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1 Introduction and preliminaries

Kubiak [10] and Sostak [14] introduced the fundamental concept of a fuzzy topological
structure, as an extension of both crisp topology and fuzzy topology [3], in the sense that
not only the objects are fuzzified, but also the axiomatics. Chattopadhyay et al., [4] have
redefined the same concept under the name gradation of openness. A general approach to
the study of topological type structures on fuzzy power sets was developed in [7-11].

As a generalization of fuzzy sets, the notion of intuitionistic fuzzy sets was introduced
by Atanassov [2]. By using intuitionistic fuzzy sets, Coker and coworker [5,6] defined the
topology of intuitionistic fuzzy sets. Recently, Samanta and Mondal [13], introduced the
notion of intuitionistic gradation of openness of fuzzy sets, where to each fuzzy subsets there
is a definite grade of openness and there is a grade of non-openness. Thus, the concept of
gradation of openness and the topology of intuitionistic fuzzy sets.

In this paper, we present and investigate the notions of (r, s)-fuzzy d-connectedness and
(r, s)-fuzzy -connectedness relative to an intuitionistic fuzzy topological space in view of
the definition of Sostak, and investigate the relationship with (r,s)-fuzzy connectedness.
We compare all these forms of connectedness and investigate their properties in (7, s)-fuzzy
almost regular, (r, s)-fuzzy semi-regular and (r, s)-fuzzy regular spaces.

Throughout this paper, let X be a nonempty set, I = [0,1], Io = (0,1] and [; = [0, 1).
For a € I, a(z) = a for all x € X. A fuzzy point x; for t € I is an element of I such
that z,(y) = tify = z, andz,(y) = Oify # x. The set of all fuzzy points in X is denoted by
Pt(X). A fuzzy point x; € N iff t < A(x). A fuzzy set A is quasi-coincident with p, denoted
by A q p, if there exists x € X such that A\(x) + p(x) > 1. If X is not quasi-coincident with
i, we denote \ q pu.
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Definition 1.1 [13] An intuitionistic gradation of openness (IGO, for short) on X is
an ordered pair (7,7*) of mappings from I* to I such that

(IGO1) 7(\) + 7*(\) < 1, VA € T,

(1G02) 7(0) = 7(1) = 1, 7*(0) = 7*(1) =0,

(IGO3) 7(A1 A Xg) > 7(A1) AT(A2) and 75(A A A2) < 7%(A1) V 7%(Ag), for each \; €
IXi=1,2,

(IGO4) 7(V;en Ni) 2 /\zeA 7(Ai) and 7*(V,;ea Ai) < Viea 75(Ni), foreach A; € 1%, € A

The triplet (X, 7,7*) is called an intuitionistic fuzzy topological space (ifts, for short).
7 and 7 may be interpreted as gradation of openness and gradation of nonopenness, re-
spectively.

Theorem 1.2 ([1,12]) Let (X, 7,7*) be an ifts. For each A € [*,r € Iy and s € I, we
define an operators C : IX x Iy x I} — IX, T : I* x Iy x I; — IX as follows:

COrs) = NpluzAr(l—p) =r " (1L—p) < s},

Z(A\,7r,8) \/{,u|u>)\7'()>r,7'*(,u)§s}.

2 (r,s)-fuzzy o-cluster and (r, s)-fuzzy 6-cluster points

Definition 2.1 Let (X, 7,7*) be an ifts, u € IX, z; € P,(X), r € Iy and s € I;. Then
(1) p is called (r, s)-fuzzy Q-neighborhood of z; if 7(u) > r, 7%(n) < s and xqpu.

(2) p is called (r, s)-fuzzy R-neighborhood of z; if u = Z(C(u,r,s),r,s) and x,qu.

We denote

Qay,rys) ={p € IX | wqu, t(p)>r, 7(u) < s}

R(ze,r,s) ={peI™*| zqu=IT(C(u,rs),rs)}

Definition 2.2 Let (X, 7,7*) be an ifts, A € IX, 2, € P,(X), r € Iy and s € I;. Then
(1) zy is called (r, s)-fuzzy cluster point of A if ug), for every p € Q(zy, 1, s).

(2) zy is called (r, s)-fuzzy d-cluster point of A if ug), for every p € R(xy, 7, s).

(3) x; is called (7, s)-fuzzy 6-cluster point of A if C(u,r, s)gA, for every p € Q(zy, 1, s).
We denote

cl(A\,r,s) =V{xy € P(X)| ais (r,s) — fuzzy cluster point of A}.

DA\, s)=V{z, € P(X)| ais (r,s) — fuzzy § — cluster point of A}.

T\ rs)=V{x, € P(X)| x is (r,s) — fuzzy 6 — cluster point of A}.

Theorem 2.3 Let (X, 7,7*) be an ifts, A\ € [, 2, € P(X), r € I and s € I;. Then
(1) C(A\, 7, s) = cl(A, 1, ).

(2) DA, ry8) = NMu | A<p, C(Z(p, 7, 8),7,5)}-

(3) T(A,r,8) = N | >\<I(/M“ S) (1) 2 1,7 (1) < s).

(4) zy is (r, s)-fuzzy d-cluster (resp. (r, s)-fuzzy cluster and (r, s)-fuzzy 6-cluster) point
of \iff & € D(A,r,s) (resp. z; € C(/\,r7 s) and x, € T(A,1,5)).

(5) A< C(\,r,s) <D\ 1,8) <T(\T1,5).

(6) If 7(A) > r and 7*(\) < s, then C(\,1,8) = D(\,r,s) =T (\,1,5).

Proof. (1) and (3) are similarly proved as the following (2).
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2)Put p= AN{u| N<wu, u=CZ(rs),rs)}. Suppose there exist X € IX,
r € Iy and s € I; such that D(A,r,s) # p. Then there exist € X and ¢ € (0, 1) such that

DA, 1, s)(x) <t < p(x).

Since x; is not (r, s)-fuzzy d-cluster point of A, there exists v € R(xy,r, s) such that A < 1—wv.
Then A < 1—v = C(Z(1 — v,7,s),7,5). Thus, p < 1 — v. Furthermore, x;,qv implies
p(xz) < (1—v)(zx) <t. Itisa contradiction. Hence D(A, 1, s) > p.

Suppose there exist A € [*, z € X and ¢ € (0,1) such that

DA, r,s)(x) >t > p(x).
Then there exists p € I* with A\ < = C(Z(u,r,s),r,s) such that
DO\ 7, 8)(2) > > () > p(a).

Then 1 — € R(xy, 7, s) such that Ag(1 — p). Hence x; is not (r, s)-fuzzy o-cluster point of
A. It is a contradiction. Hence D(A,r,s) < p.

(4) (=) It is trivial.

(<) Let z; be not (r, s)-fuzzy d-cluster point of A\. Then there exists v € R(zy, 1, s) such
that A < 1—v. Since, 1 —v =C(Z(1—v,r,s),r,s), we have D(\,r,s) < 1—v. Furthermore,
xrqv implies D(A, 1, s)(z) < (1 —v)(z) < t. Hence z; € D(\, 1, ).

Others are similarly proved.

(5) Since R(z¢,r,s) C Q(wy,1,s), then z; € C(A\, 7, s) implies x; € D(A,r,s). Hence
C(\,r,8) <D\ r,s), for each A € I*, r € Iy and s € I.

Suppose there exist A € I*, ¢ € (0,1), r € Iy and s € I; such that

DA, 1, s)(x) >t >T(\rs)(x).

Since x; is not (r,s)-fuzzy 6O-cluster point of A, there exists u € Q(x,r,s) such that
A<1-C(u,r,s). It implies A < 1 —C(p,r,s) < 1—Z(C(u,r,s),r,s). Since 7(u) > r,
™) < sand p < C(p,r,s), we have u = Z(pu,r,s) < Z(C(u,r,s),r,s). Thus, x,qu im-
plies z,¢Z(C(p, 7, s),r,s). Since Z(C(p,1,5),7,5) € R(xs,7,8) and A < 1 —=Z(C(p,7,5),7,5).
Hence x; is not (r, s)-fuzzy d-cluster point of A\. By (1), D(A,r, s)(z) < t. It is a contradic-
tion. Hence D(\,r,s) < T(\,r,s) for each A € I, r € [ and s € I;.

Theorem 2.4 Let (X, 7,7%) be an ifts. For \,u € I, r € I and s € I, the operator
D satisfies the following conditions:

(1) D(Q7 Ty 3) =0.

(2) A<D\, 1, 8).

(3) D(A,r,s) < D(u,r,s)if A < p.

(4) DA, 71, 8) VD(u,r,8) = DAV p, 1, 5).

(5) D(D(A,1,8),1,8) = D(A, 1, 8).

Proof. (1),(2) and (3) are easily proved from the definition of D.

(4) From (3) we have D(\,r,s) V D(u,r,8) < DAV u,r,s).

Suppose there exist A\;, Ao € [X, x € X, r € Iy,s € I and t € (0,1) such that

(1) D(A1,r,8)(x) VD(Ag, 1, 8)(x) <t < DALV Ao, 1, 5)(2).
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For each i € {1,2}, since D(\;,,s)(x) < t, by Theorem 2.3(2), there exists v; € R(x,r,$)
with \; <v; =C(Z(v;,1,s),r,s) such that

(2) D(A1,7,8)(x) VD(Ag, 1y 8)(x) < (11 Vg1, s)(z) <t
Since v; = C(Z(v;,1,8),71,5), we have
C(Z(vy Vuv,rs),rs) <C(nVuy,rs)=C(r,rs)VC(vy,rs) =1V,
Moreover, C(Z(vy V v, 1,8),1,8) > C(Z(11,1,8),7r,8) V C(Z(ve,r,8),r,8) = 11 V /5. Thus,
C(Z(vy Vvy,1,8),1,8) =11 V 1y, Hence D(A; V Ay, 7, 8) < 11 V1. It is a contradiction for
the equations (1) and (2).
(5) From (2), D(D(\, 1, s),1,5) > D(\, 1, s). Suppose
D(D(\,r,s),1,8)(x) >t >D\ T s)(z).
Then there exists v € I* with A < v =C(Z(v,r,s),r,s), such that
D(D(\,r,s),1,8)(x) >t >v(x) >DArs) ().
Since A <v =C(Z(v,r,s),r,s), we have
D\, r,s) <D(v,r,s) =D(C(Z(v,r,8),1,8),1,8) =C(Z(V,1,58),7,8),T,8) = .

Thus, D(D(A,1,s),r,s) < v. It is a contradiction.
Theorem 2.5 Let (X, 7,7%) be an ifts. For \,u € I*, r € Iy and s € I, the operator
T satisfies the following conditions:

(1) (0,7, s) = 0.

(2) AT\, 1, s).

(3) T(A\,rys) <T(p,rys)if A < p.

(4) TN\, rys) VT (pyr,s) =T(AV p,r,s).

Theorem 2.6 Let (X,7,7*) be an ifts. For A € IX, r € Iy and s € I;. Define the
mappings 7g, 75,75, 74 : IX — I by

T@(A):\/{TEIO|T(l_/\7T0aSO):l_A7 0<T0§T) SSSO<]—}7

(N = Nf{s € L | T(1 = X, 7o, 50)
7(A) = \/{r € I | D(1 - X, 70, 50)

Tg()\):/\{seh|D(l—)\,ro,so):l—)\, O<ro<r, s<s9<l1}.

() mp <7 <7and 1y >7f>71"

(2) (19, 75) and (75, 75) are IGO’s on X.

Proof. (1) We will show that 7y < 75 and 7; > 7&. Suppose there exist A € [, r € I,
and s € I; such that 7p(\) > r > 75(\) and 75 (\) < s < 75(A). Then there exists 7y € I
and sg € I; with 0 < 7* < rg, 50 < s* < 1,1—A=T(1— \r* s*) such that 75(\) > 1o > r
and 75 () < sp < s. On the other hand, since T'(1 — A, r*,s*) > D(1 — A\, r*,s*) for each

1—X O0<ro<r, s<sy<l1},

1—X 0<rog<r, s<sy<l1},
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0<7r*<ry s0<s" <1 wehave 1l -\ =D(L—\,r* s*). Thus, 75(\) > ry and 75 () < s0.
It is a contradiction.
(2) First, we will show that (75, 7;) is an IGO on X.
(IGO1) It is easy prove by (1) and Definition 1.1.
(IGO2) For all » € Iy and s € I;, we have T'(0,r,s) = 0 and T'(1,r,s) = 1. Hence
70(0) = (1) = 1 and 73(0) = 75(1) = 0.
(IGO3) Suppose there exist Ay, Ay € I* and ¢, m € (0,1) such that

Tg()\l A /\2) <t < Tg()\l) N T@(/\g).

7'9*(>\1 A )\2) >m > 7'9*()\1) \/7’9*()\2).

From the definition of (19, 7)), there exist r; € Iy, s; € I fori € {1,2} witht < r;;m > s;
and for each 0 < rg <r;, s; < 59 < 1,

1-\N= T(l— )\z’ﬂ"o,so),

such that
Tg(/\l A )\2) <riANry < Tg()\l) A 7'9()\2),
Tg()\l A\ )\2) > 81V 89 > Tg()\l) \/T;(AQ)
Put riAry =71*,51Vsy = s*. Since 1 —\; = T(1—\;, 70, 80), forall 0 < rg < r;, s; < s9 < 1,
T(l - ()‘1 A >\2)7 To, 50) = T(l - )\1) \% (l - )\2), 7o, 30)
=T(1— \i,70,50) VT(1— Ao, 70, 50)
=1L —-A) V(L= A).

Thus, 79(A1 A A2) > 19 and 75 (A1 A A2) < sp. It is a contradiction.
(IGO4) Suppose there exist {\; € [*},c; and ¢,m € (0,1) such that

\//\ <t</\7'9 ) and 7, \/A >m>\/7'9

JjeJ jeJ jeJ jeJ

From the definition of (7y,7;), there exist r; € Iy, s; € I; for j € J with 0 < rg < 1,
i <so<1,1—X =T(1— \j,r0,50) such that

7'9(\/ Aj) <t< /\rj < /\7'9()\])

jeJ jeJ jeJ
w(\/ M) >m>\s; =\ 7% (\)
jeJ jeJ jeJ

* ) * )
Put r* = A,c; 75, 8* = Ve 8j- Then

T(L = (\/ M) 70,50) = T(N\ (L= A;), 70, 50)

jedJ jeJ
< /\T 7'0,50) /\(l-)v):l— )\j.
jeJ JjeJ jed

Hence, T'(1 — V]EJ Aj,70,80) = 1 — v]GJ Aj. Thus, Tg(vjej \j) > 1o and
T;(VJEJ A;j) < so. It is a contradiction.
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3 Fuzzy d-connectedness and fuzzy #-connectedness

Definition 3.1 Let (X, 7,7*) be an ifts. For each A € I*, r € I, and s € I;.
(1) X is called (r, s)-fuzzy 60-closed (resp. (r,s)-fuzzy d-closed) iff A = T'(A\,r,s) (resp.
A=D(A,r,s)). We define

AYO W) /\{ue]x A<p, w="D(ur,s)},

O\ 7 s) = AN{pel™ A<, p="T(prs)}

(2) The complement of (r,s)-fuzzy 0-closed (resp. (r,s)-fuzzy d-closed) set is called
(r, s)-fuzzy 0-open (resp. (r,s)-fuzzy d-open).

Theorem 3.2 Let (X, 7,7%) be an ifts. For each A € IX, r € I, and s € I;, we have
the following properties:

(1) A\, 7, s) =D\, 1, 5).

(2) A\, 1, s) is (1, s)-fuzzy d-closed.

(3) O\, 1, 8) =T(O(\, 1, 8),71,5) e, O\ 1, s) is (r, s)-fuzzy 6-closed.

(4) T(A\,r,s) <O\, 8).

Proof. (1) Since A <D(\,r,s) = D(D(\,r,s),r,s), we have A(\, 7, 5) <D\ 1, s).
Suppose A(A, 7, 8) 2 D(\, 1, s). There exist x € X and t € (0, 1) such that

AN s)(x) <t <D, s)(x).
From the definition of A(\,r,s), there exists u € I* with A < = D(p, 7, s) such that
A7, 8)(z) < u(z) < £ < DO, 5)(2).

On the other hand, since A < p, we have D(A\,7,s) < D(u,r,s) = p. It is a contradiction.
Hence A(\,r,s) > D(A\,r,s).

(2) Tt is trivial.

(3) Let A < p; = T'(uj,1,s) for each j € I'. Then

/\ Hi < T(/\ fjsrys) < Tpg,rys) = py.

jer jer

It implies A;cp 5 = T(N\jer #5575 8). Hence O(A, 1, s) = T(O(A, 1, 5), 1, 5), that is,
O(\, 1, s) is (r, s)-fuzzy O-closed set.

(4) Since A < ©(\, 1, s), by (3), we have T' (A, 7, s) < T(O(\, 1, 8),1,8) = O\ T,5).

In general, by Theorem 3.2(1-2), an 0— closure operator is (r, s)-fuzzy d-closed for each
r € Iy and s € I, but an §— closure operator is not (r, s)-fuzzy-6-closed.

Example 3.3 Let X = {z,y} be a set. Let (X, 7,7*) be an ifts as follows:

\
~

L, A e{0,1} 0, A€ {0,1}
%a A= 0.7, %7 A= 0.7,
TA) =193  A=05 A =43  A=035
%7 A =04, %’ A =04,

W otherwise, [ 1, otherwise.
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We obtain

Q7 )\:Q7TEIO7SEII
T()\,T,S): %7 Q%x\ﬁ@,0<r§%,%§s<1,
1 otherwise.
Since - .
1=T(T(0.5, = =), =, = T(0.5, =, =) =0.
= ( (@7272%2’2)# (@7272) wa

then T'(0.5, 3, 3) is not (3, 3)-fuzzy 6—closed. Since

O 1) = {Q, A =0, re In,s€
1, otherwise,

we have T'(\,7,5) < O(A\, 1, s).

Definition 3.4 A pair (A, ) of non-null fuzzy sets in an ifts (X, 7, 7*) is said to be
(r, s)-fuzzy separation relative to X, r € Iy and s € I iff \Gu, A\GC(u,r, s) and C(A,r, s)qu.
A fuzzy set v in an ifts X is said to be (r, s)-fuzzy connected iff there do not exist two fuzzy
sets A and p in X such that (A, p) is an (r, s)-fuzzy separation relative to X and v = AV p.

Definition 3.5 A pair (A, 1) of non-null fuzzy sets in an ifts (X, 7,7%),r € Iy and s € I
is said to be (r, s)-fuzzy-0-separation relative to X iff A\Gu, \gO(u,r, s) and O(A, 7, s)gu. A
fuzzy set «y in an ifts X is said to be (r, s)-fuzzy-0-connected iff there do not exist two fuzzy
sets A and p in X such that (A, i) is an (r, s)-fuzzy-6-separation relative to X and v = AV p.

Definition 3.6 A pair (A, u) of non-null fuzzy sets in an ifts (X, 7,7%) is said to be
(r, s)-fuzzy-d-separation relative to X iff AGu, A\gA(p,r, s) and A(A, 7, s)gu. A fuzzy set v
in an ifts X is said to be (r, s)-fuzzy-d-connected iff there do not exist two fuzzy sets A and
p in X such that (A, ) is an (r, s)-fuzzy-d-separation relative to X and v = A V p.

Remark 3.7 From Theorem 3.2(1,4), it is clear that:

(r, s)-fuzzy connected = (r, s)-fuzzy-d-connected = (r, s)-fuzzy-6-connected.

Example 3.8 Let X = I and (X, 7,7") an ifts define as

L, A€ {0,1}, 0, A€ {0,1},

1 A=A A i A=A A
T()\): %7 1, N2, T*<)\): 37 1, N2,

3 )\:)\37)\47 3 )\:)‘37)‘47

0, otherwise, 1, otherwise,

where A1, Ay, A3 and A\, are fuzzy sets defined as follows
1 1 8 1
)\1(0) = Z, )\2(0) = ?, )\3(0) = §, )\4(0) = g and

1
Ae(x) = 5 Vo e Iy,k=1,2,3,4.

Then (X, 7,7%) is an ifts. Consider a fuzzy set defined as follows

x =0,

, otherwise.
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Then, v = Vv, where

6 1
7 = 07 107 = Oa
pay=47 T and p(z) =41
0, otherwise, % otherwise.
Obviously, ugr. Again
Clp,=,=)=< 7" ’ and C(v,=)=<"Y ’
(i 3 3) {%, otherwise, ( 3) {%, otherwise.
Obviously, 1gC(v,3,%) and C(u, 3,2)gv. Then 7 is not (3, 3)-fuzzy connected. For any
respresentation v = p V v, where p and v are non-empty, either x(0) = £ or v(0) = £,
by Theorem 3.2(1), then if u(0) = £ (resp. if v(0) = £), then A(u,3,2) = 1 (resp.
A(v,3,2) = 1) so that v is not representable as p V v, where (p,v) is an (3, 2)-fuzzy

d-separation. Hence v is (3, 3)-fuzzy d-connected.
Example 3.9 Define an ifts (X, 7,7%) as in Example 3.3. From Theorem 3.2(1), we

obtain
Q, )\:Q,Tejo,sejl,

A(\r,s) =206, 0#A<06,0<r<i,

1, otherwise.

1
§§S<1

For 0.4 = 0.3V 0.4, we have 0.3 ¢ 0.4, 0.6 = A(0.3,3,3) ¢ 04, 0.37A(04, 3,3) = 0.6,
Hence (0.3,0.4) is an (3, 2)-fuzzy-d-separation and 0.4 is not (3, %)-fuzzy-d-connected.

For any representation 0.4 = p V v, where  and v are non-empty, by Example 3.3,
O(\,r,s) =1for A € {p,v}. Thus, 0.4 is (3, %)-fuzzy-6-connected.

Definition 3.10 Let (X, 7,7%) be an ifts, r € I and s € I;. Then X is said to be

(1) (r,s)-fuzzy regular iff for each fuzzy point z; in X and each p € Q(xy,r,s) there
exists v € Q(x¢, 1, s) such that C(v,r,s) < p.

(2) (r,s)-fuzzy almost regular iff for each fuzzy point z; in X and each p € R(zy, 1, )
there exists v € R(xy,r, s) such that C(v,r,s) < p.

(3) (r, s)-fuzzy semi-regular iff for each u € Q(z4, 1, s), there exists p € Q(z¢,r, s) such
that Z(C(p,r,s),1,5) < p.

Theorem 3.11 Let (X, 7,7%) be an ifts, r € I and s € I;. Then

(1) X is (r, s)-fuzzy almost regular iff T'(\, 7, s) = D(\,r,s), for each \ € IX.

(2) X is (r, s)-fuzzy semi-regular iff D(\,r,s) = C(\,r,s), for each X € I*,

Proof. (1) We only show that T'(\, 7, s) < D(\,r, s). Suppose there exist A € IX, r € I,
and s € I; such that T(\,r,s) € D(\,r,s). Then there exist x € X and ¢t € (0,1) such
that T'(\,r, s)(x) >t > D(\,r,s)(z). Since D(A,r, s)(x) < t, x4 is not (r, s)-fuzzy J-cluster
point of A. Then there exists u € R(x,r,s) such that A <1 —pu=C(Z(1— p,r,s),7,5).
Since (X, 7,7%) is (r, s)-fuzzy almost regular, for u € R(xy, 7, s), there exists p € R(xy,r, )
such that C(p,r,s) < p. Thus

A S l_ 2 S l—C(p,T’,S) S I(l_ Pﬂ”:s) S I<C<I(l_ P7T73)7T75)77”73)-
It follows T'(A\,7,s) < C(Z(1 — p,7,s8),7r,s). Hence T (A, 7, s)(x) < (L —p)(z) < t. Itisa

contradiction.
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then z; is not (r, s)-fuzzy O-cluster point of 1 — pu. Then there exists p € Q(xy, 7, s) such
that C(p,r,s) < p. It implies Z(C(p,r,s),r,8) < C(Z(C(p,r,s),7,8),7r,8) < p. Moreover,
Z(C(p,r,s),r,s) € Qxy,r,s). Hence (X, 7,7%) is (r, s)-fuzzy almost regular.

(2) Similarly prove as (1).

Corollary 3.12 (1) In an (r, s)-fuzzy almost regular space, since, by Theorem 3.11(1),
O\, r,s) = A(A,7,s), for each A € IX, r € I, and s € I}, (r, s)-fuzzy -0-connectedness and
(r, s)-fuzzy-0-connectedness are equivalent.

(2) In an (r, s)-fuzzy semi-regular space, the concepts of (r, s)-fuzzy connectedness and
that of (r, s)-fuzzy-d-connectedness are equivalent.

Theorem 3.13 An ifts (X, 7, 7%) is (1, s)-fuzzy regular iff it is (r, s)-fuzzy almost regular
and (r, s)-fuzzy semi-regular.

Proof. Let p € Q(ay,r,s). Since (X,7,7%) is (r,s)-fuzzy regular, there exists p €
Q(xy, 1, s) such that C(p,r,s) < u. So, Z(C(p,r,s),r,s) < C(p,r,s) < pu. Hence (X, 7,7%) is
(r, s)-fuzzy semi-regular. Let u € R(x¢, 1, s). Since (X, 7,7) is (r, s)-fuzzy regular and p €
Q(x¢, 1, s), there exists p € Q(xy, 1, s) such that C(p,r,s) < u. Since p < Z(C(p,7,5),7,5),
Z(C(p,r,s),r,s) € R(xy,r,s). So, C(Z(C(p,r,s),7,8),1,8) =C(p,7,5) < pu. Hence (X, 7, 7)
is (r, s)-fuzzy almost regular.

Conversely, for each p € Q(xy,r,s), since (X, 7,7%) is (r, s)-fuzzy semi-regular, there
exists p € Q(xy,r, s) such that Z(C(p,r,s),r,s) < p. It follows Z(C(p,r,s),7,5) € R(x4,7,5).
Since (X, 7,7%) is (r, s)-fuzzy almost regular, there exists v € R(x,r,s) C Q(xy, 7, s) such
that C(v,r,s) <Z(C(p,r,s),r,s) < u. Hence (X, ,7%) is (r, s)-fuzzy regular.

Corollary 3.14 In an (r, s)-fuzzy regular space, since, by Theorems 3.2, 3.11(1,2) and
3.12,C(\,1,s) = O(\, 1, 8) = A(\, 1, 5), for each A € IX, r € Iy and s € I, then the notions
of (r,s)-fuzzy connectedness, (r, s)-fuzzy-d-connectedness and (7, s)-fuzzy-6-connectedness
of fuzzy sets become identical.
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