Intuitionistic fuzzy δ -connectedness and θ -connectedness

S. E. Abbas and Biljana Krsteska^{*}

Department of Mathematics, Faculty of Science, Sohag University, sohag 82524, Egypt.
*Faculty of Mathematics and Natural Science, Univ. St. Cyril and Methodius Gazi
Baba b.b. P.O.162,1000 Skopje, Macedonia.

Dedicated to 90-th anniversary of Prof. Lotfi Zadeh

Abstract. We introduce and study the concepts of (r, s)-fuzzy δ -connected and (r, s)-fuzzy θ -connected for fuzzy sets in an intuitionistic fuzzy topological spaces in Šostak sense as a weaker version of (r, s)-fuzzy connected.

Keywords: Intuitionistic fuzzy topology, (r, s)-fuzzy δ -connected, (r, s)-fuzzy θ -connected AMS Classification: 03E72, 54A40

1 Introduction and preliminaries

Kubiak [10] and Šostak [14] introduced the fundamental concept of a fuzzy topological structure, as an extension of both crisp topology and fuzzy topology [3], in the sense that not only the objects are fuzzified, but also the axiomatics. Chattopadhyay et al., [4] have redefined the same concept under the name gradation of openness. A general approach to the study of topological type structures on fuzzy power sets was developed in [7-11].

As a generalization of fuzzy sets, the notion of intuitionistic fuzzy sets was introduced by Atanassov [2]. By using intuitionistic fuzzy sets, Çoker and coworker [5,6] defined the topology of intuitionistic fuzzy sets. Recently, Samanta and Mondal [13], introduced the notion of intuitionistic gradation of openness of fuzzy sets, where to each fuzzy subsets there is a definite grade of openness and there is a grade of non-openness. Thus, the concept of gradation of openness and the topology of intuitionistic fuzzy sets.

In this paper, we present and investigate the notions of (r, s)-fuzzy δ -connectedness and (r, s)-fuzzy θ -connectedness relative to an intuitionistic fuzzy topological space in view of the definition of Šostak, and investigate the relationship with (r, s)-fuzzy connectedness. We compare all these forms of connectedness and investigate their properties in (r, s)-fuzzy almost regular, (r, s)-fuzzy semi-regular and (r, s)-fuzzy regular spaces.

Throughout this paper, let X be a nonempty set, I = [0, 1], $I_0 = (0, 1]$ and $I_1 = [0, 1)$. For $\alpha \in I$, $\underline{\alpha}(x) = \alpha$ for all $x \in X$. A fuzzy point x_t for $t \in I_0$ is an element of I^X such that $x_t(y) = tify = x$, and $x_t(y) = 0$ if $y \neq x$. The set of all fuzzy points in X is denoted by Pt(X). A fuzzy point $x_t \in \lambda$ iff $t < \lambda(x)$. A fuzzy set λ is quasi-coincident with μ , denoted by $\lambda q \mu$, if there exists $x \in X$ such that $\lambda(x) + \mu(x) > 1$. If λ is not quasi-coincident with μ , we denote $\lambda \overline{q} \mu$. **Definition 1.1** [13] An intuitionistic gradation of openness (IGO, for short) on X is an ordered pair (τ, τ^*) of mappings from I^X to I such that

(IGO1) $\tau(\lambda) + \tau^*(\lambda) \le 1, \, \forall \lambda \in I^X,$

(IGO2) $\tau(\overline{0}) = \tau(\underline{1}) = 1, \ \tau^*(\underline{0}) = \tau^*(\underline{1}) = 0,$

(IGO3) $\tau(\lambda_1 \wedge \lambda_2) \geq \tau(\lambda_1) \wedge \tau(\lambda_2)$ and $\tau^*(\lambda_1 \wedge \lambda_2) \leq \tau^*(\lambda_1) \vee \tau^*(\lambda_2)$, for each $\lambda_i \in I^X, i = 1, 2,$

(IGO4) $\tau(\bigvee_{i \in \Delta} \lambda_i) \ge \bigwedge_{i \in \Delta} \tau(\lambda_i)$ and $\tau^*(\bigvee_{i \in \Delta} \lambda_i) \le \bigvee_{i \in \Delta} \tau^*(\lambda_i)$, for each $\lambda_i \in I^X$, $i \in \Delta$. The triplet (X, τ, τ^*) is called an intuitionistic fuzzy topological space (ifts, for short).

 τ and τ^* may be interpreted as gradation of openness and gradation of nonopenness, respectively.

Theorem 1.2 ([1,12]) Let (X, τ, τ^*) be an iffs. For each $\lambda \in I^X, r \in I_0$ and $s \in I_1$, we define an operators $\mathcal{C} : I^X \times I_0 \times I_1 \to I^X, \mathcal{I} : I^X \times I_0 \times I_1 \to I^X$ as follows:

$$\mathcal{C}(\lambda, r, s) = \bigwedge \{ \mu \mid \mu \ge \lambda, \tau(\underline{1} - \mu) \ge r, \tau^*(\underline{1} - \mu) \le s \},$$
$$\mathcal{I}(\lambda, r, s) = \bigvee \{ \mu \mid \mu \ge \lambda, \tau(\mu) \ge r, \tau^*(\mu) \le s \}.$$

2 (r,s)-fuzzy δ -cluster and (r,s)-fuzzy θ -cluster points

Definition 2.1 Let (X, τ, τ^*) be an ifts, $\mu \in I^X$, $x_t \in P_t(X)$, $r \in I_0$ and $s \in I_1$. Then (1) μ is called (r, s)-fuzzy \mathcal{Q} -neighborhood of x_t if $\tau(\mu) \geq r$, $\tau^*(\mu) \leq s$ and $x_t q \mu$. (2) μ is called (r, s)-fuzzy \mathcal{R} -neighborhood of x_t if $\mu = \mathcal{I}(\mathcal{C}(\mu, r, s), r, s)$ and $x_t q \mu$. We denote $\mathcal{Q}(x_t, r, s) = \{ \mu \in I^X \mid$ $x_t q \mu, \quad \tau(\mu) \ge r, \quad \tau^*(\mu) \le s \}.$ $\mathcal{R}(x_t, r, s) = \{ \mu \in I^X \mid x_t q \mu = \mathcal{I}(\mathcal{C}(\mu, r, s), r, s) \}.$ **Definition 2.2** Let (X, τ, τ^*) be an ifts, $\lambda \in I^X$, $x_t \in P_t(X)$, $r \in I_0$ and $s \in I_1$. Then (1) x_t is called (r, s)-fuzzy cluster point of λ if $\mu q \lambda$, for every $\mu \in \mathcal{Q}(x_t, r, s)$. (2) x_t is called (r, s)-fuzzy δ -cluster point of λ if $\mu q \lambda$, for every $\mu \in \mathcal{R}(x_t, r, s)$. (3) x_t is called (r, s)-fuzzy θ -cluster point of λ if $\mathcal{C}(\mu, r, s)q\lambda$, for every $\mu \in \mathcal{Q}(x_t, r, s)$. We denote $cl(\lambda, r, s) = \bigvee \{x_t \in P_t(X) \mid x_t \text{ is } (r, s) - \text{fuzzy cluster point of } \lambda \}.$ $\mathcal{D}(\lambda, r, s) = \bigvee \{ x_t \in P_t(X) \mid x_t \text{ is } (r, s) - \text{fuzzy } \delta - \text{ cluster point of } \lambda \}.$ $T(\lambda, r, s) = \bigvee \{ x_t \in P_t(X) \mid x_t \text{ is } (r, s) - \text{fuzzy } \theta - \text{ cluster point of } \lambda \}.$ **Theorem 2.3** Let (X, τ, τ^*) be an ifts, $\lambda \in I^X$, $x_t \in P_t(X)$, $r \in I_0$ and $s \in I_1$. Then (1) $\mathcal{C}(\lambda, r, s) = \operatorname{cl}(\lambda, r, s).$ $\lambda \le \mu, \quad \mu = \mathcal{C}(\mathcal{I}(\mu, r, s), r, s)\}.$ (2) $\mathcal{D}(\lambda, r, s) = \bigwedge \{ \mu \mid$ (3) $T(\lambda, r, s) = \bigwedge \{ \mu \mid \lambda \leq \mathcal{I}(\mu, r, s), \tau(\mu) \geq r, \tau^*(\mu) \leq s \}.$ (4) x_t is (r, s)-fuzzy δ -cluster (resp. (r, s)-fuzzy cluster and (r, s)-fuzzy θ -cluster) point of λ iff $x_t \in \mathcal{D}(\lambda, r, s)$ (resp. $x_t \in \mathcal{C}(\lambda, r, s)$ and $x_t \in T(\lambda, r, s)$). (5) $\lambda \leq \mathcal{C}(\lambda, r, s) \leq \mathcal{D}(\lambda, r, s) \leq T(\lambda, r, s).$ (6) If $\tau(\lambda) \ge r$ and $\tau^*(\lambda) \le s$, then $\mathcal{C}(\lambda, r, s) = \mathcal{D}(\lambda, r, s) = \mathcal{T}(\lambda, r, s)$. **Proof.** (1) and (3) are similarly proved as the following (2).

(2) Put $\rho = \bigwedge \{ \mu \mid \lambda \leq \mu, \quad \mu = \mathcal{C}(\mathcal{I}(\mu, r, s), r, s) \}$. Suppose there exist $\lambda \in I^X$, $r \in I_0$ and $s \in I_1$ such that $\mathcal{D}(\lambda, r, s) \not\geq \rho$. Then there exist $x \in X$ and $t \in (0, 1)$ such that

$$\mathcal{D}(\lambda, r, s)(x) < t < \rho(x).$$

Since x_t is not (r, s)-fuzzy δ -cluster point of λ , there exists $\nu \in \mathcal{R}(x_t, r, s)$ such that $\lambda \leq \underline{1} - \nu$. Then $\lambda \leq \underline{1} - \nu = \mathcal{C}(\mathcal{I}(\underline{1} - \nu, r, s), r, s)$. Thus, $\rho \leq \underline{1} - \nu$. Furthermore, $x_t q \nu$ implies $\rho(x) \leq (\underline{1} - \nu)(x) < t$. It is a contradiction. Hence $\mathcal{D}(\lambda, r, s) \geq \rho$.

Suppose there exist $\lambda \in I^X$, $x \in X$ and $t \in (0, 1)$ such that

$$\mathcal{D}(\lambda, r, s)(x) > t > \rho(x).$$

Then there exists $\mu \in I^X$ with $\lambda \leq \mu = \mathcal{C}(\mathcal{I}(\mu, r, s), r, s)$ such that

$$\mathcal{D}(\lambda, r, s)(x) > t > \mu(x) > \rho(x).$$

Then $\underline{1} - \mu \in \mathcal{R}(x_t, r, s)$ such that $\lambda \overline{q}(\underline{1} - \mu)$. Hence x_t is not (r, s)-fuzzy δ -cluster point of λ . It is a contradiction. Hence $\mathcal{D}(\lambda, r, s) \leq \rho$.

(4) (\Rightarrow) It is trivial.

 (\Leftarrow) Let x_t be not (r, s)-fuzzy δ -cluster point of λ . Then there exists $\nu \in \mathcal{R}(x_t, r, s)$ such that $\lambda \leq \underline{1} - \nu$. Since, $\underline{1} - \nu = \mathcal{C}(\mathcal{I}(\underline{1} - \nu, r, s), r, s)$, we have $\mathcal{D}(\lambda, r, s) \leq \underline{1} - \nu$. Furthermore, $x_t q \nu$ implies $\mathcal{D}(\lambda, r, s)(x) \leq (\underline{1} - \nu)(x) < t$. Hence $x_t \notin \mathcal{D}(\lambda, r, s)$.

Others are similarly proved.

(5) Since $\mathcal{R}(x_t, r, s) \subset \mathcal{Q}(x_t, r, s)$, then $x_t \in \mathcal{C}(\lambda, r, s)$ implies $x_t \in \mathcal{D}(\lambda, r, s)$. Hence $\mathcal{C}(\lambda, r, s) \leq \mathcal{D}(\lambda, r, s)$, for each $\lambda \in I^X$, $r \in I_0$ and $s \in I_1$.

Suppose there exist $\lambda \in I^X$, $t \in (0, 1)$, $r \in I_0$ and $s \in I_1$ such that

$$\mathcal{D}(\lambda, r, s)(x) > t > T(\lambda, r, s)(x).$$

Since x_t is not (r, s)-fuzzy θ -cluster point of λ , there exists $\mu \in \mathcal{Q}(x_t, r, s)$ such that $\lambda \leq \underline{1} - \mathcal{C}(\mu, r, s)$. It implies $\lambda \leq \underline{1} - \mathcal{C}(\mu, r, s) \leq \underline{1} - \mathcal{I}(\mathcal{C}(\mu, r, s), r, s)$. Since $\tau(\mu) \geq r$, $\tau^*(\mu) \leq s$ and $\mu \leq \mathcal{C}(\mu, r, s)$, we have $\mu = \mathcal{I}(\mu, r, s) \leq \mathcal{I}(\mathcal{C}(\mu, r, s), r, s)$. Thus, $x_t q \mu$ implies $x_t q \mathcal{I}(\mathcal{C}(\mu, r, s), r, s)$. Since $\mathcal{I}(\mathcal{C}(\mu, r, s), r, s) \in \mathcal{R}(x_t, r, s)$ and $\lambda \leq \underline{1} - \mathcal{I}(\mathcal{C}(\mu, r, s), r, s)$. Hence x_t is not (r, s)-fuzzy δ -cluster point of λ . By (1), $\mathcal{D}(\lambda, r, s)(x) < t$. It is a contradiction. Hence $\mathcal{D}(\lambda, r, s) \leq T(\lambda, r, s)$ for each $\lambda \in I^X$, $r \in I_0$ and $s \in I_1$.

Theorem 2.4 Let (X, τ, τ^*) be an ifts. For $\lambda, \mu \in I^X$, $r \in I_0$ and $s \in I_1$, the operator \mathcal{D} satisfies the following conditions:

(1)
$$\mathcal{D}(\underline{0}, r, s) = \underline{0}$$
.
(2) $\lambda \leq \mathcal{D}(\lambda, r, s)$.
(3) $\mathcal{D}(\lambda, r, s) \leq \mathcal{D}(\mu, r, s)$ if $\lambda \leq \mu$.
(4) $\mathcal{D}(\lambda, r, s) \vee \mathcal{D}(\mu, r, s) = \mathcal{D}(\lambda \vee \mu, r, s)$.
(5) $\mathcal{D}(\mathcal{D}(\lambda, r, s), r, s) = \mathcal{D}(\lambda, r, s)$.
Proof. (1),(2) and (3) are easily proved from the definition of \mathcal{D} .
(4) From (3) we have $\mathcal{D}(\lambda, r, s) \vee \mathcal{D}(\mu, r, s) \leq \mathcal{D}(\lambda \vee \mu, r, s)$.

Suppose there exist $\lambda_1, \lambda_2 \in I^X$, $x \in X$, $r \in I_0, s \in I_1$ and $t \in (0, 1)$ such that

(1)
$$\mathcal{D}(\lambda_1, r, s)(x) \lor \mathcal{D}(\lambda_2, r, s)(x) < t \le \mathcal{D}(\lambda_1 \lor \lambda_2, r, s)(x).$$

For each $i \in \{1, 2\}$, since $\mathcal{D}(\lambda_i, r, s)(x) < t$, by Theorem 2.3(2), there exists $\nu_i \in \mathcal{R}(x_t, r, s)$ with $\lambda_i \leq \nu_i = \mathcal{C}(\mathcal{I}(\nu_i, r, s), r, s)$ such that

(2)
$$\mathcal{D}(\lambda_1, r, s)(x) \lor \mathcal{D}(\lambda_2, r, s)(x) \le (\nu_1 \lor \nu_2, r, s)(x) < t.$$

Since $\nu_i = \mathcal{C}(\mathcal{I}(\nu_i, r, s), r, s)$, we have

$$\mathcal{C}(\mathcal{I}(\nu_1 \vee \nu_2, r, s), r, s) \le \mathcal{C}(\nu_1 \vee \nu_2, r, s) = \mathcal{C}(\nu_1, r, s) \vee \mathcal{C}(\nu_2, r, s) = \nu_1 \vee \nu_2$$

Moreover, $C(\mathcal{I}(\nu_1 \vee \nu_2, r, s), r, s) \geq C(\mathcal{I}(\nu_1, r, s), r, s) \vee C(\mathcal{I}(\nu_2, r, s), r, s) = \nu_1 \vee \nu_2$. Thus, $C(\mathcal{I}(\nu_1 \vee \nu_2, r, s), r, s) = \nu_1 \vee \nu_2$. Hence $D(\lambda_1 \vee \lambda_2, r, s) \leq \nu_1 \vee \nu_2$. It is a contradiction for the equations (1) and (2).

(5) From (2), $\mathcal{D}(\mathcal{D}(\lambda, r, s), r, s) \ge \mathcal{D}(\lambda, r, s)$. Suppose

$$\mathcal{D}(\mathcal{D}(\lambda, r, s), r, s)(x) > t > \mathcal{D}(\lambda, r, s)(x).$$

Then there exists $\nu \in I^X$ with $\lambda \leq \nu = \mathcal{C}(\mathcal{I}(\nu, r, s), r, s)$, such that

$$\mathcal{D}(\mathcal{D}(\lambda, r, s), r, s)(x) > t > \nu(x) \ge \mathcal{D}(\lambda, r, s)(x).$$

Since $\lambda \leq \nu = \mathcal{C}(\mathcal{I}(\nu, r, s), r, s)$, we have

$$\mathcal{D}(\lambda, r, s) \leq \mathcal{D}(\nu, r, s) = \mathcal{D}(\mathcal{C}(\mathcal{I}(\nu, r, s), r, s), r, s) = \mathcal{C}(\mathcal{I}(\nu, r, s), r, s), r, s) = \nu_{\mathcal{I}}(\mathcal{I}(\nu, r, s), r, s) = \nu_{\mathcal{I}}(\mathcal{I}(\nu,$$

Thus, $\mathcal{D}(\mathcal{D}(\lambda, r, s), r, s) \leq \nu$. It is a contradiction.

Theorem 2.5 Let (X, τ, τ^*) be an ifts. For $\lambda, \mu \in I^X$, $r \in I_0$ and $s \in I_1$, the operator T satisfies the following conditions:

- (1) $T(\underline{0}, r, s) = \underline{0}.$
- (2) $\lambda \leq T(\lambda, r, s).$
- (3) $T(\lambda, r, s) \leq T(\mu, r, s)$ if $\lambda \leq \mu$.
- (4) $T(\lambda, r, s) \lor T(\mu, r, s) = T(\lambda \lor \mu, r, s).$

Theorem 2.6 Let (X, τ, τ^*) be an ifts. For $\lambda \in I^X$, $r \in I_0$ and $s \in I_1$. Define the mappings $\tau_{\theta}, \tau_{\theta}^*, \tau_{\delta}, \tau_{\delta}^* : I^X \to I$ by

$$\tau_{\theta}(\lambda) = \bigvee \{ r \in I_0 \mid T(\underline{1} - \lambda, r_0, s_0) = \underline{1} - \lambda, \quad 0 < r_0 \le r, \quad s \le s_0 < 1 \},$$

$$\tau_{\theta}^*(\lambda) = \bigwedge \{ s \in I_1 \mid T(\underline{1} - \lambda, r_0, s_0) = \underline{1} - \lambda, \quad 0 < r_0 \le r, \quad s \le s_0 < 1 \},$$

$$\tau_{\delta}(\lambda) = \bigvee \{ r \in I_0 \mid \mathcal{D}(\underline{1} - \lambda, r_0, s_0) = \underline{1} - \lambda, \quad 0 < r_0 \le r, \quad s \le s_0 < 1 \},$$

$$\tau_{\theta}^*(\lambda) = \bigwedge \{ s \in I_1 \mid \mathcal{D}(\underline{1} - \lambda, r_0, s_0) = \underline{1} - \lambda, \quad 0 < r_0 \le r, \quad s \le s_0 < 1 \}.$$

(1) $\tau_{\theta} \leq \tau_{\delta} \leq \tau$ and $\tau_{\theta}^* \geq \tau_{\delta}^* \geq \tau^*$.

(2) $(\tau_{\theta}, \tau_{\theta}^*)$ and $(\tau_{\delta}, \tau_{\delta}^*)$ are IGO's on X.

Proof. (1) We will show that $\tau_{\theta} \leq \tau_{\delta}$ and $\tau_{\theta}^* \geq \tau_{\delta}^*$. Suppose there exist $\lambda \in I^X$, $r \in I_0$ and $s \in I_1$ such that $\tau_{\theta}(\lambda) > r > \tau_{\delta}(\lambda)$ and $\tau_{\theta}^*(\lambda) < s < \tau_{\delta}^*(\lambda)$. Then there exists $r_0 \in I_0$ and $s_0 \in I_1$ with $0 < r^* \leq r_0$, $s_0 \leq s^* < 1$, $\underline{1} - \lambda = T(\underline{1} - \lambda, r^*, s^*)$ such that $\tau_{\theta}(\lambda) \geq r_0 > r$ and $\tau_{\theta}^*(\lambda) \leq s_0 < s$. On the other hand, since $T(\underline{1} - \lambda, r^*, s^*) \geq \mathcal{D}(\underline{1} - \lambda, r^*, s^*)$ for each $0 < r^* \le r_0, s_0 \le s^* < 1$, we have $\underline{1} - \lambda = \mathcal{D}(\underline{1} - \lambda, r^*, s^*)$. Thus, $\tau_{\delta}(\lambda) \ge r_0$ and $\tau^*_{\delta}(\lambda) \le s_0$. It is a contradiction.

(2) First, we will show that $(\tau_{\theta}, \tau_{\theta}^*)$ is an IGO on X.

(IGO1) It is easy prove by (1) and Definition 1.1.

(IGO2) For all $r \in I_0$ and $s \in I_1$, we have $T(\underline{0}, r, s) = \underline{0}$ and $T(\underline{1}, r, s) = \underline{1}$. Hence $\tau_{\theta}(\underline{0}) = \tau_{\theta}(\underline{1}) = 1$ and $\tau_{\theta}^*(\underline{0}) = \tau_{\theta}^*(\underline{1}) = 0$.

(IGO3) Suppose there exist $\lambda_1, \lambda_2 \in I^X$ and $t, m \in (0, 1)$ such that

$$\tau_{\theta}(\lambda_1 \wedge \lambda_2) < t < \tau_{\theta}(\lambda_1) \wedge \tau_{\theta}(\lambda_2).$$

$$\tau_{\theta}^*(\lambda_1 \wedge \lambda_2) > m > \tau_{\theta}^*(\lambda_1) \vee \tau_{\theta}^*(\lambda_2).$$

From the definition of $(\tau_{\theta}, \tau_{\theta}^*)$, there exist $r_i \in I_0$, $s_i \in I_1$ for $i \in \{1, 2\}$ with $t \leq r_i, m \geq s_i$ and for each $0 < r_0 \leq r_i, s_i < s_0 < 1$,

$$\underline{1} - \lambda_i = T(\underline{1} - \lambda_i, r_0, s_0),$$

such that

$$\tau_{\theta}(\lambda_1 \wedge \lambda_2) < r_1 \wedge r_2 < \tau_{\theta}(\lambda_1) \wedge \tau_{\theta}(\lambda_2),$$

$$\tau_{\theta}^*(\lambda_1 \wedge \lambda_2) > s_1 \vee s_2 \ge \tau_{\theta}^*(\lambda_1) \vee \tau_{\theta}^*(\lambda_2).$$

Put $r_1 \wedge r_2 = r^*, s_1 \vee s_2 = s^*$. Since $\underline{1} - \lambda_i = T(\underline{1} - \lambda_i, r_0, s_0)$, for all $0 < r_0 \le r_i, s_i < s_0 < 1$,

$$T(\underline{1} - (\lambda_1 \wedge \lambda_2), r_0, s_0) = T(\underline{1} - \lambda_1) \vee (\underline{1} - \lambda_2), r_0, s_0)$$

= $T(\underline{1} - \lambda_1, r_0, s_0) \vee T(\underline{1} - \lambda_2, r_0, s_0)$
= $(\underline{1} - \lambda_1) \vee (\underline{1} - \lambda_2).$

Thus, $\tau_{\theta}(\lambda_1 \wedge \lambda_2) \geq r_0$ and $\tau^*_{\theta}(\lambda_1 \wedge \lambda_2) \leq s_0$. It is a contradiction.

(IGO4) Suppose there exist $\{\lambda_j \in I^{\overline{X}}\}_{j \in J}$ and $t, m \in (0, 1)$ such that

$$au_{\theta}(\bigvee_{j\in J}\lambda_j) < t < \bigwedge_{j\in J}\tau_{\theta}(\lambda_j) \text{ and } au_{\theta}^*(\bigvee_{j\in J}\lambda_j) > m > \bigvee_{j\in J}\tau_{\theta}^*(\lambda_j).$$

From the definition of $(\tau_{\theta}, \tau_{\theta}^*)$, there exist $r_j \in I_0$, $s_j \in I_1$ for $j \in J$ with $0 < r_0 \leq r_j$, $s_j \leq s_0 < 1, \underline{1} - \lambda_j = T(\underline{1} - \lambda_j, r_0, s_0)$ such that

$$\tau_{\theta}(\bigvee_{j\in J}\lambda_{j}) < t < \bigwedge_{j\in J}r_{j} < \bigwedge_{j\in J}\tau_{\theta}(\lambda_{j}),$$
$$\tau_{\theta}^{*}(\bigvee_{j\in J}\lambda_{j}) > m > \bigvee_{j\in J}s_{j} \ge \bigvee_{j\in J}\tau_{\theta}^{*}(\lambda_{j}).$$

Put $r^* = \bigwedge_{j \in J} r_j, s^* = \bigvee_{j \in J} s_j$. Then

$$T(\underline{1} - (\bigvee_{j \in J} \lambda_j), r_0, s_0) = T(\bigwedge_{j \in J} (\underline{1} - \lambda_j), r_0, s_0)$$
$$\leq \bigwedge_{j \in J} T(\underline{1} - \lambda_j), r_0, s_0) = \bigwedge_{j \in J} (\underline{1} - \lambda_j) = \underline{1} - \bigvee_{j \in J} \lambda_j.$$

Hence, $T(\underline{1} - \bigvee_{j \in J} \lambda_j, r_0, s_0) = \underline{1} - \bigvee_{j \in J} \lambda_j$. Thus, $\tau_{\theta}(\bigvee_{j \in J} \lambda_j) \ge r_0$ and $\tau_{\theta}^*(\bigvee_{j \in J} \lambda_j) \le s_0$. It is a contradiction.

3 Fuzzy δ -connectedness and fuzzy θ -connectedness

Definition 3.1 Let (X, τ, τ^*) be an iffs. For each $\lambda \in I^X$, $r \in I_{\circ}$ and $s \in I_1$. (1) λ is called (r, s)-fuzzy θ -closed (resp. (r, s)-fuzzy δ -closed) iff $\lambda = T(\lambda, r, s)$ (resp. $\lambda = \mathcal{D}(\lambda, r, s)$). We define

$$\begin{split} &\Delta(\lambda,r,s) = \bigwedge \{ \mu \in I^X : \lambda \leq \mu, \ \mu = \mathcal{D}(\mu,r,s) \}, \\ &\Theta(\lambda,r,s) = \bigwedge \{ \mu \in I^X : \lambda \leq \mu, \ \mu = T(\mu,r,s) \}. \end{split}$$

(2) The complement of (r, s)-fuzzy θ -closed (resp. (r, s)-fuzzy δ -closed) set is called (r, s)-fuzzy θ -open (resp. (r, s)-fuzzy δ -open).

Theorem 3.2 Let (X, τ, τ^*) be an ifts. For each $\lambda \in I^X$, $r \in I_{\circ}$ and $s \in I_1$, we have the following properties:

(1) $\Delta(\lambda, r, s) = \mathcal{D}(\lambda, r, s)$. (2) $\Delta(\lambda, r, s)$ is (r, s)-fuzzy δ -closed. (3) $\Theta(\lambda, r, s) = T(\Theta(\lambda, r, s), r, s)$, i.e., $\Theta(\lambda, r, s)$ is (r, s)-fuzzy θ -closed. (4) $T(\lambda, r, s) \leq \Theta(\lambda, r, s)$. **Proof.** (1) Since $\lambda \leq \mathcal{D}(\lambda, r, s) = \mathcal{D}(\mathcal{D}(\lambda, r, s), r, s)$, we have $\Delta(\lambda, r, s) \leq \mathcal{D}(\lambda, r, s)$. Suppose $\Delta(\lambda, r, s) \geq \mathcal{D}(\lambda, r, s)$. There exist $x \in X$ and $t \in (0, 1)$ such that

$$\Delta(\lambda, r, s)(x) < t < \mathcal{D}(\lambda, r, s)(x).$$

From the definition of $\Delta(\lambda, r, s)$, there exists $\mu \in I^X$ with $\lambda \leq \mu = \mathcal{D}(\mu, r, s)$ such that

$$\Delta(\lambda, r, s)(x) \le \mu(x) < t < \mathcal{D}(\lambda, r, s)(x).$$

On the other hand, since $\lambda \leq \mu$, we have $\mathcal{D}(\lambda, r, s) \leq \mathcal{D}(\mu, r, s) = \mu$. It is a contradiction. Hence $\Delta(\lambda, r, s) \geq \mathcal{D}(\lambda, r, s)$.

(2) It is trivial.

(3) Let $\lambda \leq \mu_j = T(\mu_j, r, s)$ for each $j \in \Gamma$. Then

$$\bigwedge_{j\in\Gamma} \mu_j \le T(\bigwedge_{j\in\Gamma} \mu_j, r, s) \le T(\mu_j, r, s) = \mu_j.$$

It implies $\bigwedge_{j\in\Gamma} \mu_j = T(\bigwedge_{j\in\Gamma} \mu_j, r, s)$. Hence $\Theta(\lambda, r, s) = T(\Theta(\lambda, r, s), r, s)$, that is, $\Theta(\lambda, r, s)$ is (r, s)-fuzzy θ -closed set.

(4) Since $\lambda \leq \Theta(\lambda, r, s)$, by (3), we have $T(\lambda, r, s) \leq T(\Theta(\lambda, r, s), r, s) = \Theta(\lambda, r, s)$.

In general, by Theorem 3.2(1-2), an δ - closure operator is (r, s)-fuzzy δ -closed for each $r \in I_0$ and $s \in I_1$, but an θ - closure operator is not (r, s)-fuzzy- θ -closed.

Example 3.3 Let $X = \{x, y\}$ be a set. Let (X, τ, τ^*) be an ifts as follows:

$$\tau(\lambda) = \begin{cases} 1, & \lambda \in \{\underline{0}, \underline{1}\} \\ \frac{1}{2}, & \lambda = \underline{0.7}, \\ \frac{1}{2}, & \lambda = \underline{0.5}, \\ \frac{1}{2}, & \lambda = \underline{0.4}, \\ 0, & \text{otherwise}, \end{cases} \quad \tau^*(\lambda) = \begin{cases} 0, & \lambda \in \{\underline{0}, \underline{1}\} \\ \frac{1}{2}, & \lambda = \underline{0.7}, \\ \frac{1}{2}, & \lambda = \underline{0.5}, \\ \frac{1}{2}, & \lambda = \underline{0.4}, \\ 1, & \text{otherwise}. \end{cases}$$

We obtain

$$T(\lambda, r, s) = \begin{cases} \underline{0}, & \lambda = \underline{0}, \ r \in I_0, s \in I_1 \\ \underline{0.6}, & \underline{0} \neq \lambda \leq \underline{0.5}, \ 0 < r \leq \frac{1}{2}, \frac{1}{2} \leq s < 1, \\ \underline{1}, & \text{otherwise.} \end{cases}$$

Since

$$\underline{1} = T(T(\underline{0.5}, \frac{1}{2}, \frac{1}{2}), \frac{1}{2}, \frac{1}{2}) \neq T(\underline{0.5}, \frac{1}{2}, \frac{1}{2}) = \underline{0.6},$$

then $T(\underline{0.5}, \frac{1}{2}, \frac{1}{2})$ is not $(\frac{1}{2}, \frac{1}{2})$ -fuzzy θ -closed. Since

$$\Theta(\lambda, r, s) = \begin{cases} \underline{0}, & \lambda = \underline{0}, \ r \in I_0, s \in I_1 \\ \underline{1}, & \text{otherwise,} \end{cases}$$

we have $T(\lambda, r, s) \leq \Theta(\lambda, r, s)$.

Definition 3.4 A pair (λ, μ) of non-null fuzzy sets in an ifts (X, τ, τ^*) is said to be (r, s)-fuzzy separation relative to X, $r \in I_0$ and $s \in I_1$ iff $\lambda \overline{q}\mu$, $\lambda \overline{q}C(\mu, r, s)$ and $C(\lambda, r, s)\overline{q}\mu$. A fuzzy set γ in an ifts X is said to be (r, s)-fuzzy connected iff there do not exist two fuzzy sets λ and μ in X such that (λ, μ) is an (r, s)-fuzzy separation relative to X and $\gamma = \lambda \lor \mu$.

Definition 3.5 A pair (λ, μ) of non-null fuzzy sets in an ifts (X, τ, τ^*) , $r \in I_0$ and $s \in I_1$ is said to be (r, s)-fuzzy- θ -separation relative to X iff $\lambda \overline{q}\mu$, $\lambda \overline{q}\Theta(\mu, r, s)$ and $\Theta(\lambda, r, s)\overline{q}\mu$. A fuzzy set γ in an ifts X is said to be (r, s)-fuzzy- θ -connected iff there do not exist two fuzzy sets λ and μ in X such that (λ, μ) is an (r, s)-fuzzy- θ -separation relative to X and $\gamma = \lambda \lor \mu$.

Definition 3.6 A pair (λ, μ) of non-null fuzzy sets in an ifts (X, τ, τ^*) is said to be (r, s)-fuzzy- δ -separation relative to X iff $\lambda \overline{q}\mu$, $\lambda \overline{q}\Delta(\mu, r, s)$ and $\Delta(\lambda, r, s)\overline{q}\mu$. A fuzzy set γ in an ifts X is said to be (r, s)-fuzzy- δ -connected iff there do not exist two fuzzy sets λ and μ in X such that (λ, μ) is an (r, s)-fuzzy- δ -separation relative to X and $\gamma = \lambda \vee \mu$.

Remark 3.7 From Theorem 3.2(1,4), it is clear that:

(r, s)-fuzzy connected \Rightarrow (r, s)-fuzzy- δ -connected \Rightarrow (r, s)-fuzzy- θ -connected. Example 3.8 Let X = I and (X, τ, τ^*) an ifts define as

$$\tau(\lambda) = \begin{cases} 1, & \lambda \in \{\underline{0}, \underline{1}\}, \\ \frac{1}{2}, & \lambda = \lambda_1, \lambda_2, \\ \frac{1}{3}, & \lambda = \lambda_3, \lambda_4, \\ 0, & \text{otherwise}, \end{cases} \quad \tau^*(\lambda) = \begin{cases} 0, & \lambda \in \{\underline{0}, \underline{1}\}, \\ \frac{1}{2}, & \lambda = \lambda_1, \lambda_2, \\ \frac{2}{3}, & \lambda = \lambda_3, \lambda_4, \\ 1, & \text{otherwise}, \end{cases}$$

where $\lambda_1, \lambda_2, \lambda_3$ and λ_4 are fuzzy sets defined as follows

$$\lambda_1(0) = \frac{1}{4}, \quad \lambda_2(0) = \frac{1}{7}, \quad \lambda_3(0) = \frac{8}{9}, \quad \lambda_4(0) = \frac{1}{5} \text{ and}$$

 $\lambda_k(x) = \frac{1}{2} \quad \forall x \in I_0, k = 1, 2, 3, 4.$

Then (X, τ, τ^*) is an ifts. Consider a fuzzy set defined as follows

$$\gamma(x) = \begin{cases} \frac{6}{7}, & x = 0, \\ \frac{1}{2}, & \text{otherwise.} \end{cases}$$

Then, $\gamma = \mu \lor \nu$, where

$$\mu(x) = \begin{cases} \frac{6}{7}, & x = 0, \\ 0, & \text{otherwise,} \end{cases} \quad \text{and} \quad \nu(x) = \begin{cases} \frac{1}{10}, & x = 0, \\ \frac{1}{2}, & \text{otherwise.} \end{cases}$$

Obviously, $\mu \overline{q} \nu$. Again

$$\mathcal{C}(\mu, \frac{1}{3}, \frac{2}{3}) = \begin{cases} \frac{6}{7}, & x = 0, \\ \frac{1}{2}, & \text{otherwise,} \end{cases} \quad \text{and} \quad \mathcal{C}(\nu, \frac{1}{3}) = \begin{cases} \frac{1}{9}, & x = 0, \\ \frac{1}{2}, & \text{otherwise.} \end{cases}$$

Obviously, $\mu \overline{q} \mathcal{C}(\nu, \frac{1}{3}, \frac{2}{3})$ and $\mathcal{C}(\mu, \frac{1}{3}, \frac{2}{3}) \overline{q} \nu$. Then γ is not $(\frac{1}{3}, \frac{2}{3})$ -fuzzy connected. For any respresentation $\gamma = \mu \lor \nu$, where μ and ν are non-empty, either $\mu(0) = \frac{6}{7}$ or $\nu(0) = \frac{6}{7}$, by Theorem 3.2(1), then if $\mu(0) = \frac{6}{7}$ (resp. if $\nu(0) = \frac{6}{7}$), then $\Delta(\mu, \frac{1}{3}, \frac{2}{3}) = \underline{1}$ (resp. $\Delta(\nu, \frac{1}{3}, \frac{2}{3}) = \underline{1}$) so that γ is not representable as $\mu \lor \nu$, where (μ, ν) is an $(\frac{1}{3}, \frac{2}{3})$ -fuzzy δ -separation. Hence γ is $(\frac{1}{3}, \frac{2}{3})$ -fuzzy δ -connected.

Example 3.9 Define an ifts (X, τ, τ^*) as in Example 3.3. From Theorem 3.2(1), we obtain

$$\Delta(\lambda, r, s) = \begin{cases} \underline{0}, & \lambda = \underline{0}, \ r \in I_0, s \in I_1, \\ \underline{0.6}, & \underline{0} \neq \lambda \leq \underline{0.6}, \ 0 < r \leq \frac{1}{2}, \frac{1}{2} \leq s < 1 \\ \underline{1}, & \text{otherwise.} \end{cases}$$

For $\underline{0.4} = \underline{0.3} \lor \underline{0.4}$, we have $\underline{0.3} \ \bar{q} \ \underline{0.4}, \ \underline{0.6} = \Delta(\underline{0.3}, \frac{1}{3}, \frac{2}{3}) \ \bar{q} \ \underline{0.4}, \qquad \underline{0.3} \overline{q} \Delta(\underline{0.4}, \frac{1}{3}, \frac{2}{3}) = \underline{0.6}$. Hence $(\underline{0.3}, \underline{0.4})$ is an $(\frac{1}{3}, \frac{2}{3})$ -fuzzy- δ -separation and $\underline{0.4}$ is not $(\frac{1}{3}, \frac{2}{3})$ -fuzzy- δ -connected.

For any representation $\underline{0.4} = \mu \lor \nu$, where μ and ν are non-empty, by Example 3.3, $\Theta(\lambda, r, s) = \underline{1}$ for $\lambda \in \{\mu, \nu\}$. Thus, $\underline{0.4}$ is $(\frac{1}{3}, \frac{2}{3})$ -fuzzy- θ -connected.

Definition 3.10 Let (X, τ, τ^*) be an ifts, $r \in I_0$ and $s \in I_1$. Then X is said to be (1) (r, s)-fuzzy regular iff for each fuzzy point x_t in X and each $\mu \in \mathcal{Q}(x_t, r, s)$ there exists $\nu \in \mathcal{Q}(x_t, r, s)$ such that $\mathcal{C}(\nu, r, s) \leq \mu$.

(2) (r, s)-fuzzy almost regular iff for each fuzzy point x_t in X and each $\mu \in \mathcal{R}(x_t, r, s)$ there exists $\nu \in \mathcal{R}(x_t, r, s)$ such that $\mathcal{C}(\nu, r, s) \leq \mu$.

(3) (r, s)-fuzzy semi-regular iff for each $\mu \in \mathcal{Q}(x_t, r, s)$, there exists $\rho \in \mathcal{Q}(x_t, r, s)$ such that $\mathcal{I}(\mathcal{C}(\rho, r, s), r, s) \leq \mu$.

Theorem 3.11 Let (X, τ, τ^*) be an ifts, $r \in I_0$ and $s \in I_1$. Then

(1) X is (r, s)-fuzzy almost regular iff $T(\lambda, r, s) = \mathcal{D}(\lambda, r, s)$, for each $\lambda \in I^X$.

(2) X is (r, s)-fuzzy semi-regular iff $\mathcal{D}(\lambda, r, s) = \mathcal{C}(\lambda, r, s)$, for each $\lambda \in I^X$.

Proof. (1) We only show that $T(\lambda, r, s) \leq \mathcal{D}(\lambda, r, s)$. Suppose there exist $\lambda \in I^X$, $r \in I_0$ and $s \in I_1$ such that $T(\lambda, r, s) \not\leq \mathcal{D}(\lambda, r, s)$. Then there exist $x \in X$ and $t \in (0, 1)$ such that $T(\lambda, r, s)(x) > t > \mathcal{D}(\lambda, r, s)(x)$. Since $\mathcal{D}(\lambda, r, s)(x) < t$, x_t is not (r, s)-fuzzy δ -cluster point of λ . Then there exists $\mu \in \mathcal{R}(x_t, r, s)$ such that $\lambda \leq \underline{1} - \mu = \mathcal{C}(\mathcal{I}(\underline{1} - \mu, r, s), r, s)$. Since (X, τ, τ^*) is (r, s)-fuzzy almost regular, for $\mu \in \mathcal{R}(x_t, r, s)$, there exists $\rho \in \mathcal{R}(x_t, r, s)$ such that $\mathcal{C}(\rho, r, s) \leq \mu$. Thus

$$\lambda \leq \underline{1} - \mu \leq \underline{1} - \mathcal{C}(\rho, r, s) \leq \mathcal{I}(\underline{1} - \rho, r, s) \leq \mathcal{I}(\mathcal{C}(\mathcal{I}(\underline{1} - \rho, r, s), r, s), r, s).$$

It follows $T(\lambda, r, s) \leq C(\mathcal{I}(\underline{1} - \rho, r, s), r, s)$. Hence $T(\lambda, r, s)(x) \leq (\underline{1} - \rho)(x) < t$. It is a contradiction.

Conversely, for each $\mu \in \mathcal{R}(x_t, r, s), t > (\underline{1} - \mu)(x) = \mathcal{C}(\mathcal{I}(\underline{1} - \mu, r, s), r, s)(x)$. Since

$$\begin{split} T(\underline{1} - \mu, r) &= T(\mathcal{C}(\mathcal{I}(\underline{1} - \mu, r, s), r, s), r, s) \\ &= \mathcal{D}(\mathcal{C}(\mathcal{I}(\underline{1} - \mu, r, s), r, s), r, s) \\ &= \mathcal{C}(\mathcal{I}(\underline{1} - \mu, r, s), r, s), \end{split}$$

then x_t is not (r, s)-fuzzy θ -cluster point of $\underline{1} - \mu$. Then there exists $\rho \in \mathcal{Q}(x_t, r, s)$ such that $\mathcal{C}(\rho, r, s) \leq \mu$. It implies $\mathcal{I}(\mathcal{C}(\rho, r, s), r, s) \leq \mathcal{C}(\mathcal{I}(\mathcal{C}(\rho, r, s), r, s), r, s) \leq \mu$. Moreover, $\mathcal{I}(\mathcal{C}(\rho, r, s), r, s) \in \mathcal{Q}(x_t, r, s)$. Hence (X, τ, τ^*) is (r, s)-fuzzy almost regular.

(2) Similarly prove as (1).

Corollary 3.12 (1) In an (r, s)-fuzzy almost regular space, since, by Theorem 3.11(1), $\Theta(\lambda, r, s) = \Delta(\lambda, r, s)$, for each $\lambda \in I^X$, $r \in I_{\circ}$ and $s \in I_1$, (r, s)-fuzzy - δ -connectedness and (r, s)-fuzzy- θ -connectedness are equivalent.

(2) In an (r, s)-fuzzy semi-regular space, the concepts of (r, s)-fuzzy connectedness and that of (r, s)-fuzzy- δ -connectedness are equivalent.

Theorem 3.13 An ifts (X, τ, τ^*) is (r, s)-fuzzy regular iff it is (r, s)-fuzzy almost regular and (r, s)-fuzzy semi-regular.

Proof. Let $\mu \in \mathcal{Q}(x_t, r, s)$. Since (X, τ, τ^*) is (r, s)-fuzzy regular, there exists $\rho \in \mathcal{Q}(x_t, r, s)$ such that $\mathcal{C}(\rho, r, s) \leq \mu$. So, $\mathcal{I}(\mathcal{C}(\rho, r, s), r, s) \leq \mathcal{C}(\rho, r, s) \leq \mu$. Hence (X, τ, τ^*) is (r, s)-fuzzy semi-regular. Let $\mu \in \mathcal{R}(x_t, r, s)$. Since (X, τ, τ^*) is (r, s)-fuzzy regular and $\mu \in \mathcal{Q}(x_t, r, s)$, there exists $\rho \in \mathcal{Q}(x_t, r, s)$ such that $\mathcal{C}(\rho, r, s) \leq \mu$. Since $\rho \leq \mathcal{I}(\mathcal{C}(\rho, r, s), r, s)$, $\mathcal{I}(\mathcal{C}(\rho, r, s), r, s) \in \mathcal{R}(x_t, r, s)$. So, $\mathcal{C}(\mathcal{I}(\mathcal{C}(\rho, r, s), r, s), r, s) = \mathcal{C}(\rho, r, s) \leq \mu$. Hence (X, τ, τ^*) is (r, s)-fuzzy almost regular.

Conversely, for each $\mu \in \mathcal{Q}(x_t, r, s)$, since (X, τ, τ^*) is (r, s)-fuzzy semi-regular, there exists $\rho \in \mathcal{Q}(x_t, r, s)$ such that $\mathcal{I}(\mathcal{C}(\rho, r, s), r, s) \leq \mu$. It follows $\mathcal{I}(\mathcal{C}(\rho, r, s), r, s) \in \mathcal{R}(x_t, r, s)$. Since (X, τ, τ^*) is (r, s)-fuzzy almost regular, there exists $\nu \in \mathcal{R}(x_t, r, s) \subset \mathcal{Q}(x_t, r, s)$ such that $\mathcal{C}(\nu, r, s) \leq \mathcal{I}(\mathcal{C}(\rho, r, s), r, s) \leq \mu$. Hence (X, τ, τ^*) is (r, s)-fuzzy regular.

Corollary 3.14 In an (r, s)-fuzzy regular space, since, by Theorems 3.2, 3.11(1,2) and 3.12, $C(\lambda, r, s) = \Theta(\lambda, r, s) = \Delta(\lambda, r, s)$, for each $\lambda \in I^X$, $r \in I_0$ and $s \in I_1$, then the notions of (r, s)-fuzzy connectedness, (r, s)-fuzzy- δ -connectedness and (r, s)-fuzzy- θ -connectedness of fuzzy sets become identical.

References

- [1] S. E. Abbas, (r, s)-generalized intuitionistic fuzzy closed sets, J. Egypt Math. Soc. vol 14(2), 2006, 283-297
- [2] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, vol 20(1), 1986, 87-96
- [3] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl., vol 24, 1968, 182-190
- [4] K. C. Chattopadhyay, R. N. Hazra, S. K. Samanta, Gradation of openess: fuzzy topology, Fuzzy Sets and Systems, vol 49, 1992, 237-242
- [5] Çoker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems, vol 88, 1997, 81-89

- [6] D. Çoker and M. Dimirci, An introduction to intuitionistic fuzzy topological spaces in Šostak sense, Buseful, vol 67, 1996, 67-76
- [7] U. Höhle, Upper semicontinuous fuzzy sets and applications, J. Math. Anall. Appl., vol 78, 1980, 659-673
- [8] U. Höhle and A. P. Šostak, A general theory of fuzzy topological spaces, Fuzzy Sets and Systems, vol 73, 1995, 131-149
- [9] U. Höhle and A. P. Šostak, Axiomatic Foundations of Fixed-Basis fuzzy topology, The Handbooks of Fuzzy sets series, Volume 3, Kluwer Academic Publishers, Dordrecht (Chapter 3), 1999
- [10] T. Kubiak, On fuzzy topologies, Ph. D. Thesis, A. Mickiewicz, Poznan, 1985
- [11] T. Kubiak and A. P. Sostak, Lower set-valued fuzzy topologies, Quaestions Math., vol 20(3), 1997, 423-429
- [12] E. P. Le and Y. B. Im, Mated fuzzy topological spaces, J. Korea Fuzzy Logic Intell. Sys. Soc., vol 11(2), 2001, 161-165
- [13] S. K. Samanta and T. K. Mondal, On intuitionistic gradation of openness, Fuzzy Sets and Systems, vol 131, 2002, 323-336
- [14] A. P. Šostak, On a fuzzy topological structure, Suppl. Rend. Circ. Matem. Palerms ser II, vol 11, 1985, 89-103