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1 Introduction

After the introduction of fuzzy sets by Zadeh [21], several generalizations have been made of
this fundamental concept for various objectives. The notion of intuitionistic fuzzy sets (IFSs)
introduced by Atanassov [1,2] is one among them. There are situations where IFS theory is more
appropriate to dealt with [4]. IFS theory is quite interesting and useful in many application areas
viz. medical diagnosis [8], decision making [20], career determination [9] etc. Many researchers
have been involved in extending various mathematical aspects such as groups, rings, modules,
topological spaces, topological groups, topological vector spaces in IFS [3,6,7,10,11,13–16,18].
In 1977, Katsaras introduced the concept of fuzzy vector subspaces [12]. In 2010, a notion of
fuzzy bases have been studied in [19]. The notion of intuitionistic fuzzy subspace of a vector
space was introduced by many authors [5, 13, 17]. In this paper we introduce a notion of intu-
itionistic fuzzy vector space (IFVS) and intuitionistic fuzzy basis (IF-basis) of a IFVS which is
analogous to the fuzzy basis of [19].
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2 Preliminaries

Definition 2.1 ( [1]). Let X be a non-empty set. An intuitionistic fuzzy set (IFS for short) of X
defined as an object having the form A = {〈x, µA(x), νA(x)〉 | x ∈ X}, where µA : X → [0, 1]

and νA : X → [0, 1] denote the degree of membership (namely µA(x)) and the degree of non-
membership (namely νA(x)) of each element x ∈ X to the set A, respectively, and 0 ≤ µA(x) +

νA(x) ≤ 1 for each x ∈ X. For the sake of simplicity we shall use the symbol A = (µA, νA) for
the intuitionistic fuzzy set A = {〈x, µA(x), νA(x)〉 | x ∈ X}.

In this paper, we use the symbols a ∧ b = min{a, b} and a ∨ b = max{a, b}.

Definition 2.2 ( [1]). Let A = (µA, νA) and B = (µB, νB) be intuitionistic fuzzy sets of a set X.
Then

(1) A ⊆ B iff µA(x) ≤ µB(x) and νA(x) ≥ νB(x) for all x ∈ X.

(2) A = B iff A ⊆ B and B ⊆ A.

(3) Ac = {〈x, νA(x), µA(x)〉 | x ∈ X}

(4) A ∩B = {〈x, µA(x) ∧ µB(x), νA(x) ∨ νB(x)〉 | x ∈ X}.

(5) A ∪B = {〈x, µA(x) ∨ µB(x), νA(x) ∧ νB(x)〉 | x ∈ X}.

(6) � A = {〈x, µA(x), 1− µA(x)〉 | x ∈ X}, ♦ A = {〈x, 1− νA(x), νA(x)〉 | x ∈ X}.

Definition 2.3 ([6]). 0∼ = (0, 1) and 1∼ = (1, 0).

Definition 2.4 ( [6]). Let X and Y be two non-empty sets and f : X → Y be a mapping. Let A
be an IFS in X and B be an IFS in Y. Then
(a) the image of A under f, denoted by f(A), is the IFS in Y defined by f(A) = (f(µA), f(νA)),

where for each y ∈ Y,

f(µA)(y) =

 ∨
x∈f−1(y)

µA(x) if f−1(y) 6= φ

0 if f−1(y) = φ

and

f(νA)(y) =

 ∧
x∈f−1(y)

µA(x) if f−1(y) 6= φ

1 if f−1(y) = φ

(b) the pre-image of B under f , denoted by f−1(B), is the IFS in X, defined by f−1(B) =

(f−1(µB), f
−1(νB)), where f−1(µB) = µB ◦ f.

Corollary 2.5 ([6]). Let A, {Ai}i∈J be IFS in X , B, {Bj}j∈K be IFS in Y and f : X → Y be a
mapping. Then

(1) A1 ⊆ A2 ⇒ f(A1) ⊆ f(A2).

(2) B1 ⊆ B2 ⇒ f−1(B1) ⊆ f(B2).

(3) A ⊆ f−1(f(A)). If f is injective, A = f−1(f(A)).
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(4) f(f−1(B)) ⊆ B. If f is surjective, f(f−1(B)) = B.

(5) f(∪Ai) = ∪f(Ai).

(6) f(∩Ai) ⊆ ∩f(Ai). If f is injective, f(∩Ai) = ∩f(Ai).

(7) f−1(∪Bj) = ∪f−1(Bj).

(8) f−1(∩Bj) = ∩f−1(Bj).

(9) f(1∼) = 1∼, if f is surjective and f(0∼) = 0∼.

(10) f−1(1∼) = 1∼ and f−1(1∼) = 1∼.

(11) [f(A)]c ⊆ f(Ac), if f is surjective.

(12) f−1(Bc) = [f−1(B)]
c
.

Definition 2.6 ( [10]). Let A be an IFS in a set X . Then for λ, ξ ∈ [0, 1] with λ + ξ ≤ 1, the set
A[λ,ξ] = {x ∈ X : µA(x) ≥ λ and νA(x) ≤ ξ} = {x ∈ X : A(x) ≥ (λ, ξ)} is called (λ, ξ)-level
subset of A.

Proposition 2.7 ( [10]). Let A be an IFS in a set X and (λ1, ξ1), (λ2, ξ2) ∈ Im(A). If λ1 ≤ λ2
and ξ1 ≥ ξ2, then A[λ1,ξ1] ⊇ A[λ2,ξ2].

Definition 2.8 ( [13]). Let X be a vector space over the field K, the field of real and complex
numbers, α ∈ K, A = (µA, νA) and B = (µB, νB) be two intuitionistic fuzzy sets of X .Then

(1) the sum of A and B is defined to be the intuitionistic fuzzy set A+B = (µA+µB, νA+νB)

of X given by

µA+B(x) =

 sup
x=a+b

{µA(a) ∧ µB(b)} if x = a+ b

0 otherwise,

νA+B(x) =

 inf
x=a+b

{νA(a) ∨ νB(b)} if x = a+ b

1 otherwise.

(2) αA is defined to be the IFS αA = (µαA, ναA) of X, where

µαA(x) =


µA(α

−1x) if α 6= 0

sup
y∈X

µA(y) if α = 0, x = θ

0 if α = 0, x 6= θ,

ναA(x) =


νA(α

−1x) if α 6= 0

inf
y∈X

µA(y) if α = 0, x = θ

1 if α = 0, x 6= θ.

.

Remark 2.9. Let X be a vector space over the field K, the field of real and complex numbers,
A = (µA, νA) an intuitionistic fuzzy set of X . Then for all scalars α ∈ K and for all x ∈ X, we
have µαA(αx) ≥ µA(x) and ναA(αx) ≤ νA(x).
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Proposition 2.10. Let A,A1, . . . , An be intuitionistic fuzzy sets in a vector space X and
λ1, . . . , λn be scalars. Then the following assertions are equivalent:

(1) λ1A1 + λ2A2 + · · ·+ λnAn ⊆ A.

(2) For all x1, x2, . . . , xn in X, we have
µA(λ1x1 + λ2x2 + · · · + λnxn) ≥ min{µA1(x1), µA2(x2), . . . , µAn(xn)} and νA(λ1x1 +
λ2x2 + · · ·+ λnxn) ≤ max{νA1(x1), νA2(x2), . . . , νAn(xn)}.

Proof. (1)⇒ (2) :

µA(λ1x1 + λ2x2 + · · ·+ λnxn) ≥ µλ1A1+λ2A2+···+λnAn(λ1x1 + λ2x2 + · · ·+ λnxn)

≥ min{µλ1A1(λ1x1), . . . , µλnAn(λnxn)}
≥ min{µA1(x1), . . . , µAn(xn)}.
νA(λ1x1 + λ2x2 + · · ·+ λnxn) ≤ νλ1A1+λ2A2+···+λnAn(λ1x1 + λ2x2 + · · ·+ λnxn)

≤ max{νλ1A1(λ1x1), . . . , νλnAn(λnxn)}
≤ max{νA1(x1), . . . , νAn(xn)}.
(2)⇒ (1) :

By rearranging the order if necessary, we may assume that λi 6= 0 for i = 1, 2, . . . , k, and λi = 0

for k ≤ i ≤ n. Let x1, x2, . . . , xk be elements of X. For all y1, y2, . . . , yn−k in X we have
µA(λ1x1 + λ2x2 + · · ·+ λkxk) ≥ min{µA1(x1), . . . , µAk(xk), µAk+1

(y1), . . . , µAn(yn−k)}.
Since µ0Aj(θ) = sup

y∈X
µAj(y), we get

µA(λ1x1 + λ2x2 + · · ·+ λkxk) ≥ min{µA1(x1), . . . , µAk(xk), µ0Ak+1
(θ), . . . , µ0An(θ)}.

Now
µλ1A1+λ2A2+···+λnAn(z) = sup

x1+x2+···+xn=z
[min{µλ1A1(x1), . . . , µλnAn(xn)}]

= sup
x1+x2+···+xn=z

[min{µλ1A1(x1), . . . , µλkAk(xk), µ0Ak+1
(xk+1), . . . , µ0An(xn)}]

= sup
x1+x2+···+xk=z

[min{µA1(λ
−1
1 x1), . . . , µAk(λ

−1
k xk), µ0Ak+1

(θ), . . . , µ0An(θ)}][Since µ0Ai(xi) =

0, if xi 6= θ, i = k + 1, . . . , n]
≤ sup

x1+x2+···+xk=z
µA(λ1λ

−1
1 x1 + · · ·+ λkλ

−1
k xk) = µA(z).

Similarly, it can be proved that νλ1A1+λ2A2+···+λnAn(z) ≥ νA(z), z ∈ X.
Hence proved.

Proposition 2.11. Let A,B be two intuitionistic fuzzy sets in a vector space X. Then

(1) A+ 0B ⊆ A.

(2) A+ 0B = A iff sup
x∈X

µA(x) ≤ sup
x∈X

µB(x) and inf
x∈X

νA(x) ≥ inf
x∈X

νB(x).

Proof. (1) µA(x+0y) = µA(x) ≥ min{µA(x), µB(y)} and νA(x+0y) = νA(x) ≤ max{νA(x),
νB(y)}. Hence (1) follows from Proposition 2.9.

(2) Suppose that sup
x∈X

µA(x) ≤ sup
x∈X

µB(x) = µ0B(θ) and inf
x∈X

νA(x) ≥ inf
x∈X

νB(x) = ν0B(θ)

Then µA+0B(z) = sup
x+y=z

[min{µA(x), µ0B(y)}] = min{µA(z), µ0B(θ)} = µA(z) and
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νA+0B(z) = inf
x+y=z

[max{νA(x), ν0B(y)}] = max{νA(z), ν0B(θ)} = νA(z)

On the other hand, if µA(z) > sup µB(x) = µ0B(θ) for some z, then

µA+0B(z) = min{µA(z), µB(0)} < µA(z),

and hence A+ 0B 6= A.

Proposition 2.12. LetX and Y be two vector spaces and f : X → Y be a linear onto map. Then
for all IFS A,B of X and for all scalars k,
(1) f(A+B) = f(A) + f(B)

(2) f(kA) = kf(A).

Proof. (1) Let y ∈ Y and ε > 0 be arbitrary. Let (α, α′) = f(A + B)(y) and (β, β′) =

(f(A)+f(B))(y). Then: α = µf(A+B)(y) = ∨
z∈f−1(y)

µA+B(z), α′ = νf(A+B)(y) = ∧
z∈f−1(y)

νA+B(z)

and β = µ(f(A)+f(B))(y) = ∨
y=z+z′

[µf(A)(z) ∧ µf(B)(z
′)], β′ = ν(f(A)+f(B))(y) = ∧

y=z+z′
[νf(A)(z) ∨

νf(A)(z
′)].

Thus α−ε < ∨
z∈f−1(y)

µA+B(z) and α′+ε > ∧
z∈f−1(y)

νA+B(z). So, there exists z0, z′0 ∈ X such that

f(z0) = y and f(z′0) = y such that α − ε < µA+B(z0) and α′ + ε > νA+B(z
′
0). By the definition

of sum,
α− ε < ∨

z0=a+b
[µA(a)∧µB(b)] and α′+ ε > ∧

z′0=a
′+b′

[νA(a
′)∨ νB(b′)]. Then there exist a0, b0 ∈ X

with z0 = a0+ b0 such that α− ε < µA(a0)∧µB(b0) and there exist a′0, b
′
0 ∈ X with z′0 = a′0+ b

′
0

such that α′ + ε > νA(a
′
0) ∨ νB(b′0). On the other hand,

β ≥ µf(A)(f(a0)) ∧ µf(B)(f(b0))

= f(µA)(f(a0)) ∧ f(µB)(f(b0))
= f−1(f(µA))(a0) ∧ f−1(f(µB))(b0)
≥ µA(a0) ∧ µB(b0).
Similarly we have, β′ ≤ νA(a

′
0) ∨ νB(b′0). So, β > α − ε and β′ < α′ + ε. Since ε is arbitrary,

β ≥ α and β′ ≤ α′. Hence (f(A) + f(B))(y) ≥ f(A+B)(y), for each y ∈ Y. (*)
Now we will show that β ≤ α and β′ ≥ α′. Clearly,
β − ε < ∨

y=z+z′
[µf(A)(z) ∧ µf(B)(z

′)] and β′ + ε > ∧
y=z+z′

[νf(A)(z) ∨ νf(A)(z′)].
Then there exist z0, z′0 ∈ Y with y = z0 + z′0such that β − ε < µf(A)(z0) = ∨

x∈f−1(z0)
µA(x) and

β − ε < µf(B)(z
′
0) = ∨

x∈f−1(z′0)
µB(x)

and there exist z1, z′1 ∈ Y with y = z1 + z′1such that β′ + ε > νf(A)(z1) = ∧
x∈f−1(z1)

νA(x) and

β′ + ε > νf(B)(z
′
1) = ∧

x∈f−1(z′1)
νB(x).

Thus there exist x0, x′0 ∈ X with f(x0) = z0 and f(x′0) = z′0 such that β − ε < µA(x0),
β − ε < µB(x

′
0)

and there exist x1, x′1 ∈ X with f(x1) = z1 and f(x′1) = z′1 such that β′ + ε > νA(x1),
β′ + ε > νB(x

′
1).

So, β − ε < µA(x0) ∧ µB(x′0) ≤ µA+B(x0 + x′0) ≤ ∨
x∈f−1(y)

µA+B(x) = µf(A+B)(y)

and β′ + ε > νA(x1) ∨ νB(x′1) ≥ νA+B(x1 + x′1) ≥ ∧
x∈f−1(y)

νA+B(x) = νf(A+B)(y).
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Hence β − ε < α and β′ + ε > α′. Since ε is arbitrary, β ≤ α and β′ ≥ α′. Hence
(f(A) + f(B))(y) ≤ f(A+B)(y), for each y ∈ Y. (**)
Therefore, by (*) and (**), f(A) + f(B) = f(A+B).

(2) Let y ∈ Y , (α, α′) = (kf(A))(y) and (β, β′) = (f(kA))(y). If k 6= 0, α = µf(A)(λ
−1y) =

∨
f(x)=λ−1y

µA(x) = ∨
f(λx)=y

µλA(λx)

= ∨
f(z)=y

µλA(z) = β.

Next assume that k = 0. If y 6= θ, then α = 0. Also β = ∨
f(x)=y

µ0A(x) = 0 since, when

f(x) = y 6= θ, x 6= θ. For y = θ, we have
α = ∨

y∈Y
µf(A)(y) = ∨

x∈X
µA(x);

β = ∨
f(x)=θ

µ0A(x) = µ0A(θ) = ∨
x∈X

µA(x).

Similarly, it can be proved that α′ = β′.

This completes the proof.

3 Intuitionistic fuzzy vector space

Definition 3.1. An IFS V = (µV , νV ) of a vector space X over the field K is said to be intuition-
istic fuzzy vector space over X if

(i) V + V ⊆ V

(ii) αV ⊆ V, for every scalar α.

We denote the set of all intuitionistic fuzzy vector spaces over a vector space X by IFVS(X).

Remark 3.2. Let X be a vector space.

(1) If µV is a fuzzy subspace of X, then V = (µV , µ
c
V ) ∈ IFVS(X).

(2) If V ∈ IFVS(X), then µV and νcV are fuzzy vector subspace of X.

(3) If V ∈ IFVS(X), then � V,♦ V ∈ IFVS(X).

Lemma 3.3. Let V be an intuitionistic fuzzy set in a vector space X. Then, the following are
equivalent:

(1) V is an intuitionistic fuzzy vector space over X .

(2) For all scalars α, β, we have αV + βV ⊆ V.

(3) For all scalars α, β and for all x, y ∈ X, we have
µV (αx+ βy) ≥ µV (x) ∧ µV (y)} and νV (αx+ βy) ≤ νV (x) ∨ νV (y).

Proof. Clearly, (1)⇒ (2). Also (2) and (3) are equivalent by Proposition 2.10.

(2)⇒ (1) : V + V = 1V + 1V ⊆ V, αV = αV + 0V ⊆ V.
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Remark 3.4. Our definition of intuitionistic fuzzy vector space is equivalent to the definition of
intuitionistic fuzzy subspace of [17] and [5].

Proposition 3.5. Let X and Y be vector spaces over K and let f be a linear map from X onto
Y. If V is an intuitionistic fuzzy vector space over X , then f(V ) is an intuitionistic fuzzy vector
space over Y. Similarly, if W is an intuitionistic fuzzy vector space over Y , then f−1(W ) is an
intuitionistic fuzzy vector space over X.

Proof. For k,m scalars, we have from Proposition 2.12, kf(V ) + mf(V ) = f(kV + mV ) ⊆
f(V ), which shows that f(V ) is an intuitionistic fuzzy vector space over Y. Also,
µf−1(W )(kx + my) = µW (f(kx + my)) = µW (kf(x) + mf(y)) ≥ µW (f(x)) ∧ µW (f(y)) =

µf−1(W )(x) ∧ µf−1(W )(y) and
νf−1(W )(kx + my) = νW (f(kx + my)) = νW (kf(x) + mf(y)) ≤ νW (f(x)) ∨ νW (f(y)) =

νf−1(W )(x) ∨ νf−1(W )(y) .
Hence f−1(W ) is an intuitionistic fuzzy vector space by Lemma 3.3.

Proposition 3.6 ([5]). If V,W ∈ IFVS(X), then V +W ∈ IFVS(X).

Proposition 3.7. If V ∈ IFVS(X) α ∈ K, then αV ∈ IFVS(X).

Proof. We have for x, y ∈ X and k,m ∈ K, µV (kx+my) ≥ µV (x)∧µV (y) and νV (kx+my) ≤
νV (x)∨νV (y). Let α be any scalar so that α 6= 0, then µαV (kx+my) = µV (α

−1kx+α−1my) ≥
µV (α

−1x) ∧ µV (α−1y)[by Lemma 3.3] = µαV (x) ∧ µαV (y) and similarly, ναV (kx + my) ≤
ναV (x) ∨ ναV (y).

On the other hand, if α = 0, then µ0V (kx+my) =

0 if kx+my 6= θ

sup
x∈X

µV (x) if kx+my = θ
and ν0V (kx+

my) =

1 if kx+my 6= θ

inf
x∈X

νV (x) if kx+my = θ
.

If kx+my = θ, µ0V (kx+my) = sup
x∈X

µV (x) ≥ µ0V (x)∧µ0V (y) and ν0V (kx+my) = inf
x∈X

νV (x) ≤

ν0V (x) ∨ ν0V (y).
If kx + my 6= θ, we have µ0V (kx + my) = 0 and ν0V (kx + my) = 1. we must show

that µ0V (x) ∧ µ0V (y) = 0 and ν0V (x) ∨ ν0V (y) = 1. Assume that µ0V (x) ∧ µ0V (y) 6= 0, then
µ0V (x) > 0 and µ0V (y) > 0. So, y = x = θ, a contradiction. Similarly, it can be shown that
ν0V (x) ∨ ν0V (y) = 1.

Proposition 3.8. [5] If {Vi}i∈I ∈ IFVS(X), then ∩
i∈I
Vi ∈ IFVS(X).

Proposition 3.9. Let V ∈ IFVS(X). Then µV (θ) ≥ µV (x) and νV (θ) ≤ νV (x), ∀x ∈ X.

Proof. 0V ⊆ V. Thus by Proposition 2.10, µV (θ) = µV (0.x) ≥ µV (x) and νV (θ) = νV (0.x) ≤
νV (x), for all x ∈ X.

Proposition 3.10. Let V ∈ IFVS(X). Then for each (λ, ξ) ∈ [0, 1]× [0, 1] with λ+ ξ ≤ 1, λ ≤
µV (θ) and ξ ≥ νV (θ), V [λ,ξ] is a subspace of the vector space X,
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Proof. Clearly, V [λ,ξ] 6= φ. Let x, y ∈ V [λ,ξ] and k,m ∈ K. Then µV (x), µV (y) ≥ λ and
νV (x), νV (y) ≤ ξ. Since V ∈ IFVS(X), µV (kx+my) ≥ µV (x)∧µV (y) ≥ λ and νV (kx+my) ≤
νV (x) ∨ νV (y) ≤ ξ. So, kx+my ∈ V [λ,ξ]. Hence V [λ,ξ] is a subspace of the vector space X.

Proposition 3.11. Let V be an IFS in a vector space X such that V [λ,ξ] is a subspace of X for
each (λ, ξ) ∈ [0, 1]× [0, 1] with λ+ ξ ≤ 1, λ ≤ µV (θ) and ξ ≥ νV (θ). Then V ∈ IFVS(X).

Proof. Let x, y ∈ X, k,m ∈ K and µV (x) = t1, µV (y) = t2 and νV (x) = s1, νV (y) = s2.

Let t = t1 ∧ t2 and s = s1 ∨ s2. Then x, y ∈ V [t,s]. Also, if s = s1, t + s ≤ t1 + s1 ≤ 1,
or if s = s2, then t + s ≤ t2 + s2 ≤ 1. Since, V [t,s] is a subspace of X , kx + my ∈ V [t,s].

Then µV (kx + my) ≥ t = µV (x) ∧ µV (y) and νV (kx + my) ≤ s = νV (x) ∨ νV (y). Hence
V ∈ IFVS(X).

Proposition 3.12. If V ∈ IFVS(X), then V ∗ = {x ∈ X : µV (x) = µV (θ) and νV (x) = νV (θ)}
is a vector subspace of X.

Proof. Let x, y ∈ V ∗ and k,m ∈ K. Then µV (x) = µV (θ), νV (x) = νV (θ) and µV (y) =

µV (θ), νV (y) = νV (θ). Thus µV (kx + my) ≥ µV (x) ∧ µV (y) = µV (θ) and νV (kx + my) ≤
νV (x) ∨ νV (y) = νV (θ). On the other hand, by Proposition 3.9, µV (kx + my) ≤ µV (θ) and
νV (kx+my) ≥ νV (θ). So, µV (kx+my) = µV (θ) νV (kx+my) = νV (θ). Thus kx+my ∈ V ∗.
Hence V ∗ is a subspace of X.

Proposition 3.13. Let s, t ∈ R and A, A1 and A2 be IFS in a vector space X. Then

(1) s.(t.A) = t.(s.A) = (st).A and

(2) A1 ≤ A2 ⇒ t.A1 ≤ t.A2.

Proof. (1) If s, t 6= 0 :

s.(t.νA)(x) = (t.νA)(
x
s
)

= (νA(
x
st
))

= (s.νA)(
x
t
)

= t.(s.νA)(x)

Also, (st).νA(x) = νA(
x
st
). Similarly, (st).µA(x) = µA(

x
st
).

If s = 0 and t 6= 0 :

0.(t.νA)(x) =

 inf
x∈X

(t.νA)(x) if x = θ

1 if x 6= θ

=

 inf
x∈X

νA(x) if x = θ

1 if x 6= θ.

As inf
x∈X

νA(x) = inf
x∈X

νA(
x
t
)(replace x by tx).

t.(0.νA)(x) = (0.νA)(
x
t
)

=

 inf
x∈X

νA(x) if
x
t
= θ

1 if x
t
6= θ
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=

 inf
x∈X

νA(x) if x = θ

1 if x 6= θ.

(0t).νA(x) = 0.νA(x)

=

 inf
x∈X

CA(x) if x = θ

1 if x 6= θ.

Similar result holds for µA. Obviously, the case where t = 0 and s 6= 0 is same as the preceding
case.
If s = t = 0 :

0.(0.νA)(x) =

 inf
x∈X

(0.νA)(x) if x = θ

1 if x 6= θ

=

 inf
x∈X

νA(x) if x = θ

1 if x 6= θ

= 0.νA(x).
Analogous result holds for µA. Hence (1) is proved.
(2) Choose x ∈ X. We have that µA1(x) ≤ µA2(x) and If t 6= 0, then
t.µA1(x) = µA1(

x
t
)

≤ µA2(
x
t
)

= t.µA2(x).

If t = 0 and x = θ, then 0.µA1(θ) = sup
x∈X

µA1(x) and 0.µA2(θ) = sup
x∈X

µA2(x). Since we have

sup
x∈X

µA1(x) ≤ sup
x∈X

µA2(x), so 0.µA1(θ) ≤ 0.µA2(θ). If t = 0 and x 6= θ, then 0.µA1(x) = 0 =

0.µA2(x). Similarly, it can be proved that νA1(x) ≥ νA2(x) ⇒ νtA1(x) ≥ νtA2(x), for all x ∈ X.
Hence proved.

Proposition 3.14. Let V ∈ IFVS(X) Then x ∈ X, a 6= 0 ⇒ µV (ax) = µV (x) and νV (ax) =
νV (x).

Proof. x ∈ X, a 6= 0

⇒ µV (ax) = µV (ax + 0x) ≥ µV (x) ∧ µV (x) = µV (x) and νV (ax) = νV (ax + 0x) ≤ νV (x) ∧
νV (x) = νV (x).

Now, replace x by ax and a by 1
a
, to get µV (x) ≥ µV (ax) and νV (x) ≤ νV (ax).

Therefore µV (ax) = µV (x) and νV (ax) = νV (x).

Remark 3.15. For V ∈ IFVS(X) we assume that µV (x) ≥ µV (y) will always imply νV (x) ≤
νV (y), x, y ∈ X. In the following example we see that for an intuitionistic fuzzy set V over X
with µV (x) ≥ µV (y) and νV (x) ≥ νV (y), x, y ∈ X, it may happen that V /∈ IFVS(X).

Example 3.16. LetX = R2. We define an intuitionistic fuzzy set V = (µV , νV ), where µV : X →
[0, 1] and νV : X → [0, 1] are given by:

µV (x) =


1, if x = (0, 0)

.5, if x = (0, a), a 6= 0

.3, otherwise.
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and νV (x) =


0, if x = (0, 0)

.4, if x = (0, a), a 6= 0

.2, otherwise.

.

Then we see that V is not an intuitionistic fuzzy vector space as νV ((0, 2)) = νV ((−1, 1) +
(1, 1)) > νV ((−1, 1)) ∧ νV ((1, 1)).

Definition 3.17. For any (a, b), (c, d) ∈ [0, 1]× [0, 1] with a+ b ≤ 1, c+ d ≤ 1, we say that:

(1) (a, b) ≥ (c, d) if a ≥ b and c ≤ d.

(2) (a, b) ≤ (c, d) if a ≤ b and c ≥ d.

(3) (a, b) > (c, d) if a > b and c ≤ d or if a ≥ b and c < d.

(4) (a, b) < (c, d) if a < b and c ≥ d or if a ≤ b and c > d.

(5) (a, b) = (c, d) if a = b and c = d.

Proposition 3.18. Let V ∈ IFVS(X) with dim X = m. Then Im(V ) contains at most m + 1

points of [0, 1]× [0, 1].

Proof. Let V be an intuitionistic fuzzy vector space in X . Then we show that Im(V ) can at-
tain at most m different values on points different from θ. Indeed suppose that we can find
x0, x1, . . . , xm ∈ X \ {θ} such that (µV (x0), νV (x0)) < (µV (x1), νV (x1)) < · · · < (µV (xm),

νV (xm)). Then x0 /∈ vct{x1, x2, . . . , xm}, where vct{x1, x2, . . . , xm} denote the vector space
generated by {x1, x2, ..., xm}.Otherwise we could find a1, a2, ..., am ∈ K such that x0 =

∑
i=1

maixi

and then since V ∈ IFVS(X), it follows from Lemma 3.3(3) that µV (x0) = µV (
∑
i=1

maixi) ≥

min{µV (x1), µV (x2), . . . , µV (xm)} = µV (x1) and νV (x0) = νV (
∑
i=1

maixi) ≤ max{νV (x1),

νV (x2), . . . , νV (xm)} = νV (x1), which is impossible. Analogously one can show that x1 /∈
vct{x2, . . . , xm}, . . . , xm−1 /∈ vct{xm}. Since all xi 6= θ, we thus have
dim vct {x0, x1, . . . , xm} = 1 + dim vct {x1, x2, . . . , xm} = 2 + dim vct {x2, x3, . . . , xm} =

· · · = m+ dim vct {xm} = m+ 1.
This however is impossible since dim X = m.

Consequently the range of V is a subset of [0, 1]× [0, 1] with at most m+ 1 points.

Definition 3.19. Let V = (µV , νV ) ∈ IFVS(X). Then for any λ ∈ µV (X), ξ ∈ νV (X) we define

µ
[λ]
V = {x ∈ X : µV (x) ≥ λ} and ν [ξ]V = {x ∈ X : νV (x) ≤ ξ}, [λ1

µ
[λ]
V
](x) =

λ, if x ∈ µ[λ]
V

0, otherwise
,

[ξ1
ν
[ξ]
V
](x) =

ξ, if x ∈ ν [ξ]V
1, otherwise

.

Theorem 3.20. (Representation Theorem) Let V ∈ IFVS(X) with dim X = m and Im(V ) =

{(λ0, ξ0), (λ1, ξ1), . . . (λk, ξk)}, k ≤ m such that (1, 0) ≥ (λ0, ξ0) > (λ1, ξ1) > · · · > (λk, ξk) ≥
(0, 1). Then there exist nested collections of subspaces of X as {θ} ⊆ V [λ0,ξ0] $ V [λ1,ξ1] $ · · · $
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V [λk,ξk] = X such that µV = λ01µ[λ0]V

∨λ11µ[λ1]V

∨· · ·∨λk1µ[λk]V

and νV = ξ01ν[ξ0]V

∧ ξ11ν[ξ1]V

∧· · ·∧
ξk1ν[ξk]V

. Also,

(1) If (ζ, ρ), (η, σ) ∈ (λi+1, λi] × [ξi, ξi+1) with ζ + ρ ≤ 1, η + σ ≤ 1, then V [ζ,ρ] = V [η,σ] =

V [λi,ξi].

(2) If (ζ, ρ) ∈ (λi+1, λi]× [ξi, ξi+1), (η, σ) ∈ (λi, λi−1]× [ξi−1, ξi) with ζ + ρ ≤ 1, η + σ ≤ 1,

then V [ζ,ρ] % V [η,σ].

Proof. From Proposition 3.10, V [λi,ξi] are subspaces of X, for i = 0, 1, . . . , k. As (λi, ξi) >

(λi+1, ξi+1) for i = 0, 1, .., k−1, we have nested collections of subspaces ofX as {θ} ⊆ V [λ0,ξ0] $
V [λ1,ξ1] $ · · · $ V [λk,ξk] = X . Now we have to show that µV = λ01µ[λ0]V

∨λ11µ[λ1]V

∨· · ·∨λk1µ[λk]V

and νV = ξ01ν[ξ0]V

∧ ξ11ν[ξ1]V

∧ · · · ∧ ξk1ν[ξk]V

. Let x ∈ X and µV (x) = λj and then νV (x) = ξj.

Then if λj−1 > λj and ξj−1 = ξj , x ∈ µ
[λj ]
V , x /∈ µ[λj−1]

V and x ∈ ν [ξj ]V and ν [ξj−1]
V .

Then
(
λ01µ[λ0]V

∨ λ11µ[λ1]V

∨ ... ∨ λk1µ[λk]V

)
(x) = λj ∨ λj+1 · · · ∨ λk = λj and(

ξ01ν[ξ0]V

∧ ξ11ν[ξ1]V

∧ · · · ∧ ξk1ν[ξk]V

)
(x) = ξj−1 ∧ ξj ∧ ξj+1 ∧ · · · ∧ ξk = ξj.

Similarly if λj−1 = λj and ξj−1 < ξj or if λj−1 > λj and ξj−1 < ξj , then also(
λ01µ[λ0]V

∨ λ11µ[λ1]V

∨ · · · ∨ λk1µ[λk]V

)
(x) = λj and

(
ξ01ν[ξ0]V

∧ ξ11ν[ξ1]V

∧ · · · ∧ ξk1ν[ξk]V

)
(x) = ξj .

(1) and (2) are straightforward.

Example 3.21. Suppose X = R4. Define an intuitionistic fuzzy vector space V with µV and νV
as follows:
µV ((0, 0, 0, 0)) = .8; µV ((0, 0, 0,R \ {0})) = .7; µV ((0, 0,R \ {0},R)) = .6, µV ((0,R \
{0},R,R)) = .4, µV (R4\(0,R,R,R)) = .3 and νV ((0, 0, 0, 0)) = .1; νV ((0, 0, 0,R\{0})) = .2;

νV ((0, 0,R \ {0},R)) = .3, νV ((0,R \ {0},R,R)) = .4, νV (R4 \ (0,R,R,R)) = .5. Then
µV = (.8)1

µ
[.8]
V
∨ (.7)1

µ
[.7]
V
∨ (.6)1

µ
[.6]
V
∨ (.4)1

µ
[.4]
V
∨ (.3)1

µ
[.3]
V

and νV = (.1)1
ν
[.1]
V
∧ (.2)1

ν
[.2]
V
∧

(.3)1
ν
[.3]
V
∧ (.4)1

ν
[.4]
V
∧ (.5)1

ν
[.5]
V
.

Definition 3.22. Let V ∈ IFVS(X) with dim X = m. Consider Theorem 3.20. Let BVi be the
basis of V [λi,ξi], i = 0, 1, .., k such that BV0 $ BV1 $ · · · $ BVk (*).
If V (λ0,ξ0) = {θ}, we start with V (λ1,ξ1).
Define a map B from X to [0, 1]× [0, 1] by

µB(x) =

∨{λi : x ∈ BVi}
0, otherwise

and νB(x) =

∨{ξi : x ∈ BVi}
1, otherwise

.

Let µB(x) = λj . Then x ∈ BVj and x /∈ BVj−1
i.e. x ∈ V [λj ,ξj ] and x /∈ V [λj−1,ξj−1]. Thus

µV (x) ≥ λj and νV (x) ≤ ξj . If µV (x) > λj , then µV (x) = λl for some l < j. Then x ∈ V [λl,ξl]

and µ(B)(x) = λl, which is a contradiction. Therefore µV (x) = λj . Then νV (x) = ξj i.e.
νB(x) = ξj . Therefore B is an intuitionistic fuzzy set and it is called intuitionistic fuzzy basis of
V corresponding to (∗).

Example 3.23. Consider the intuitionistic fuzzy vector space as in Example 3.21, where (λ0, ξ0) =
(.8, .1), (λ1, ξ1) = (.7, .2), (λ2, ξ2) = (.6, .3), (λ3, ξ3) = (.4, .4) and (λ4, ξ4) = (.3, .5). Let
e1 = (0, 0, 0, 1), e2 = (0, 0, 1, 0), e3 = (0, 1, 0, 0) and e4 = (1, 0, 0, 0) and BV1 = {e1}, BV2 =
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{e1, e2}, BV3 = {e1, e2, e3} and BV4 = {e1, e2, e3, e4}. Then B is an intuitionistic fuzzy basis of
V which is defined by:

µB(x) =



.7, if x = e1

.6 if x = e2

.4 if x = e3

.3 if x = e4

0, otherwise

and νB(x) =



.2, if x = e1

.3 if x = e2

.4 if x = e3

.5 if x = e4

1, otherwise

.

Proposition 3.24. Let B be an intuitionistic fuzzy basis of V corresponding to (∗) of Defini-
tion 3.22. Then

(1) If (ζ, ρ), (η, σ) ∈ (λi+1, λi]× [ξi, ξi+1) with ζ+ρ ≤ 1, η+σ ≤ 1, then B[ζ,ρ] = B[η,σ] = BVi .

(2) If (ζ, ρ) ∈ (λi+1, λi]× [ξi, ξi+1), (η, σ) ∈ (λi, λi−1]× [ξi−1, ξi) with ζ + ρ ≤ 1, η + σ ≤ 1,

then B[ζ,ρ] % B[η,σ].

(3) B[λ,ξ] is a basis of V [λ,ξ] for λ ∈ (0, 1], ξ ∈ [0, 1) with λ+ ξ ≤ 1.

4 Conclusion

In our future study we have a plan to develop further properties of intuitionistic fuzzy vector
spaces. In topological setting, studies on intuitionistic fuzzy topological vector spaces with intu-
itionistic fuzzy gradation of openness is also another interesting problem to be dealt with.
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