L-fuzzy relation.
An intuitionistic L-fuzzy congruence relation on a ring is defined and we prove some results on
these. Finally, we establish that the intuitionistic L-fuzzy congruence on a ring forms a modular
lattice.

2 Preliminaries

In this section, we recall some basic concepts of intuitionistic L-fuzzy sets and intuitionistic
L-fuzzy relation [4, 5, 17, 18]. We introduce intuitionistic L-fuzzy equivalence relation on a ring
and state their elementary properties. In this paper, L denotes a complete distributive lattice with
maximal element 1 and minimal element 0, respectively. Let R denote a commutative ring with
binary operation denoted by “+” and “·”.

Definition 1 ([2]). Let (L,≤) be the lattice with an involutive order reversing operationN : L→
L. Let X be a non-empty set. An intuitionistic L-fuzzy set (ILFS) A in X is defined as,

A = {〈x, µA(x), νA(x)〉|x ∈ X}

where µA : X → L define the membership and νA : X → L define the non-membership function
of every x ∈ X satisfying µA(x) ≤ N(νA(x)).

Definition 2 ([2]). Let A = {〈x, µA(x), νA(x)〉|x ∈ X}, B = {〈x, µB(x), νB(x)〉|x ∈ X} be
two intuitionistic L-fuzzy sets of X . Then we define

(i) A ⊆ B iff for all x ∈ X , µA(x) ≤ µB(x) and νA(x) ≥ νB(x)

(ii) A = B iff for all x ∈ X , µA(x) = µB(x) and νA(x) = νB(x)

(iii) A ∪B = {〈x, (µA ∨ µB)(x), (νA ∧ νB)(x)〉/x ∈ X}

(iv) A ∩B = {〈x, (µA ∧ µB)(x), (νA ∨ νB)(x)〉/x ∈ X}.

Definition 3 ([2]). Let {Ai}i∈I be an arbitrary family of ILFSs in X where

Ai = {〈x, µAi
(x), νAi

(x)〉/x ∈ X}, i ∈ I.

Then

(i) ∩Ai = {〈x,∧i∈IµAi
(x),∨i∈IνAi

(x)〉/x ∈ X}

(ii) ∪Ai = {〈x,∨i∈IµAi
(x),∧i∈IνAi

(x)〉/x ∈ X}.

Definition 4. Let A = {〈(x, y), µA(x, y), νA(x, y)〉/(x, y) ∈ R × R} be an ILFS over R × R.
Then A is called an intuitionistic L-fuzzy relation on R (ILFR (R)) if for all (x, y) ∈ R × R,
µA(x, y) ≤ N(νA(x, y)), where N : L→ L, µA : R×R→ L and νA : R×R→ L.
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Definition 5. Let A ∈ ILFR(R). Then the inverse of A denoted by A−1 is defined as follows: for
x, y ∈ R

A−1(x, y) = A(y, x).

Definition 6. [3] Let A = {〈(x, y), µA(x, y), νA(x, y)〉/(x, y) ∈ R×R}
and B = {〈(x, y), µB(x, y), νB(x, y)〉/(x, y) ∈ R × R} be ILFR (R). Then the composition
A ◦B of A and B is defined as follows: for x, y ∈ R

A ◦B = {〈(x, y), µA◦B(x, y), νA◦B(x, y)〉/(x, y) ∈ R×R}

where µA◦B(x, y) = ∨z∈R(µA(x, z) ∧ µB(z, y))

and νA◦B(x, y) = ∧z∈R(νA(x, z) ∨ νB(z, y)).

Definition 7. Let A = {〈(x, y), µA(x, y), νA(x, y)〉/(x, y) ∈ R×R} be an ILFR (R). Then A is
called an intuitionistic L-fuzzy equivalence relation on R (ILFER (R)) if it satisfies the following
conditions:

(i) intuitionistic L-fuzzy reflexive
i.e. µA(x, x) = 1, νA(x, x) = 0 for all x ∈ R

(ii) intuitionistic L-fuzzy symmetric
i.e. µA(x, y) = µA(y, x) and νA(x, y) = νA(y, x) for all x, y ∈ R
i.e. A = A−1

(iii) intuitionistic L-fuzzy transitive
i.e. µA(x, y) ≥ ∨z∈R(µA(x, z) ∧ µA(z, y)) and νA(x, y) ≤ ∧z∈R(νA(x, z) ∨ νA(z, y))

i.e. A ◦ A ⊆ A.

The following results are immediate.

Proposition 1. Let P1, P2, Q1, Q2 ∈ ILFR (R). Then

(i) (P1 ◦ P2) ◦ P3 = P1 ◦ (P2 ◦ P3).

(ii) If P1 ⊆ P2 and Q1 ⊆ Q2 then P1 ◦ Q1 ⊆ P2 ◦ Q2. In particular if Q1 ⊆ Q2 then
P1 ◦Q1 ⊆ P1 ◦Q2.

(iii) (P−1
1 )−1 = P1.

(iv) (P1 ∪ P2)−1 = P−1
1 ∪ P−1

2 .

Proposition 2. Let P1, Q1 ∈ ILFR (R). If Q1 ◦ P1 = P1 ◦Q1 then

(Q1 ◦ P1) ◦ (Q1 ◦ P1) = (Q1 ◦Q1) ◦ (P1 ◦ P1).

Proposition 3. Let P,Q ∈ ILFR (R). Then

(i) If P,Q are intuitionistic L-fuzzy symmetric then P ∪Q is intuitionistic L-fuzzy symmetric.
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(ii) If P ⊆ Q then P−1 ⊆ Q−1.

(iii) If P,Q ∈ ILFER (R) then P ∩Q, P ◦ P ∈ ILFER (R).

Proposition 4. If P is an ILFER (R) then P ◦ P = P .

Definition 8. Let ∆ = {〈(x, y), µ∆(x, y), ν∆(x, y)〉/(x, y) ∈ R×R} and

∇ = {〈(x, y), µ∇(x, y), ν∇(x, y)〉/(x, y) ∈ R×R}

be two ILFR (R) such that for (x, y) ∈ R×R,
(i)

µ∆(x, y) =

{
1, x = y

0, x 6= y

and

ν∆(x, y) =

{
0, x = y

1, x 6= y

(ii) µ∇(x, y) = 1,
ν∇(x, y) = 0.

Then ∆,∇ ∈ ILFER (R).

Proposition 5. Let

Ai = {〈(x, y), µAi
(x, y), νAi

(x, y)〉/(x, y) ∈ R×R, i ∈ I}

be an ILFER (R). Then

A = {〈(x, y), µA(x, y), νA(x, y)〉/(x, y) ∈ R×R}is an ILFER (R)

where µA(x, y) = ∧i∈IµAi
(x, y), νA(x, y) = ∨i∈IνAi

(x, y).

Remark. If A,B ∈ ILFER (R) then A ∪B need not be ILFER (R).

Proposition 6. Let

P = {〈(x, y), µP (x, y), νP (x, y)〉/(x, y) ∈ R×R}

and
Q = {〈(x, y), µQ(x, y), νQ(x, y)〉/(x, y) ∈ R×R}

be intuitionistic L-fuzzy reflexive. Then, P ◦Q is intuitionistic L-fuzzy reflexive.

Proposition 7. Let P,Q ∈ ILFER (R). If Q ◦ P = P ◦Q, then P ◦Q is an ILFER (R).

3 Lattice of intuitionistic L-fuzzy equivalence relations

We define an ILFER generated by an intuitionistic L-fuzzy relation and the intuitionistic L-fuzzy
transitive closure of an intuitionistic L-fuzzy relation. Here we study some elementary properties
of intuitionistic L-fuzzy equivalence relation (ILFER) and we prove that it forms a complete
lattice.
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Definition 9. Let P = {〈(x, y), µP (x, y), νP (x, y)〉/(x, y) ∈ R × R} be an ILFR (R). Let
{Pα}α∈I be the family of ILFER (R) containing P . Then ∩Pα containing P is called the ILFER
(R) generated by P and denoted by P e. It is the smallest ILFER (R) containing P .

The following definition is based on a result of S. Kumar De, R. Biswas and A. R. Roy [10].

Definition 10. Let P = {〈(x, y), µP (x, y), νP (x, y)〉/(x, y) ∈ R×R} be an ILFR (R). Then the
intuitionistic L-fuzzy transitive closure of P denoted by P∞ is defined as follows:

P∞ = ∪n∈NP n

where P n = P ◦ P ◦ · · · ◦ P , in which P occurs n times. Here

P∞ = {〈(x, y), µP∞(x, y), νp∞(x, y)〉/(x, y) ∈ R×R}

where µP∞(x, y) = ∨n∈Nµpn(x, y) and νP∞(x, y) = ∧n∈Nνpn(x, y).

The following results are straightforward.

Proposition 8. Let P = {〈(x, y), µP (x, y), νP (x, y)〉/(x, y) ∈ R × R} be an ILFR (R). Then,
P∞ is the smallest intuitionistic L-fuzzy transitive relation containing P .

Proposition 9. Let P = {〈(x, y), µP (x, y), νP (x, y)〉/(x, y) ∈ R×R} be an intuitionistic L-fuzzy
symmetric on R. Then,

P∞ = {〈(x, y), µP∞(x, y), νP∞(x, y)〉/(x, y) ∈ R×R}

is an intuitionistic L-fuzzy symmetric on R.

Proposition 10. Let P = {〈(x, y), µP (x, y), νP (x, y)〉/(x, y) ∈ R×R}
and Q = {〈(x, y), µQ(x, y), νQ(x, y)〉/(x, y) ∈ R×R} be the ILFR (R). Then
(i) If P ⊆ Q then P∞ ⊆ Q∞.
(ii) If P ◦Q = Q ◦ P and P,Q ∈ ILFER (R) then (P ◦Q)∞ = P ◦Q.

Theorem 1. If P = {〈(x, y), µP (x, y), νP (x, y)〉/(x, y) ∈ R × R} is an ILFR (R) then P e =

[P ∪ P−1 ∪∆]∞.

Proof. Let Q = [P ∪ P−1 ∪∆]∞. Clearly, P ⊆ Q and Q is intuitionistic L-fuzzy transitive. Let
x ∈ R. Then

1 = µ∆(x, x) ≤ µQ(x, x)

and
0 = ν∆(x, x) ≥ νQ(x, x).

Thus, µQ(x, x) = 1 and νQ(x, x) = 0. Hence, Q is intuitionistic L-fuzzy reflexive.
Also P ∪P−1∪∆ = [P ∪P−1∪∆]−1. Hence, Q = [P ∪P−1∪∆]∞ is intuitionistic L-fuzzy

symmetric. Therefore, Q ∈ ILFER (R).
Let S ∈ ILFER (R) such that P ⊆ S. Then, ∆ ⊆ S and P−1 ⊆ S. Hence P ∪P−1 ∪∆ ⊆ S.

i.e. [P ∪ P−1 ∪∆]n ⊆ Sn = S for n ≥ 1. Hence, Q ⊆ S.
Therefore, Q is the smallest ILFER (R) containing P . Hence,

Q = P e = [P ∪ P−1 ∪∆]∞.
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The following results are straightforward.

Proposition 11. Let

P = {〈(x, y), µp(x, y), νP (x, y)〉/(x, y) ∈ R×R}

and
Q = {〈(x, y), µQ(x, y), νQ(x, y)〉/(x, y) ∈ R×R}

be ILFER (R). Define P ∨Q = (P ∪Q)∞ = ∪n∈N(P ∪Q)n. Then, P ∨Q ∈ ILFER (R).

Proposition 12. Let

P = {〈(x, y), µP (x, y), νP (x, y)〉/(x, y) ∈ R×R}

and
Q = {〈(x, y), µQ(x, y), νQ(x, y)〉/(x, y) ∈ R×R}

be ILFER (R). If P ◦Q ∈ ILFER (R) then (P ◦Q)∞ = P ◦Q.

The join of two ILFER (R) can also be given as follows.

Theorem 2. Let
P = {〈(x, y), µP (x, y), νP (x, y)〉|(x, y) ∈ R×R}

and
Q = {〈(x, y), µQ(x, y), νQ(x, y)〉|(x, y) ∈ R×R}

be ILFER (R).
If P ◦ Q ∈ ILFER (R) then P ◦ Q = P ∨ Q, where P ∨ Q is the least upper bound for {P,Q}
with respect to inclusion.

Proof. Let x, y ∈ R. Then

µP◦Q(x, y) = ∨z∈R(µP (x, z) ∧ µQ(z, y))

≥ µP (x, y) ∧ µQ(y, y)

= µP (x, y)

and

νP◦Q(x, y) = ∧z∈R(νP (x, z) ∨ νQ(z, y))

≤ νP (x, y) ∨ νQ(y, y)

= νP (x, y).

Hence, P ⊆ P ◦ Q. Similarly Q ⊆ P ◦ Q. Hence, P ◦ Q is an upper bound for {P,Q} with
respect to ‘⊆’.
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Let S ∈ ILFER (R) such that S ⊇ P and S ⊇ Q. Let x, y ∈ R. Then,

µP◦Q(x, y) = ∨z∈R(µP (x, z) ∧ µQ(z, y))

≤ ∨z∈R(µS(x, z) ∧ µS(z, y))

= µS◦S(x, y)

= µS(x, y)

and

νP◦Q(x, y) = ∧z∈R(νP (x, z) ∨ νQ(z, y))

≥ ∧z∈R(νS(x, z) ∨ νS(z, y))

= νS◦S(x, y)

= νS(x, y).

Thus, P ◦Q ⊆ S. Hence P ◦Q is the least upper bound for {P,Q}. Consequently, P ◦Q =

P ∨Q.

Proposition 13. Let

P = {〈(x, y), µP (x, y), νP (x, y)〉/(x, y) ∈ R×R}

and
Q = {〈(x, y), µQ(x, y), νQ(x, y)〉/(x, y) ∈ R×R}

be ILFER (R). Then, P ∨Q = (P ◦Q)∞.

Proof. Clearly for P,Q ∈ ILFER (R)

P ∨Q = (P ∪Q)e = [(P ∪Q) ∪ (P ∪Q)−1 ∪∆]∞

= [P ∪Q]∞.

Also, P ⊆ P ∪Q, Q ⊆ P ∪Q and therefore

P ◦Q ⊆ (P ∪Q) ◦ (P ∪Q) = P ∪Q.

Hence, (P ◦Q)∞ ⊆ (P ∪Q)∞ = P ∨Q.
Since P,Q ∈ ILFER (R), P ⊆ P ◦Q and Q ⊆ P ◦Q which implies that

P ∪Q ⊆ P ◦Q.

Therefore,
(P ∪Q)∞ ⊆ (P ◦Q)∞

which implies that
P ∨Q ⊆ (P ◦Q)∞.

Hence,
P ∨Q = (P ◦Q)∞.
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The set of ILFER (R) is a poset with respect to “⊆”. Define two operations ∨, ∧ on ILFER
(R) as follows: for P,Q ∈ ILFER (R), P ∧Q = P ∩Q and P ∨Q = (P ∪Q)e = (P ◦Q)∞.

Theorem 3. The set (ILFER (R), ∨, ∧) forms a complete lattice with least element ∆ and greatest
element∇.

4 Intuitionistic L-fuzzy congruences

In this section, we define an intuitionistic L-fuzzy congruence on a ring and study its properties.

Definition 11. Let P = {〈(x, y), µP (x, y), νP (x, y)〉/(x, y) ∈ R×R} be an ILFER (R). Then
(i) P is called an intuitionistic L-fuzzy left congruence on R,
(ILFLC (R))if, for all a, b, c, d, x ∈ R

µP (a+ c, a+ d) ≥ µP (c, d)

νP (a+ c, a+ d) ≤ νP (c, d)

µP (xa, xb) ≥ µP (a, b)

νP (xa, xb) ≤ νP (a, b)

(ii) P is called an intuitionistic L-fuzzy right congruence on R, (ILFRC (R)) if, for all a, b, c, d,
x ∈ R,

µP (a+ c, b+ c) ≥ µP (a, b)

νP (a+ c, b+ c) ≤ νP (a, b)

µP (ax, bx) ≥ µP (a, b)

νP (ax, bx) ≤ νP (a, b)

(iii) P is called an intuitionisticL-fuzzy congruence onR, (ILFC (R)) if, for all a, b, c, d, x, y ∈ R

µP (a+ c, b+ d) ≥ µP (a, b) ∧ µP (c, d)

νP (a+ c, b+ d) ≤ νP (a, b) ∨ νP (c, d)

µP (ax, by) ≥ µP (a, b) ∧ µP (x, y)

νP (ax, by) ≤ νP (a, b) ∨ νP (x, y)

Clearly ∆,∇ ∈ ILFC (R).

The following proposition is immediate.

Proposition 14. Let P = {〈(x, y), µP (x, y), νP (x, y)〉/(x, y) ∈ R×R} be an ILFER (R). Then
P is an ILFC (R), if and only if P is ILFLC (R) and ILFRC (R).

Proposition 15. Let

P = {〈(x, y), µP (x, y), νP (x, y)〉/(x, y) ∈ R×R}

and
Q = {〈(x, y), µQ(x, y), νQ(x, y)〉/(x, y) ∈ R×R}

be ILFC (R). If P ◦Q = Q ◦ P then P ◦Q is an ILFC (R).
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Proof. Clearly P ◦Q ∈ ILFER (R). Let a, b, c, d ∈ R. Then for each z, y ∈ R

µP◦Q(a+ c, a+ d) = ∨z∈R(µP (a+ c, z) ∧ µQ(z, a+ d))

≥ µP (a+ c, z + y) ∧ µQ(z + y, a+ d)

≥ [µP (a, z) ∧ µP (c, y)] ∧ [µQ(z, a) ∧ µQ(y, d)]

= [µP (a, z) ∧ µQ(z, a)] ∧ [µP (c, y) ∧ µQ(y, d)].

Hence µP◦Q(a+ c, a+ d) ≥ (∨z∈R[µP (a, z) ∧ µQ(z, a)])

∧ (∨y∈R[µP (c, y) ∧ µQ(y, d)])

= µP◦Q(a, a) ∧ µP◦Q(c, d)

= µP◦Q(c, d).

Let a, b, c, d ∈ R. Then for each y, z ∈ R

νP◦Q(a+ c, a+ d) = ∧z∈R(νP (a+ c, z) ∨ νQ(z, a+ d))

≤ νP (a+ c, z + y) ∨ νQ(z + y, a+ d)

≤ [νP (a, z) ∨ νP (c, y)] ∨ [νQ(z, a) ∨ νQ(y, d)]

= [νP (a, z) ∨ νQ(z, a)] ∨ [νP (c, y) ∨ νQ(y, d)].

Hence

νP◦Q(a+ c, a+ d) ≤ (∧z∈R[νP (a, z) ∨ νQ(z, a)])

∨ (∧y∈R[νP (c, y) ∨ νQ(y, d)])

= νP◦Q(a, a) ∨ νP◦Q(c, d)

= νP◦Q(c, d).

Let a, x, y ∈ R. Then

µP◦Q(ax, ay) = ∨z∈R[µP (ax, z) ∧ µQ(z, ay)]

≥ µP (ax, at) ∧ µQ(at, ay)

≥ µp(x, t) ∧ µQ(t, y)

for each t ∈ R.
Hence

µP◦Q(ax, ay) ≥ ∨t∈R(µP (x, t) ∧ µQ(t, y))

= µP◦Q(x, y).

Let a, x, y ∈ R. Then

νP◦Q(ax, ay) = ∧z∈R[νP (ax, z) ∨ νQ(z, ay)]

≤ νP (ax, at) ∨ νQ(at, ay)

≤ νp(x, t) ∨ νQ(t, y)
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for each t ∈ R. Hence

νP◦Q(ax, ay) ≤ ∧t∈R[νP (x, t) ∨ νQ(t, y)]

= νP◦Q(x, y).

Hence P ◦ Q is ILFLC (R). Similarly, P ◦ Q is ILFRC (R) and therefore P ◦ Q is an ILFC
(R).

The set of all ILFC (R) is a partially ordered set by the inclusion relation “⊆”. For P,Q ∈
ILFC (R), P ∩ Q is the greatest lower bound of P and Q and P ∩ Q ∈ ILFC (R). But P ∪ Q
need not be an ILFC (R).

Proposition 16. Let

P = {〈(x, y), µP (x, y), νP (x, y)〉/(x, y) ∈ R×R}

and
Q = {〈(x, y), µQ(x, y), νQ(x, y)〉/(x, y) ∈ R×R}

be ILFC (R). Then P ∩Q ∈ ILFC (R).

Proof. Clearly P ∩Q ∈ ILFER (R). Let a, b, c, d ∈ R. Then

µP∧Q(a+ b, c+ d) = µP (a+ b, c+ d) ∧ µQ(a+ b, c+ d)

≥ µP (a, c) ∧ µP (b, d) ∧ µQ(a, c) ∧ µQ(b, d)

= µP∧Q(a, c) ∧ µP∧Q(b, d)

and

νP∨Q(a+ b, c+ d) = νP (a+ b, c+ d) ∨ νQ(a+ b, c+ d)

≤ νP (a, c) ∨ νP (b, d) ∨ νQ(a, c) ∨ νQ(b, d)

= νP∨Q(a, c) ∨ νP∨Q(b, d).

For x, y, a, b ∈ R

µP∧Q(ax, by) = µP (ax, by) ∧ µQ(ax, by)

≥ µP (a, b) ∧ µP (x, y) ∧ µQ(a, b) ∧ µQ(x, y)

= µP∧Q(a, b) ∧ µP∧Q(x, y)

and

νP∨Q(ax, by) = νP (ax, by) ∨ νQ(ax, by)

≤ νP (a, b) ∨ νP (x, y) ∨ νQ(a, b) ∨ νQ(x, y)

= νP∨Q(a, b) ∨ νP∨Q(x, y).

Hence P ∩Q ∈ ILFC (R).
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5 Lattice of intuitionistic L-fuzzy congruence

In this section, the lattice structure of intuitionistic L-fuzzy congruence on a ring is studied. We
prove that the intuitionistic L-fuzzy congruence on a ring forms a complete modular lattice.

The following lemma is straightforward.

Lemma 1. Let
P = {〈(x, y), µP (x, y), νP (x, y)〉/(x, y) ∈ R×R}

and
Q = {〈(x, y), µQ(x, y), νQ(x, y)〉/(x, y) ∈ R×R}

be ILFC (R). Define P ∨Q = (P ∪Q)∞ = ∪n∈N(P ∪Q)n. Then, P ∨Q ∈ ILFC (R).

On the set of ILFC (R), we define the following binary operations ∨ and ∧ as follows.
For P,Q ∈ ILFC (R),

P ∨Q = (P ∪Q)e = (P ◦Q)∞ and P ∧Q = P ∩Q.

Then the following result is immediate.

Theorem 4. The set (ILFC(R),∧,∨) is a complete lattice with ∆ as the least element and ∇ as
the greatest element.

Proposition 17. Let

P = {〈(x, y), µP (x, y), νP (x, y)〉/(x, y) ∈ R×R}

and
Q = {〈(x, y), µQ(x, y), νQ(x, y)〉/(x, y) ∈ R×R}

be ILFC (R). Then, P ◦Q = Q ◦ P .

Proof. Let x, y ∈ R. Then

µP◦Q(x, y) = ∨z∈R[µP (x, z) ∧ µQ(z, y)]

= ∨z∈R[(µP (y, y) ∧ µP (−z,−z) ∧ µP (x, z))

∧ (µQ(z, y) ∧ µQ(−z,−z) ∧ µQ(x, x))]

≤ ∨z∈R[µP (y − z + x, y − z + z) ∧ (µQ(z − z + x, y − z + x))]

= ∨z∈R[µQ(x, y − z + x) ∧ µP (y − z + x, y)]

= µQ◦P (x, y)

and

νP◦Q(x, y) = ∧z∈R[νP (x, z) ∨ νQ(z, y)]

= ∧z∈R[(νP (y, y) ∨ νP (−z,−z) ∨ νP (x, z))

∨ (νQ(z, y) ∨ νQ(−z,−z) ∨ νQ(x, x))]

≥ ∧z∈R[νP (y − z + x, y − z + z) ∨ (νQ(z − z + x, y − z + x))]

= ∧z∈R[νQ(x, y − z + x) ∨ νP (y − z + x, y)]

= νQ◦P (x, y).

Hence P ◦Q ⊆ Q ◦ P . Also Q ◦ P ⊆ P ◦Q. Hence P ◦Q = Q ◦ P .
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Theorem 5. Let
P = {〈(x, y), µP (x, y), νP (x, y)〉/(x, y) ∈ R×R}

and
Q = {〈(x, y), µQ(x, y), νQ(x, y)〉/(x, y) ∈ R×R}

be an ILFC (R), then P ◦Q = P ∨Q.

The proof is direct from previous results.

Definition 12. A lattice (L,≤,∧,∨) is said to be modular if for any
x, y, z ∈ L and x ≤ z, then

(x ∨ y) ∧ z = x ∨ (y ∧ z).

For x, y, z ∈ L if x ≤ z then
x ∨ (y ∧ z) ≤ (x ∨ y) ∧ z.

This inequality is called the modular inequality.

Theorem 6. The lattice ILFC (R) is modular.

Proof. Let P,Q,N ∈ ILFC (R) such that P ⊆ N . Then by modular inequality

P ∨ (Q ∧N) ⊆ (P ∨Q) ∧N

holds. Then for x, y ∈ R,

µP∨(Q∧N)(x, y) = µP◦(Q∩N)(x, y)

= ∨z∈R[µP (x, z) ∧ µQ∧N(z, y)]

= ∨z∈R[µP (x, z) ∧ µQ(z, y) ∧ µN(z, y)]

= ∨z∈R[µP (x, z) ∧ µQ(z, y) ∧ µN◦N(z, y)]

≥ ∨z∈R[µP (x, z) ∧ µQ(z, y) ∧ µN(z, x) ∧ µN(x, y)]

= ∨z∈R[µP (x, z) ∧ µQ(z, y) ∧ µN(x, z) ∧ µN(x, y)]

≥ ∨z∈R[µP (x, z) ∧ µQ(z, y) ∧ µP (x, z) ∧ µN(x, y)]

= ∨z∈R[µP (x, z) ∧ µQ(z, y)] ∧ µN(x, y)

= µ(P◦Q)∩N(x, y)

= µ(P∨Q)∧N(x, y)

and νP∨(Q∧N)(x, y) = νP◦(Q∩N)(x, y)

= ∧z∈R[νP (x, z) ∨ νQ∨N(z, y)]

= ∧z∈R[νP (x, z) ∨ νQ(z, y) ∨ νN(z, y)]

= ∧z∈R[νP (x, z) ∨ νQ(z, y) ∨ νN◦N(z, y)]

≤ ∧z∈R[νP (x, z) ∨ νQ(z, y) ∨ νN(z, x) ∨ νN(x, y)]

= ∧z∈R[νP (x, z) ∨ νQ(z, y) ∨ νN(x, z) ∨ νN(x, y)]

≤ ∧z∈R[νP (x, z) ∨ νQ(z, y) ∨ νP (x, z) ∨ νN(x, y)]
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= ∧z∈R[νP (x, z) ∨ νQ(z, y)] ∨ νN(x, y)

= ν(P◦Q)∩N(x, y)

= ν(P∨Q)∧N(x, y).

Hence P ∨ (Q ∧N) ⊇ (P ∨Q) ∧N . Hence ILFC (R) is a modular lattice.
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