Intuitionistic fuzzy δ-connectedness and θ-connectedness

S. E. Abbas and Biljana Krsteska*
Department of Mathematics, Faculty of Science, Sohag University, sohag 82524, Egypt.
*Faculty of Mathematics and Natural Science,
Univ. St. Cyril and Methodius Gazi
Baba b.b. P.O.162,1000 Skopje, Macedonia.

Dedicated to 90-th anniversary of Prof. Lotfi Zadeh

Abstract

We introduce and study the concepts of (r, s)-fuzzy δ-connected and (r, s)-fuzzy θ-connected for fuzzy sets in an intuitionistic fuzzy topological spaces in Šostak sense as a weaker version of (r, s)-fuzzy connected.

Keywords: Intuitionistic fuzzy topology, (r, s)-fuzzy δ-connected, (r, s)-fuzzy θ-connected AMS Classification: 03E72, 54A40

1 Introduction and preliminaries

Kubiak [10] and Šostak [14] introduced the fundamental concept of a fuzzy topological structure, as an extension of both crisp topology and fuzzy topology [3], in the sense that not only the objects are fuzzified, but also the axiomatics. Chattopadhyay et al., [4] have redefined the same concept under the name gradation of openness. A general approach to the study of topological type structures on fuzzy power sets was developed in [7-11].

As a generalization of fuzzy sets, the notion of intuitionistic fuzzy sets was introduced by Atanassov [2]. By using intuitionistic fuzzy sets, Çoker and coworker [5,6] defined the topology of intuitionistic fuzzy sets. Recently, Samanta and Mondal [13], introduced the notion of intuitionistic gradation of openness of fuzzy sets, where to each fuzzy subsets there is a definite grade of openness and there is a grade of non-openness. Thus, the concept of gradation of openness and the topology of intuitionistic fuzzy sets.

In this paper, we present and investigate the notions of (r, s)-fuzzy δ-connectedness and (r, s)-fuzzy θ-connectedness relative to an intuitionistic fuzzy topological space in view of the definition of Šostak, and investigate the relationship with (r, s)-fuzzy connectedness. We compare all these forms of connectedness and investigate their properties in (r, s)-fuzzy almost regular, (r, s)-fuzzy semi-regular and (r, s)-fuzzy regular spaces.

Throughout this paper, let X be a nonempty set, $I=[0,1], I_{0}=(0,1]$ and $I_{1}=[0,1)$. For $\alpha \in I, \underline{\alpha}(x)=\alpha$ for all $x \in X$. A fuzzy point x_{t} for $t \in I_{0}$ is an element of I^{X} such that $x_{t}(y)=$ tif $y=x$, and $x_{t}(y)=0$ if $y \neq x$. The set of all fuzzy points in X is denoted by $\operatorname{Pt}(X)$. A fuzzy point $x_{t} \in \lambda$ iff $t<\lambda(x)$. A fuzzy set λ is quasi-coincident with μ, denoted by $\lambda q \mu$, if there exists $x \in X$ such that $\lambda(x)+\mu(x)>1$. If λ is not quasi-coincident with μ, we denote $\lambda \bar{q} \mu$.

Definition 1.1 [13] An intuitionistic gradation of openness (IGO, for short) on X is an ordered pair $\left(\tau, \tau^{*}\right)$ of mappings from I^{X} to I such that
(IGO1) $\tau(\lambda)+\tau^{*}(\lambda) \leq 1, \forall \lambda \in I^{X}$,
(IGO2) $\tau(\overline{0})=\tau(\underline{1})=1, \tau^{*}(\underline{0})=\tau^{*}(\underline{1})=0$,
(IGO3) $\tau\left(\lambda_{1} \wedge \lambda_{2}\right) \geq \tau\left(\lambda_{1}\right) \wedge \tau\left(\lambda_{2}\right)$ and $\tau^{*}\left(\lambda_{1} \wedge \lambda_{2}\right) \leq \tau^{*}\left(\lambda_{1}\right) \vee \tau^{*}\left(\lambda_{2}\right)$, for each $\lambda_{i} \in$ $I^{X}, i=1,2$,
(IGO4) $\tau\left(\bigvee_{i \in \Delta} \lambda_{i}\right) \geq \bigwedge_{i \in \Delta} \tau\left(\lambda_{i}\right)$ and $\tau^{*}\left(\bigvee_{i \in \Delta} \lambda_{i}\right) \leq \bigvee_{i \in \Delta} \tau^{*}\left(\lambda_{i}\right)$, for each $\lambda_{i} \in I^{X}, i \in \Delta$.
The triplet $\left(X, \tau, \tau^{*}\right)$ is called an intuitionistic fuzzy topological space (ifts, for short). τ and τ^{*} may be interpreted as gradation of openness and gradation of nonopenness, respectively.

Theorem $1.2([1,12])$ Let $\left(X, \tau, \tau^{*}\right)$ be an ifts. For each $\lambda \in I^{X}, r \in I_{0}$ and $s \in I_{1}$, we define an operators $\mathcal{C}: I^{X} \times I_{0} \times I_{1} \rightarrow I^{X}, \mathcal{I}: I^{X} \times I_{0} \times I_{1} \rightarrow I^{X}$ as follows:

$$
\begin{gathered}
\mathcal{C}(\lambda, r, s)=\bigwedge\left\{\mu \mid \mu \geq \lambda, \tau(\underline{1}-\mu) \geq r, \tau^{*}(\underline{1}-\mu) \leq s\right\} \\
\mathcal{I}(\lambda, r, s)=\bigvee\left\{\mu \mid \mu \geq \lambda, \tau(\mu) \geq r, \tau^{*}(\mu) \leq s\right\}
\end{gathered}
$$

$2(r, s)$-fuzzy δ-cluster and (r, s)-fuzzy θ-cluster points

Definition 2.1 Let $\left(X, \tau, \tau^{*}\right)$ be an ifts, $\mu \in I^{X}, x_{t} \in P_{t}(X), r \in I_{0}$ and $s \in I_{1}$. Then
(1) μ is called (r, s)-fuzzy \mathcal{Q}-neighborhood of x_{t} if $\tau(\mu) \geq r, \tau^{*}(\mu) \leq s$ and $x_{t} q \mu$.
(2) μ is called (r, s)-fuzzy \mathcal{R}-neighborhood of x_{t} if $\mu=\mathcal{I}(\mathcal{C}(\mu, r, s), r, s)$ and $x_{t} q \mu$.

We denote
$\mathcal{Q}\left(x_{t}, r, s\right)=\left\{\mu \in I^{X} \mid \quad x_{t} q \mu, \quad \tau(\mu) \geq r, \quad \tau^{*}(\mu) \leq s\right\}$.
$\mathcal{R}\left(x_{t}, r, s\right)=\left\{\mu \in I^{X} \mid \quad x_{t} q \mu=\mathcal{I}(\mathcal{C}(\mu, r, s), r, s)\right\}$.
Definition 2.2 Let (X, τ, τ^{*}) be an ifts, $\lambda \in I^{X}, x_{t} \in P_{t}(X), r \in I_{0}$ and $s \in I_{1}$. Then
(1) x_{t} is called (r, s)-fuzzy cluster point of λ if $\mu q \lambda$, for every $\mu \in \mathcal{Q}\left(x_{t}, r, s\right)$.
(2) x_{t} is called (r, s)-fuzzy δ-cluster point of λ if $\mu q \lambda$, for every $\mu \in \mathcal{R}\left(x_{t}, r, s\right)$.
(3) x_{t} is called (r, s)-fuzzy θ-cluster point of λ if $\mathcal{C}(\mu, r, s) q \lambda$, for every $\mu \in \mathcal{Q}\left(x_{t}, r, s\right)$.

We denote
$\mathrm{cl}(\lambda, r, s)=\bigvee\left\{x_{t} \in P_{t}(X) \mid \quad x_{t}\right.$ is $(r, s)-$ fuzzy cluster point of $\left.\lambda\right\}$.
$\mathcal{D}(\lambda, r, s)=\bigvee\left\{x_{t} \in P_{t}(X) \mid \quad x_{t}\right.$ is (r, s) - fuzzy $\delta-$ cluster point of $\left.\lambda\right\}$.
$T(\lambda, r, s)=\bigvee\left\{x_{t} \in P_{t}(X) \mid \quad x_{t}\right.$ is $(r, s)-$ fuzzy $\theta-$ cluster point of $\left.\lambda\right\}$.
Theorem 2.3 Let $\left(X, \tau, \tau^{*}\right)$ be an ifts, $\lambda \in I^{X}, x_{t} \in P_{t}(X), r \in I_{0}$ and $s \in I_{1}$. Then
(1) $\mathcal{C}(\lambda, r, s)=\operatorname{cl}(\lambda, r, s)$.
(2) $\mathcal{D}(\lambda, r, s)=\bigwedge\{\mu \mid \quad \lambda \leq \mu, \quad \mu=\mathcal{C}(\mathcal{I}(\mu, r, s), r, s)\}$.
(3) $T(\lambda, r, s)=\bigwedge\left\{\mu \mid \quad \lambda \leq \mathcal{I}(\mu, r, s), \quad \tau(\mu) \geq r, \tau^{*}(\mu) \leq s\right\}$.
(4) x_{t} is (r, s)-fuzzy δ-cluster (resp. (r, s)-fuzzy cluster and (r, s)-fuzzy θ-cluster) point of λ iff $x_{t} \in \mathcal{D}(\lambda, r, s)$ (resp. $x_{t} \in \mathcal{C}(\lambda, r, s)$ and $\left.x_{t} \in T(\lambda, r, s)\right)$.
(5) $\lambda \leq \mathcal{C}(\lambda, r, s) \leq \mathcal{D}(\lambda, r, s) \leq T(\lambda, r, s)$.
(6) If $\tau(\lambda) \geq r$ and $\tau^{*}(\lambda) \leq s$, then $\mathcal{C}(\lambda, r, s)=\mathcal{D}(\lambda, r, s)=\mathcal{T}(\lambda, r, s)$.

Proof. (1) and (3) are similarly proved as the following (2).
(2) Put $\rho=\bigwedge\{\mu \mid \quad \lambda \leq \mu, \quad \mu=\mathcal{C}(\mathcal{I}(\mu, r, s), r, s)\}$. Suppose there exist $\lambda \in I^{X}$, $r \in I_{0}$ and $s \in I_{1}$ such that $\mathcal{D}(\lambda, r, s) \nsupseteq \rho$. Then there exist $x \in X$ and $t \in(0,1)$ such that

$$
\mathcal{D}(\lambda, r, s)(x)<t<\rho(x) .
$$

Since x_{t} is not (r, s)-fuzzy δ-cluster point of λ, there exists $\nu \in \mathcal{R}\left(x_{t}, r, s\right)$ such that $\lambda \leq \underline{1}-\nu$. Then $\lambda \leq \underline{1}-\nu=\mathcal{C}(\mathcal{I}(\underline{1}-\nu, r, s), r, s)$. Thus, $\rho \leq \underline{1}-\nu$. Furthermore, $x_{t} q \nu$ implies $\rho(x) \leq(\underline{1}-\nu)(x)<t$. It is a contradiction. Hence $\mathcal{D}(\lambda, r, s) \geq \rho$.

Suppose there exist $\lambda \in I^{X}, x \in X$ and $t \in(0,1)$ such that

$$
\mathcal{D}(\lambda, r, s)(x)>t>\rho(x)
$$

Then there exists $\mu \in I^{X}$ with $\lambda \leq \mu=\mathcal{C}(\mathcal{I}(\mu, r, s), r, s)$ such that

$$
\mathcal{D}(\lambda, r, s)(x)>t>\mu(x)>\rho(x) .
$$

Then $\underline{1}-\mu \in \mathcal{R}\left(x_{t}, r, s\right)$ such that $\lambda \bar{q}(\underline{1}-\mu)$. Hence x_{t} is not (r, s)-fuzzy δ-cluster point of λ. It is a contradiction. Hence $\mathcal{D}(\lambda, r, s) \leq \rho$.
$(4)(\Rightarrow)$ It is trivial.
(\Leftarrow) Let x_{t} be not (r, s)-fuzzy δ-cluster point of λ. Then there exists $\nu \in \mathcal{R}\left(x_{t}, r, s\right)$ such that $\lambda \leq \underline{1}-\nu$. Since, $\underline{1}-\nu=\mathcal{C}(\mathcal{I}(\underline{1}-\nu, r, s), r, s)$, we have $\mathcal{D}(\lambda, r, s) \leq \underline{1}-\nu$. Furthermore, $x_{t} q \nu$ implies $\mathcal{D}(\lambda, r, s)(x) \leq(\underline{1}-\nu)(x)<t$. Hence $x_{t} \notin \mathcal{D}(\lambda, r, s)$.

Others are similarly proved.
(5) Since $\mathcal{R}\left(x_{t}, r, s\right) \subset \mathcal{Q}\left(x_{t}, r, s\right)$, then $x_{t} \in \mathcal{C}(\lambda, r, s)$ implies $x_{t} \in \mathcal{D}(\lambda, r, s)$. Hence $\mathcal{C}(\lambda, r, s) \leq \mathcal{D}(\lambda, r, s)$, for each $\lambda \in I^{X}, r \in I_{0}$ and $s \in I_{1}$.

Suppose there exist $\lambda \in I^{X}, t \in(0,1), r \in I_{0}$ and $s \in I_{1}$ such that

$$
\mathcal{D}(\lambda, r, s)(x)>t>T(\lambda, r, s)(x) .
$$

Since x_{t} is not (r, s)-fuzzy θ-cluster point of λ, there exists $\mu \in \mathcal{Q}\left(x_{t}, r, s\right)$ such that $\lambda \leq \underline{1}-\mathcal{C}(\mu, r, s)$. It implies $\lambda \leq \underline{1}-\mathcal{C}(\mu, r, s) \leq \underline{1}-\mathcal{I}(\mathcal{C}(\mu, r, s), r, s)$. Since $\tau(\mu) \geq r$, $\tau^{*}(\mu) \leq s$ and $\mu \leq \mathcal{C}(\mu, r, s)$, we have $\mu=\mathcal{I}(\mu, r, s) \leq \mathcal{I}(\mathcal{C}(\mu, r, s), r, s)$. Thus, $x_{t} q \mu$ implies $x_{t} q \mathcal{I}(\mathcal{C}(\mu, r, s), r, s)$. Since $\mathcal{I}(\mathcal{C}(\mu, r, s), r, s) \in \mathcal{R}\left(x_{t}, r, s\right)$ and $\lambda \leq \underline{1}-\mathcal{I}(\mathcal{C}(\mu, r, s), r, s)$. Hence x_{t} is not (r, s)-fuzzy δ-cluster point of λ. By (1), $\mathcal{D}(\lambda, r, s)(x)<t$. It is a contradiction. Hence $\mathcal{D}(\lambda, r, s) \leq T(\lambda, r, s)$ for each $\lambda \in I^{X}, r \in I_{0}$ and $s \in I_{1}$.

Theorem 2.4 Let $\left(X, \tau, \tau^{*}\right)$ be an ifts. For $\lambda, \mu \in I^{X}, r \in I_{0}$ and $s \in I_{1}$, the operator \mathcal{D} satisfies the following conditions:
(1) $\mathcal{D}(\underline{0}, r, s)=\underline{0}$.
(2) $\lambda \leq \mathcal{D}(\lambda, r, s)$.
(3) $\mathcal{D}(\lambda, r, s) \leq \mathcal{D}(\mu, r, s)$ if $\lambda \leq \mu$.
(4) $\mathcal{D}(\lambda, r, s) \vee \mathcal{D}(\mu, r, s)=\mathcal{D}(\lambda \vee \mu, r, s)$.
(5) $\mathcal{D}(\mathcal{D}(\lambda, r, s), r, s)=\mathcal{D}(\lambda, r, s)$.

Proof. (1),(2) and (3) are easily proved from the definition of \mathcal{D}.
(4) From (3) we have $\mathcal{D}(\lambda, r, s) \vee \mathcal{D}(\mu, r, s) \leq \mathcal{D}(\lambda \vee \mu, r, s)$.

Suppose there exist $\lambda_{1}, \lambda_{2} \in I^{X}, x \in X, r \in I_{0}, s \in I_{1}$ and $t \in(0,1)$ such that

$$
\begin{equation*}
\mathcal{D}\left(\lambda_{1}, r, s\right)(x) \vee \mathcal{D}\left(\lambda_{2}, r, s\right)(x)<t \leq \mathcal{D}\left(\lambda_{1} \vee \lambda_{2}, r, s\right)(x) \tag{1}
\end{equation*}
$$

For each $i \in\{1,2\}$, since $\mathcal{D}\left(\lambda_{i}, r, s\right)(x)<t$, by Theorem 2.3(2), there exists $\nu_{i} \in \mathcal{R}\left(x_{t}, r, s\right)$ with $\lambda_{i} \leq \nu_{i}=\mathcal{C}\left(\mathcal{I}\left(\nu_{i}, r, s\right), r, s\right)$ such that

$$
\begin{equation*}
\mathcal{D}\left(\lambda_{1}, r, s\right)(x) \vee \mathcal{D}\left(\lambda_{2}, r, s\right)(x) \leq\left(\nu_{1} \vee \nu_{2}, r, s\right)(x)<t \tag{2}
\end{equation*}
$$

Since $\nu_{i}=\mathcal{C}\left(\mathcal{I}\left(\nu_{i}, r, s\right), r, s\right)$, we have

$$
\mathcal{C}\left(\mathcal{I}\left(\nu_{1} \vee \nu_{2}, r, s\right), r, s\right) \leq \mathcal{C}\left(\nu_{1} \vee \nu_{2}, r, s\right)=\mathcal{C}\left(\nu_{1}, r, s\right) \vee \mathcal{C}\left(\nu_{2}, r, s\right)=\nu_{1} \vee \nu_{2}
$$

Moreover, $\mathcal{C}\left(\mathcal{I}\left(\nu_{1} \vee \nu_{2}, r, s\right), r, s\right) \geq \mathcal{C}\left(\mathcal{I}\left(\nu_{1}, r, s\right), r, s\right) \vee \mathcal{C}\left(\mathcal{I}\left(\nu_{2}, r, s\right), r, s\right)=\nu_{1} \vee \nu_{2}$. Thus, $\mathcal{C}\left(\mathcal{I}\left(\nu_{1} \vee \nu_{2}, r, s\right), r, s\right)=\nu_{1} \vee \nu_{2}$. Hence $\mathcal{D}\left(\lambda_{1} \vee \lambda_{2}, r, s\right) \leq \nu_{1} \vee \nu_{2}$. It is a contradiction for the equations (1) and (2).
(5) From (2), $\mathcal{D}(\mathcal{D}(\lambda, r, s), r, s) \geq \mathcal{D}(\lambda, r, s)$. Suppose

$$
\mathcal{D}(\mathcal{D}(\lambda, r, s), r, s)(x)>t>\mathcal{D}(\lambda, r, s)(x) .
$$

Then there exists $\nu \in I^{X}$ with $\lambda \leq \nu=\mathcal{C}(\mathcal{I}(\nu, r, s), r, s)$, such that

$$
\mathcal{D}(\mathcal{D}(\lambda, r, s), r, s)(x)>t>\nu(x) \geq \mathcal{D}(\lambda, r, s)(x) .
$$

Since $\lambda \leq \nu=\mathcal{C}(\mathcal{I}(\nu, r, s), r, s)$, we have

$$
\mathcal{D}(\lambda, r, s) \leq \mathcal{D}(\nu, r, s)=\mathcal{D}(\mathcal{C}(\mathcal{I}(\nu, r, s), r, s), r, s)=\mathcal{C}(\mathcal{I}(\nu, r, s), r, s), r, s)=\nu
$$

Thus, $\mathcal{D}(\mathcal{D}(\lambda, r, s), r, s) \leq \nu$. It is a contradiction.
Theorem 2.5 Let $\left(X, \tau, \tau^{*}\right)$ be an ifts. For $\lambda, \mu \in I^{X}, r \in I_{0}$ and $s \in I_{1}$, the operator T satisfies the following conditions:
(1) $T(\underline{0}, r, s)=\underline{0}$.
(2) $\lambda \leq T(\lambda, r, s)$.
(3) $T(\lambda, r, s) \leq T(\mu, r, s)$ if $\lambda \leq \mu$.
(4) $T(\lambda, r, s) \vee T(\mu, r, s)=T(\lambda \vee \mu, r, s)$.

Theorem 2.6 Let $\left(X, \tau, \tau^{*}\right)$ be an ifts. For $\lambda \in I^{X}, r \in I_{0}$ and $s \in I_{1}$. Define the mappings $\tau_{\theta}, \tau_{\theta}^{*}, \tau_{\delta}, \tau_{\delta}^{*}: I^{X} \rightarrow I$ by

$$
\begin{array}{lll}
\tau_{\theta}(\lambda) & =\bigvee\left\{r \in I_{0} \mid T\left(\underline{1}-\lambda, r_{0}, s_{0}\right)=\underline{1}-\lambda,\right. & 0<r_{0} \leq r, \\
\tau_{\theta}^{*}(\lambda)=\bigwedge\left\{s \in s_{0}<1\right\}, \\
\tau_{\delta}(\lambda)=\bigvee\left\{r \in I_{0} \mid \mathcal{D}\left(\underline{1}-\lambda, r_{0}, s_{0}\right)=\underline{1}-\lambda,\right. & 0<r_{0} \leq r, & \left.s \leq s_{0}<1\right\}, \\
\tau_{\theta}^{*}(\lambda)=\bigwedge\left\{s \in I_{1} \mid \mathcal{D}\left(\underline{1}-\lambda, r_{0}, s_{0}\right)=\underline{1}-\lambda,\right. & 0<r_{0} \leq r, & \left.s \leq s_{0}<1\right\}, \\
\tau_{0} \leq r, & \left.s \leq s_{0}<1\right\} .
\end{array}
$$

(1) $\tau_{\theta} \leq \tau_{\delta} \leq \tau$ and $\tau_{\theta}^{*} \geq \tau_{\delta}^{*} \geq \tau^{*}$.
(2) $\left(\tau_{\theta}, \tau_{\theta}^{*}\right)$ and $\left(\tau_{\delta}, \tau_{\delta}^{*}\right)$ are IGO's on X.

Proof. (1) We will show that $\tau_{\theta} \leq \tau_{\delta}$ and $\tau_{\theta}^{*} \geq \tau_{\delta}^{*}$. Suppose there exist $\lambda \in I^{X}, r \in I_{0}$ and $s \in I_{1}$ such that $\tau_{\theta}(\lambda)>r>\tau_{\delta}(\lambda)$ and $\tau_{\theta}^{*}(\lambda)<s<\tau_{\delta}^{*}(\lambda)$. Then there exists $r_{0} \in I_{0}$ and $s_{0} \in I_{1}$ with $0<r^{*} \leq r_{0}, s_{0} \leq s^{*}<1, \underline{1}-\lambda=T\left(\underline{1}-\lambda, r^{*}, s^{*}\right)$ such that $\tau_{\theta}(\lambda) \geq r_{0}>r$ and $\tau_{\theta}^{*}(\lambda) \leq s_{0}<s$. On the other hand, since $T\left(\underline{1}-\lambda, r^{*}, s^{*}\right) \geq \mathcal{D}\left(\underline{1}-\lambda, r^{*}, s^{*}\right)$ for each
$0<r^{*} \leq r_{0}, s_{0} \leq s^{*}<1$, we have $\underline{1}-\lambda=\mathcal{D}\left(\underline{1}-\lambda, r^{*}, s^{*}\right)$. Thus, $\tau_{\delta}(\lambda) \geq r_{0}$ and $\tau_{\delta}^{*}(\lambda) \leq s_{0}$. It is a contradiction.
(2) First, we will show that $\left(\tau_{\theta}, \tau_{\theta}^{*}\right)$ is an IGO on X.
(IGO1) It is easy prove by (1) and Definition 1.1.
(IGO2) For all $r \in I_{0}$ and $s \in I_{1}$, we have $T(\underline{0}, r, s)=\underline{0}$ and $T(\underline{1}, r, s)=\underline{1}$. Hence $\tau_{\theta}(\underline{0})=\tau_{\theta}(\underline{1})=1$ and $\tau_{\theta}^{*}(\underline{0})=\tau_{\theta}^{*}(\underline{1})=0$.
(IGO3) Suppose there exist $\lambda_{1}, \lambda_{2} \in I^{X}$ and $t, m \in(0,1)$ such that

$$
\begin{gathered}
\tau_{\theta}\left(\lambda_{1} \wedge \lambda_{2}\right)<t<\tau_{\theta}\left(\lambda_{1}\right) \wedge \tau_{\theta}\left(\lambda_{2}\right) . \\
\tau_{\theta}^{*}\left(\lambda_{1} \wedge \lambda_{2}\right)>m>\tau_{\theta}^{*}\left(\lambda_{1}\right) \vee \tau_{\theta}^{*}\left(\lambda_{2}\right) .
\end{gathered}
$$

From the definition of $\left(\tau_{\theta}, \tau_{\theta}^{*}\right)$, there exist $r_{i} \in I_{0}, s_{i} \in I_{1}$ for $i \in\{1,2\}$ with $t \leq r_{i}, m \geq s_{i}$ and for each $0<r_{0} \leq r_{i}, s_{i}<s_{0}<1$,

$$
\underline{1}-\lambda_{i}=T\left(\underline{1}-\lambda_{i}, r_{0}, s_{0}\right),
$$

such that

$$
\begin{gathered}
\tau_{\theta}\left(\lambda_{1} \wedge \lambda_{2}\right)<r_{1} \wedge r_{2}<\tau_{\theta}\left(\lambda_{1}\right) \wedge \tau_{\theta}\left(\lambda_{2}\right), \\
\tau_{\theta}^{*}\left(\lambda_{1} \wedge \lambda_{2}\right)>s_{1} \vee s_{2} \geq \tau_{\theta}^{*}\left(\lambda_{1}\right) \vee \tau_{\theta}^{*}\left(\lambda_{2}\right)
\end{gathered}
$$

Put $r_{1} \wedge r_{2}=r^{*}, s_{1} \vee s_{2}=s^{*}$. Since $\underline{1}-\lambda_{i}=T\left(\underline{1}-\lambda_{i}, r_{0}, s_{0}\right)$, for all $0<r_{0} \leq r_{i}, s_{i}<s_{0}<1$,

$$
\begin{aligned}
T\left(\underline{1}-\left(\lambda_{1} \wedge \lambda_{2}\right), r_{0}, s_{0}\right) & \left.=T\left(\underline{1}-\lambda_{1}\right) \vee\left(\underline{1}-\lambda_{2}\right), r_{0}, s_{0}\right) \\
& =T\left(\underline{1}-\lambda_{1}, r_{0}, s_{0}\right) \vee T\left(\underline{1}-\lambda_{2}, r_{0}, s_{0}\right) \\
& =\left(\underline{1}-\lambda_{1}\right) \vee\left(\underline{1}-\lambda_{2}\right) .
\end{aligned}
$$

Thus, $\tau_{\theta}\left(\lambda_{1} \wedge \lambda_{2}\right) \geq r_{0}$ and $\tau_{\theta}^{*}\left(\lambda_{1} \wedge \lambda_{2}\right) \leq s_{0}$. It is a contradiction.
(IGO4) Suppose there exist $\left\{\lambda_{j} \in I^{X}\right\}_{j \in J}$ and $t, m \in(0,1)$ such that

$$
\tau_{\theta}\left(\bigvee_{j \in J} \lambda_{j}\right)<t<\bigwedge_{j \in J} \tau_{\theta}\left(\lambda_{j}\right) \text { and } \tau_{\theta}^{*}\left(\bigvee_{j \in J} \lambda_{j}\right)>m>\bigvee_{j \in J} \tau_{\theta}^{*}\left(\lambda_{j}\right)
$$

From the definition of $\left(\tau_{\theta}, \tau_{\theta}^{*}\right)$, there exist $r_{j} \in I_{0}, s_{j} \in I_{1}$ for $j \in J$ with $0<r_{0} \leq r_{j}$, $s_{j} \leq s_{0}<1, \underline{1}-\lambda_{j}=T\left(\underline{1}-\lambda_{j}, r_{0}, s_{0}\right)$ such that

$$
\begin{gathered}
\tau_{\theta}\left(\bigvee_{j \in J} \lambda_{j}\right)<t<\bigwedge_{j \in J} r_{j}<\bigwedge_{j \in J} \tau_{\theta}\left(\lambda_{j}\right) \\
\tau_{\theta}^{*}\left(\bigvee_{j \in J} \lambda_{j}\right)>m>\bigvee_{j \in J} s_{j} \geq \bigvee_{j \in J} \tau_{\theta}^{*}\left(\lambda_{j}\right) .
\end{gathered}
$$

Put $r^{*}=\bigwedge_{j \in J} r_{j}, s^{*}=\bigvee_{j \in J} s_{j}$. Then

$$
\begin{aligned}
T\left(\underline{1}-\left(\bigvee_{j \in J} \lambda_{j}\right), r_{0}, s_{0}\right) & =T\left(\bigwedge_{j \in J}\left(\underline{1}-\lambda_{j}\right), r_{0}, s_{0}\right) \\
& \left.\leq \bigwedge_{j \in J} T\left(\underline{1}-\lambda_{j}\right), r_{0}, s_{0}\right)=\bigwedge_{j \in J}\left(\underline{1}-\lambda_{j}\right)=\underline{1}-\bigvee_{j \in J} \lambda_{j}
\end{aligned}
$$

Hence, $T\left(\underline{1}-\bigvee_{j \in J} \lambda_{j}, r_{0}, s_{0}\right)=\underline{1}-\bigvee_{j \in J} \lambda_{j}$. Thus, $\tau_{\theta}\left(\bigvee_{j \in J} \lambda_{j}\right) \geq r_{0}$ and $\tau_{\theta}^{*}\left(\bigvee_{j \in J} \lambda_{j}\right) \leq s_{0}$. It is a contradiction.

3 Fuzzy δ-connectedness and fuzzy θ-connectedness

Definition 3.1 Let $\left(X, \tau, \tau^{*}\right)$ be an ifts. For each $\lambda \in I^{X}, r \in I_{\circ}$ and $s \in I_{1}$.
(1) λ is called (r, s)-fuzzy θ-closed (resp. (r, s)-fuzzy δ-closed) iff $\lambda=T(\lambda, r, s)$ (resp. $\lambda=\mathcal{D}(\lambda, r, s))$. We define

$$
\begin{aligned}
& \Delta(\lambda, r, s)=\bigwedge\left\{\mu \in I^{X}: \lambda \leq \mu, \mu=\mathcal{D}(\mu, r, s)\right\}, \\
& \Theta(\lambda, r, s)=\bigwedge\left\{\mu \in I^{X}: \lambda \leq \mu, \mu=T(\mu, r, s)\right\} .
\end{aligned}
$$

(2) The complement of (r, s)-fuzzy θ-closed (resp. (r, s)-fuzzy δ-closed) set is called (r, s)-fuzzy θ-open (resp. (r, s)-fuzzy δ-open).

Theorem 3.2 Let $\left(X, \tau, \tau^{*}\right)$ be an ifts. For each $\lambda \in I^{X}, r \in I_{\circ}$ and $s \in I_{1}$, we have the following properties:
(1) $\Delta(\lambda, r, s)=\mathcal{D}(\lambda, r, s)$.
(2) $\Delta(\lambda, r, s)$ is (r, s)-fuzzy δ-closed.
(3) $\Theta(\lambda, r, s)=T(\Theta(\lambda, r, s), r, s)$,i.e., $\Theta(\lambda, r, s)$ is (r, s)-fuzzy θ-closed.
(4) $T(\lambda, r, s) \leq \Theta(\lambda, r, s)$.

Proof. (1) Since $\lambda \leq \mathcal{D}(\lambda, r, s)=\mathcal{D}(\mathcal{D}(\lambda, r, s), r, s)$, we have $\Delta(\lambda, r, s) \leq \mathcal{D}(\lambda, r, s)$.
Suppose $\Delta(\lambda, r, s) \nsupseteq \mathcal{D}(\lambda, r, s)$. There exist $x \in X$ and $t \in(0,1)$ such that

$$
\Delta(\lambda, r, s)(x)<t<\mathcal{D}(\lambda, r, s)(x)
$$

From the definition of $\Delta(\lambda, r, s)$, there exists $\mu \in I^{X}$ with $\lambda \leq \mu=\mathcal{D}(\mu, r, s)$ such that

$$
\Delta(\lambda, r, s)(x) \leq \mu(x)<t<\mathcal{D}(\lambda, r, s)(x) .
$$

On the other hand, since $\lambda \leq \mu$, we have $\mathcal{D}(\lambda, r, s) \leq \mathcal{D}(\mu, r, s)=\mu$. It is a contradiction. Hence $\Delta(\lambda, r, s) \geq \mathcal{D}(\lambda, r, s)$.
(2) It is trivial.
(3) Let $\lambda \leq \mu_{j}=T\left(\mu_{j}, r, s\right)$ for each $j \in \Gamma$. Then

$$
\bigwedge_{j \in \Gamma} \mu_{j} \leq T\left(\bigwedge_{j \in \Gamma} \mu_{j}, r, s\right) \leq T\left(\mu_{j}, r, s\right)=\mu_{j} .
$$

It implies $\bigwedge_{j \in \Gamma} \mu_{j}=T\left(\bigwedge_{j \in \Gamma} \mu_{j}, r, s\right)$. Hence $\Theta(\lambda, r, s)=T(\Theta(\lambda, r, s), r, s)$, that is, $\Theta(\lambda, r, s)$ is (r, s)-fuzzy θ-closed set.
(4) Since $\lambda \leq \Theta(\lambda, r, s)$, by (3), we have $T(\lambda, r, s) \leq T(\Theta(\lambda, r, s), r, s)=\Theta(\lambda, r, s)$.

In general, by Theorem 3.2(1-2), an δ - closure operator is (r, s)-fuzzy δ-closed for each $r \in I_{0}$ and $s \in I_{1}$, but an θ - closure operator is not (r, s)-fuzzy- θ-closed.

Example 3.3 Let $X=\{x, y\}$ be a set. Let $\left(X, \tau, \tau^{*}\right)$ be an ifts as follows:

$$
\tau(\lambda)=\left\{\begin{array}{ll}
1, & \lambda \in\{\underline{0}, \underline{1}\} \\
\frac{1}{2}, & \lambda=\underline{0.7}, \\
\frac{1}{2}, & \lambda=\underline{0.5}, \\
\frac{1}{2}, & \lambda=\underline{0.4}, \\
0, & \text { otherwise },
\end{array} \quad \tau^{*}(\lambda)= \begin{cases}0, & \lambda \in\{\underline{0}, \underline{1}\} \\
\frac{1}{2}, & \lambda=\underline{0.7}, \\
\frac{1}{2}, & \lambda=\underline{0.5}, \\
\frac{1}{2}, & \lambda=\underline{0.4}, \\
1, & \text { otherwise }\end{cases}\right.
$$

We obtain

$$
T(\lambda, r, s)= \begin{cases}\underline{0}, & \lambda=\underline{0}, r \in I_{0}, s \in I_{1} \\ \underline{0.6}, & \underline{0} \neq \lambda \leq \underline{0.5}, 0<r \leq \frac{1}{2}, \frac{1}{2} \leq s<1, \\ \underline{1}, & \text { otherwise } .\end{cases}
$$

Since

$$
\underline{1}=T\left(T\left(\underline{0.5}, \frac{1}{2}, \frac{1}{2}\right), \frac{1}{2}, \frac{1}{2}\right) \neq T\left(\underline{0.5}, \frac{1}{2}, \frac{1}{2}\right)=\underline{0.6},
$$

then $T\left(\underline{0.5}, \frac{1}{2}, \frac{1}{2}\right)$ is not $\left(\frac{1}{2}, \frac{1}{2}\right)$-fuzzy θ-closed. Since

$$
\Theta(\lambda, r, s)= \begin{cases}\underline{0}, & \lambda=\underline{0}, r \in I_{0}, s \in I_{1} \\ \underline{1}, & \text { otherwise },\end{cases}
$$

we have $T(\lambda, r, s) \leq \Theta(\lambda, r, s)$.
Definition 3.4 A pair (λ, μ) of non-null fuzzy sets in an ifts $\left(X, \tau, \tau^{*}\right)$ is said to be (r, s)-fuzzy separation relative to $\mathrm{X}, r \in I_{0}$ and $s \in I_{1}$ iff $\lambda \bar{q} \mu, \lambda \bar{q} \mathcal{C}(\mu, r, s)$ and $\mathcal{C}(\lambda, r, s) \bar{q} \mu$. A fuzzy set γ in an ifts X is said to be (r, s)-fuzzy connected iff there do not exist two fuzzy sets λ and μ in X such that (λ, μ) is an (r, s)-fuzzy separation relative to X and $\gamma=\lambda \vee \mu$.

Definition 3.5 A pair (λ, μ) of non-null fuzzy sets in an ifts $\left(X, \tau, \tau^{*}\right), r \in I_{0}$ and $s \in I_{1}$ is said to be (r, s)-fuzzy- θ-separation relative to X iff $\lambda \bar{q} \mu, \lambda \bar{q} \Theta(\mu, r, s)$ and $\Theta(\lambda, r, s) \bar{q} \mu$. A fuzzy set γ in an ifts X is said to be (r, s)-fuzzy- θ-connected iff there do not exist two fuzzy sets λ and μ in X such that (λ, μ) is an (r, s)-fuzzy- θ-separation relative to X and $\gamma=\lambda \vee \mu$.

Definition 3.6 A pair (λ, μ) of non-null fuzzy sets in an ifts $\left(X, \tau, \tau^{*}\right)$ is said to be (r, s)-fuzzy- δ-separation relative to X iff $\lambda \bar{q} \mu, \lambda \bar{q} \Delta(\mu, r, s)$ and $\Delta(\lambda, r, s) \bar{q} \mu$. A fuzzy set γ in an ifts X is said to be (r, s)-fuzzy- δ-connected iff there do not exist two fuzzy sets λ and μ in X such that (λ, μ) is an (r, s)-fuzzy- δ-separation relative to X and $\gamma=\lambda \vee \mu$.

Remark 3.7 From Theorem 3.2(1,4), it is clear that:
(r, s)-fuzzy connected $\Rightarrow(r, s)$-fuzzy- δ-connected $\Rightarrow(r, s)$-fuzzy- θ-connected.
Example 3.8 Let $X=I$ and $\left(X, \tau, \tau^{*}\right)$ an ifts define as

$$
\tau(\lambda)=\left\{\begin{array}{ll}
1, & \lambda \in\{\underline{0}, \underline{1}\}, \\
\frac{1}{2}, & \lambda=\lambda_{1}, \lambda_{2}, \\
\frac{1}{3}, & \lambda=\lambda_{3}, \lambda_{4}, \\
0, & \text { otherwise },
\end{array} \quad \tau^{*}(\lambda)= \begin{cases}0, & \lambda \in\{\underline{0}, \underline{1}\} \\
\frac{1}{2}, & \lambda=\lambda_{1}, \lambda_{2} \\
\frac{2}{3}, & \lambda=\lambda_{3}, \lambda_{4} \\
1, & \text { otherwise }\end{cases}\right.
$$

where $\lambda_{1}, \lambda_{2}, \lambda_{3}$ and λ_{4} are fuzzy sets defined as follows

$$
\begin{gathered}
\lambda_{1}(0)=\frac{1}{4}, \quad \lambda_{2}(0)=\frac{1}{7}, \quad \lambda_{3}(0)=\frac{8}{9}, \quad \lambda_{4}(0)=\frac{1}{5} \text { and } \\
\lambda_{k}(x)=\frac{1}{2} \quad \forall x \in I_{0}, k=1,2,3,4 .
\end{gathered}
$$

Then $\left(X, \tau, \tau^{*}\right)$ is an ifts. Consider a fuzzy set defined as follows

$$
\gamma(x)= \begin{cases}\frac{6}{7}, & x=0 \\ \frac{1}{2}, & \text { otherwise }\end{cases}
$$

Then, $\gamma=\mu \vee \nu$, where

$$
\mu(x)=\left\{\begin{array}{ll}
\frac{6}{7}, & x=0, \\
0, & \text { otherwise },
\end{array} \quad \text { and } \quad \nu(x)= \begin{cases}\frac{1}{10}, & x=0 \\
\frac{1}{2}, & \text { otherwise }\end{cases}\right.
$$

Obviously, $\mu \bar{q} \nu$. Again

$$
\mathcal{C}\left(\mu, \frac{1}{3}, \frac{2}{3}\right)=\left\{\begin{array}{ll}
\frac{6}{7}, & x=0, \\
\frac{1}{2}, & \text { otherwise },
\end{array} \quad \text { and } \quad \mathcal{C}\left(\nu, \frac{1}{3}\right)= \begin{cases}\frac{1}{9}, & x=0 \\
\frac{1}{2}, & \text { otherwise }\end{cases}\right.
$$

Obviously, $\mu \bar{q} \mathcal{C}\left(\nu, \frac{1}{3}, \frac{2}{3}\right)$ and $\mathcal{C}\left(\mu, \frac{1}{3}, \frac{2}{3}\right) \bar{q} \nu$. Then γ is not $\left(\frac{1}{3}, \frac{2}{3}\right)$-fuzzy connected. For any respresentation $\gamma=\mu \vee \nu$, where μ and ν are non-empty, either $\mu(0)=\frac{6}{7}$ or $\nu(0)=\frac{6}{7}$, by Theorem 3.2(1), then if $\mu(0)=\frac{6}{7}$ (resp. if $\nu(0)=\frac{6}{7}$), then $\Delta\left(\mu, \frac{1}{3}, \frac{2}{3}\right)=1$ (resp. $\left.\Delta\left(\nu, \frac{1}{3}, \frac{2}{3}\right)=\underline{1}\right)$ so that γ is not representable as $\mu \vee \nu$, where (μ, ν) is an $\left(\frac{1}{3}, \frac{2}{3}\right)$-fuzzy δ-separation. Hence γ is $\left(\frac{1}{3}, \frac{2}{3}\right)$-fuzzy δ-connected.

Example 3.9 Define an ifts $\left(X, \tau, \tau^{*}\right)$ as in Example 3.3. From Theorem 3.2(1), we obtain

$$
\Delta(\lambda, r, s)= \begin{cases}\underline{0}, & \lambda=\underline{0}, r \in I_{0}, s \in I_{1}, \\ \underline{0.6}, & \underline{0} \neq \lambda \leq \underline{0.6}, 0<r \leq \frac{1}{2}, \frac{1}{2} \leq s<1 \\ \underline{1}, & \text { otherwise } .\end{cases}
$$

For $\underline{0.4}=\underline{0.3} \vee \underline{0.4}$, we have $\underline{0.3} \bar{q} \underline{0.4}, \underline{0.6}=\Delta\left(\underline{0.3}, \frac{1}{3}, \frac{2}{3}\right) \bar{q} \underline{0.4}, \quad \underline{0.3} \bar{q} \Delta\left(\underline{0.4}, \frac{1}{3}, \frac{2}{3}\right)=\underline{0.6}$. Hence ($0.3, \underline{0.4}$) is an $\left(\frac{1}{3}, \frac{2}{3}\right)$-fuzzy- δ-separation and $\underline{0.4}$ is not $\left(\frac{1}{3}, \frac{2}{3}\right)$-fuzzy- δ-connected.

For any representation $0.4=\mu \vee \nu$, where μ and ν are non-empty, by Example 3.3, $\Theta(\lambda, r, s)=\underline{1}$ for $\lambda \in\{\mu, \nu\}$. Thus, $\underline{0.4}$ is $\left(\frac{1}{3}, \frac{2}{3}\right)$-fuzzy- θ-connected.

Definition 3.10 Let $\left(X, \tau, \tau^{*}\right)$ be an ifts, $r \in I_{0}$ and $s \in I_{1}$. Then X is said to be
(1) (r, s)-fuzzy regular iff for each fuzzy point x_{t} in X and each $\mu \in \mathcal{Q}\left(x_{t}, r, s\right)$ there exists $\nu \in \mathcal{Q}\left(x_{t}, r, s\right)$ such that $\mathcal{C}(\nu, r, s) \leq \mu$.
(2) (r, s)-fuzzy almost regular iff for each fuzzy point x_{t} in X and each $\mu \in \mathcal{R}\left(x_{t}, r, s\right)$ there exists $\nu \in \mathcal{R}\left(x_{t}, r, s\right)$ such that $\mathcal{C}(\nu, r, s) \leq \mu$.
(3) (r, s)-fuzzy semi-regular iff for each $\mu \in \mathcal{Q}\left(x_{t}, r, s\right)$, there exists $\rho \in \mathcal{Q}\left(x_{t}, r, s\right)$ such that $\mathcal{I}(\mathcal{C}(\rho, r, s), r, s) \leq \mu$.

Theorem 3.11 Let $\left(X, \tau, \tau^{*}\right)$ be an ifts, $r \in I_{0}$ and $s \in I_{1}$. Then
(1) X is (r, s)-fuzzy almost regular iff $T(\lambda, r, s)=\mathcal{D}(\lambda, r, s)$, for each $\lambda \in I^{X}$.
(2) X is (r, s)-fuzzy semi-regular iff $\mathcal{D}(\lambda, r, s)=\mathcal{C}(\lambda, r, s)$, for each $\lambda \in I^{X}$.

Proof. (1) We only show that $T(\lambda, r, s) \leq \mathcal{D}(\lambda, r, s)$. Suppose there exist $\lambda \in I^{X}, r \in I_{0}$ and $s \in I_{1}$ such that $T(\lambda, r, s) \not \leq \mathcal{D}(\lambda, r, s)$. Then there exist $x \in X$ and $t \in(0,1)$ such that $T(\lambda, r, s)(x)>t>\mathcal{D}(\lambda, r, s)(x)$. Since $\mathcal{D}(\lambda, r, s)(x)<t, x_{t}$ is not (r, s)-fuzzy δ-cluster point of λ. Then there exists $\mu \in \mathcal{R}\left(x_{t}, r, s\right)$ such that $\lambda \leq \underline{1}-\mu=\mathcal{C}(\mathcal{I}(\underline{1}-\mu, r, s), r, s)$. Since (X, τ, τ^{*}) is (r, s)-fuzzy almost regular, for $\mu \in \mathcal{R}\left(x_{t}, r, s\right)$, there exists $\rho \in \mathcal{R}\left(x_{t}, r, s\right)$ such that $\mathcal{C}(\rho, r, s) \leq \mu$. Thus

$$
\lambda \leq \underline{1}-\mu \leq \underline{1}-\mathcal{C}(\rho, r, s) \leq \mathcal{I}(\underline{1}-\rho, r, s) \leq \mathcal{I}(\mathcal{C}(\mathcal{I}(\underline{1}-\rho, r, s), r, s), r, s) .
$$

It follows $T(\lambda, r, s) \leq \mathcal{C}(\mathcal{I}(\underline{1}-\rho, r, s), r, s)$. Hence $T(\lambda, r, s)(x) \leq(\underline{1}-\rho)(x)<t$. It is a contradiction.

Conversely, for each $\mu \in \mathcal{R}\left(x_{t}, r, s\right), t>(\underline{1}-\mu)(x)=\mathcal{C}(\mathcal{I}(\underline{1}-\mu, r, s), r, s)(x)$. Since

$$
\begin{aligned}
T(\underline{1}-\mu, r) & =T(\mathcal{C}(\mathcal{I}(\underline{1}-\mu, r, s), r, s), r, s) \\
& =\mathcal{D}(\mathcal{C}(\mathcal{I}(\underline{1}-\mu, r, s), r, s), r, s) \\
& =\mathcal{C}(\mathcal{I}(\underline{1}-\mu, r, s), r, s),
\end{aligned}
$$

then x_{t} is not (r, s)-fuzzy θ-cluster point of $\underline{1}-\mu$. Then there exists $\rho \in \mathcal{Q}\left(x_{t}, r, s\right)$ such that $\mathcal{C}(\rho, r, s) \leq \mu$. It implies $\mathcal{I}(\mathcal{C}(\rho, r, s), r, s) \leq \mathcal{C}(\mathcal{I}(\mathcal{C}(\rho, r, s), r, s), r, s) \leq \mu$. Moreover, $\mathcal{I}(\mathcal{C}(\rho, r, s), r, s) \in \mathcal{Q}\left(x_{t}, r, s\right)$. Hence $\left(X, \tau, \tau^{*}\right)$ is (r, s)-fuzzy almost regular.
(2) Similarly prove as (1).

Corollary $\mathbf{3 . 1 2}$ (1) In an (r, s)-fuzzy almost regular space, since, by Theorem 3.11(1), $\Theta(\lambda, r, s)=\Delta(\lambda, r, s)$, for each $\lambda \in I^{X}, r \in I_{\circ}$ and $s \in I_{1},(r, s)$-fuzzy - δ-connectedness and (r, s)-fuzzy- θ-connectedness are equivalent.
(2) In an (r, s)-fuzzy semi-regular space, the concepts of (r, s)-fuzzy connectedness and that of (r, s)-fuzzy- δ-connectedness are equivalent.

Theorem 3.13 An ifts $\left(X, \tau, \tau^{*}\right)$ is (r, s)-fuzzy regular iff it is (r, s)-fuzzy almost regular and (r, s)-fuzzy semi-regular.

Proof. Let $\mu \in \mathcal{Q}\left(x_{t}, r, s\right)$. Since $\left(X, \tau, \tau^{*}\right)$ is (r, s)-fuzzy regular, there exists $\rho \in$ $\mathcal{Q}\left(x_{t}, r, s\right)$ such that $\mathcal{C}(\rho, r, s) \leq \mu$. So, $\mathcal{I}(\mathcal{C}(\rho, r, s), r, s) \leq \mathcal{C}(\rho, r, s) \leq \mu$. Hence $\left(X, \tau, \tau^{*}\right)$ is (r, s)-fuzzy semi-regular. Let $\mu \in \mathcal{R}\left(x_{t}, r, s\right)$. Since $\left(X, \tau, \tau^{*}\right)$ is (r, s)-fuzzy regular and $\mu \in$ $\mathcal{Q}\left(x_{t}, r, s\right)$, there exists $\rho \in \mathcal{Q}\left(x_{t}, r, s\right)$ such that $\mathcal{C}(\rho, r, s) \leq \mu$. Since $\rho \leq \mathcal{I}(\mathcal{C}(\rho, r, s), r, s)$, $\mathcal{I}(\mathcal{C}(\rho, r, s), r, s) \in \mathcal{R}\left(x_{t}, r, s\right)$. So, $\mathcal{C}(\mathcal{I}(\mathcal{C}(\rho, r, s), r, s), r, s)=\mathcal{C}(\rho, r, s) \leq \mu$. Hence $\left(X, \tau, \tau^{*}\right)$ is (r, s)-fuzzy almost regular.

Conversely, for each $\mu \in \mathcal{Q}\left(x_{t}, r, s\right)$, since $\left(X, \tau, \tau^{*}\right)$ is (r, s)-fuzzy semi-regular, there exists $\rho \in \mathcal{Q}\left(x_{t}, r, s\right)$ such that $\mathcal{I}(\mathcal{C}(\rho, r, s), r, s) \leq \mu$. It follows $\mathcal{I}(\mathcal{C}(\rho, r, s), r, s) \in \mathcal{R}\left(x_{t}, r, s\right)$. Since $\left(X, \tau, \tau^{*}\right)$ is (r, s)-fuzzy almost regular, there exists $\nu \in \mathcal{R}\left(x_{t}, r, s\right) \subset \mathcal{Q}\left(x_{t}, r, s\right)$ such that $\mathcal{C}(\nu, r, s) \leq \mathcal{I}(\mathcal{C}(\rho, r, s), r, s) \leq \mu$. Hence $\left(X, \tau, \tau^{*}\right)$ is (r, s)-fuzzy regular.

Corollary 3.14 In an (r, s)-fuzzy regular space, since, by Theorems 3.2, 3.11(1,2) and 3.12, $\mathcal{C}(\lambda, r, s)=\Theta(\lambda, r, s)=\Delta(\lambda, r, s)$, for each $\lambda \in I^{X}, r \in I_{0}$ and $s \in I_{1}$, then the notions of (r, s)-fuzzy connectedness, (r, s)-fuzzy- δ-connectedness and (r, s)-fuzzy- θ-connectedness of fuzzy sets become identical.

References

[1] S. E. Abbas, (r, s)-generalized intuitionistic fuzzy closed sets, J. Egypt Math. Soc. vol 14(2), 2006, 283-297
[2] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, vol 20(1), 1986, 87-96
[3] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl., vol 24, 1968, 182-190
[4] K. C. Chattopadhyay, R. N. Hazra, S. K. Samanta, Gradation of openess: fuzzy topology, Fuzzy Sets and Systems, vol 49, 1992, 237-242
[5] Çoker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems, vol 88, 1997, 81-89
[6] D. Çoker and M. Dimirci, An introduction to intuitionistic fuzzy topological spaces in Šostak sense, Buseful, vol 67, 1996, 67-76
[7] U. Höhle, Upper semicontinuous fuzzy sets and applications, J. Math. Anall. Appl., vol 78, 1980, 659-673
[8] U. Höhle and A. P. Šostak, A general theory of fuzzy topological spaces, Fuzzy Sets and Systems, vol 73, 1995, 131-149
[9] U. Höhle and A. P. Šostak, Axiomatic Foundations of Fixed-Basis fuzzy topology, The Handbooks of Fuzzy sets series, Volume 3, Kluwer Academic Publishers, Dordrecht (Chapter 3), 1999
[10] T. Kubiak, On fuzzy topologies, Ph. D. Thesis, A. Mickiewicz, Poznan, 1985
[11] T. Kubiak and A. P. Šostak, Lower set-valued fuzzy topologies, Quaestions Math., vol 20(3), 1997, 423-429
[12] E. P. Le and Y. B. Im, Mated fuzzy topological spaces, J. Korea Fuzzy Logic Intell. Sys. Soc., vol 11(2), 2001, 161-165
[13] S. K. Samanta and T. K. Mondal, On intuitionistic gradation of openness, Fuzzy Sets and Systems, vol 131, 2002, 323-336
[14] A. P. Šostak, On a fuzzy topological structure, Suppl. Rend. Circ. Matem. Palerms ser II, vol 11, 1985, 89-103

