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1 Introduction

The fuzzy sets was introduced as an extension of crisp sets by Zadeh [5]. In fuzzy set theory, if
the membership degree of an element x is µ(x) then the nonmembership degree is 1− µ(x) and
thus it is fixed.

Atanassov introduced the intuitionistic fuzzy set concept in 1983 [1] and form an extension
of fuzzy sets by enlarging the truth value set to the lattice [0, 1]× [0, 1] is defined as follows.

Definition 1. Let L = [0, 1] then
L∗ = {(x1, x2) ∈ [0, 1]2 : x1 + x2 ≤ 1}

is a lattice with (x1, x2) ≤ (y1, y2) :⇐⇒ ”x1 ≤ y1 and x2 ≥ y2”.

For (x1, y1), (x2, y2) ∈ L∗, the operators ∧ and ∨ on (L∗,≤) are defıned as follows:

(x1, y1) ∧ (x2, y2) = (min(x1, x2),max(y1, y2))
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(x1, y1) ∨ (x2, y2) = (max(x1, x2),min(y1, y2))

For each J ⊆ L∗:

sup J = (sup{x : (x, y ∈ [0, 1]), ((x, y) ∈ J)}, inf{y : (x, y ∈ [0, 1])((x, y) ∈ J)})

and

inf J = (inf{x : (x, y ∈ [0, 1])((x, y) ∈ J)}, sup{y : (x, y ∈ [0, 1])((x, y) ∈ J)}).

Definition 2. [1] An intuitionistic fuzzy set (shortly IFS) on a set X is an object of the form

A = {〈x, µA(x), νA(x)〉 : x ∈ X}

where µA(x), (µA : X → [0, 1]) is called the “degree of membership of x in A”, νA(x), (νA :

X → [0, 1]) is called the “degree of non- membership of x in A ”, and where µA and νA satisfy
the following condition:

µA(x) + νA(x) ≤ 1, for all x ∈ X.

The hesitation degree of x is defined by πA(x) = 1− µA(x)− νA(x).

Definition 3. [1] An IFS A is said to be contained in an IFS B (notation A v B) if and only if,
for all x ∈ X : µA(x) ≤ µB(x) and νA(x) ≥ νB(x).

It is clear that A = B if and only if A v B and B v A.

Definition 4. [1] Let A ∈ IFS and let A = {〈x, µA(x), νA(x)〉 : x ∈ X} then the above set is
callede the complement of A

Ac = {〈x, νA(x), µA(x)〉 : x ∈ X}.

2 Intuitionistic fuzzy universal algebra

Intuitionistic fuzzy algebraic structures like intuitionistic fuzzy subgroup, intuitionistic fuzzy
ideal, intuitionistic fuzzy ring, intuitionistic fuzzy BG-algebras have been studied by several au-
thors. In this paper, we studied universal algebras on intuitionistic fuzzy sets. The concept of
universal algebra in crisp set theory defined as follows:

Definition 5. [2] A universal algebra (or an algebra) A is a pair [S, F ] where S is a non-empty
set and F is a specified set of operatians fα, each mapping a power Sn(α) of S into S, for some
appropriate nonnegative finite integer n(α).

Otherwise stated, each operation fα assigns to every n(α)-ple
(
x1, ..., xn(α)

)
of elements of

S, a value fα
(
x1, ..., xn(α)

)
in S, the result of performing the operation fα on the sequence

x1, ..., xn(α). If n(α) = 1, the operation fα is called unary; if n(α) = 2, it is called binary; if
n(α) = 3, it is called ternary, etc. When n(α) = 0, the operation fα is called nullary; it selects a
fixed element of S.

Fuzzy universal algebra introduced by Murali [3] using Zadeh’s extension principle [6]. Fuzzy
subalgebras and homomorphism between fuzzy algebras defined by same author. Here, we extend
the concept of fuzzy universal algebra on intuitionistic fuzzy sets.
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Definition 6. Let S = [X,F ] be a universal algebra where X is a non-empty set and F is a
specified set of finite operations fα, each mapping a power Xn(α) of X into X , for some appro-
priate nonnegative finite integer n(α). For each fα, a corresponding operation ωα on IFS(X)

as follows;

ωα : IFS(X)× IFS(X)× ...× IFS(X)→ IFS(X), ωα
(
A1, A2, ..., An(α)

)
= A,

such that

A(x) = sup
{
A1(x1) ∧ A2(x2) ∧ ... ∧ An(α)(xn(α)) : fα

(
x1, x2, ..., xn(α)

)
= x

}
,

otherwise, A(x) = Θ. It will be shown that A = ωα
(
A1, A2, ..., An(α)

)
. Let Ω = {ωα : cor-

responding operation for each fα ∈ F} then S∗ =
[
(I × I)X ,Ω

]
is called intuitionistic fuzzy

universal algebra (or algebra).

If n(α) = 0 then fα : X → X, fα(x) = e that e is a fixed element of X . So, ωα is defined as
following:

ωα : IFS(X)→ IFS(X), ωα(A) = Ae

Ae(x) =

{
sup
x∈X

A(x), x = e

(0, 1), x 6= e

Example 1. A group S = [G,F ] is a universal algebra where F = {., e} include one bi-
nary operation and one nullary operation, respectively. Let S∗ = [IFS(G),Ω] and A1, A2 ∈
IFS(G), x, x1, x2 ∈ G then with corresponding operations defined as follows:

A1A2 (x) = (µA1µA2 (x) , νA1νA2 (x)) ,

so that

µA1µA2 (x) = sup
x=x1x2

(µA1 (x1) ∧ µA2 (x2)) ,

νA1νA2 (x) = inf
x=x1x2

(νA1 (x1) ∨ νA2 (x2)) .

S∗ is an intuitionistic fuzzy universal algebra.

Definition 7. Let X be a non-empty set and A ∈ IFS(X). A is called an intuitionistic fuzzy
subalgebra (IF-subalgebra) of S∗ = [IFS(X),Ω] intuitionistic fuzzy universal algebra if and
only if for nonnegative finite integer n(α), ωα (A,A, ..., A) ≤ A, for every ωα.

Theorem 1. Let S = [X,F ] be a universal algebra, fα ∈ F and A,A1, A2, ..., An(α) be n(α) + 1

IF-subalgebras. ωα
(
A1, A2, ..., An(α)

)
≤ A if and only if

A
(
fα
(
x1, x2, ..., xn(α)

))
≥ min

1≤i≤n(α)
Ai (xi)

is true for every
(
x1, x2, ..., xn(α)

)
∈ Sn(α).
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Proof. (1) Let n(α) 6= 0 and ωα
(
A1, A2, ..., An(α)

)
≤ A.

ωα
(
A1, A2, ..., An(α)

)
(x) ≤ A (x) , for all x ∈ X.

So,
sup

fα(x1,x2,...,xn(α))=x

(
A1(x1) ∧ A2(x2) ∧ ... ∧ An(α)(xn(α))

)
≤ A(x),

for all
(
x1, ..., xn(α)

)
∈ Xn(α).

A
(
fα
(
x1, x2, ..., xn(α)

))
≥ ωα

(
A1, A2, ..., An(α)

) (
fα
(
x1, x2, ..., xn(α)

))
≥ A1(x1) ∧ A2(x2) ∧ ... ∧ An(α)(xn(α))

= min
1≤i≤n(α)

Ai (xi)

Conversely, let fα
(
x1, x2, ..., xn(α)

)
= x. It is clear that, since min

1≤i≤n(α)
Ai (xi) ≤ A(x) for all

fα
(
x1, x2, ..., xn(α)

)
= x, then sup

x
( min
1≤i≤n(α)

Ai (xi)) ≤ A(x).

That is, ωα
(
A1, A2, ..., An(α)

)
(x) ≤ A (x) , for all fα

(
x1, x2, ..., xn(α)

)
= x.

If for some x there exist no such n(a)-tuples, then ωα
(
A1, A2, ..., An(α)

)
(x) = (0, 1) ≤ A(x).

(2) If n(α) = 0, then fα (x) = e, e is a fixed element of X.

ωα (A1) (x) ≤ A(x)⇔ A(e) ≥ ωα (A1) = sup
x
A1(x)

⇔ A(ωα(x)) ≥ A1(x) for all x ∈ X.

This completes the proof.

Example 2. Let G be a group. A ∈ IFS(G) intuitionistic fuzzy subgroup defined as follow: for
all x, y ∈ G,

A (xy) ≥ A(x) ∧ A(y)

A
(
x−1
)
≥ A(x)

that is,

µA(xy) ≥ µA(x) ∧ µA(y) and νA(xy) ≤ νA(x) ∨ νA(y)

µA
(
x−1
)
≥ µA(x) and νA

(
x−1
)
≤ νA(x)

This definition coincides with [4].

Theorem 2. Let S∗ = [IFS(X),Ω] be an IF-algebra. If {Ai}i∈Λ is a family of IF-subalgebras
of S∗ then

A =
⋂
i∈Λ

Ai

is an IF-subalgebra of S∗.
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Proof. Let fα ∈ F and
(
x1, x2, ..., xn(α)

)
∈ Sn(α) for the corresponding n(α).

A
(
fα
(
x1, x2, ..., xn(α)

))
=

⋂
i∈Λ

Ai
(
fα
(
x1, x2, ..., xn(α)

))
≥

⋂
i∈Λ

(
min

1≤j≤n(α)
Ai (xj)

)
= min

1≤j≤n(α)
(inf
i∈Λ
Ai (xj))

= min
1≤j≤n(α)

A (xj)

So, A is an IF-subalgebra of S∗.

3 Conclusion

In this paper, we discussed the concept of universal algebra on intuitionistic fuzzy sets. The subal-
gebra was defined and some fundamental properties of substructures were given. In continuation,
homomorphism between intuitionistic fuzzy universal algebras will be defined. The effect of this
homomorphism on IF-algebras will be studied.
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