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Abstract: A more natural and necessary generalization of the intuitionistic fuzzy theory is de-
veloped and discussed in this paper. The generalization fits very nicely with almost all the intu-
itionistic fuzzy algebraic structures as well as with the intuitionistic fuzzy topological structures
available in the literature. The higher dimensional intuitionistic fuzzy theory developed here helps
us to define and discuss the concept of negation (complement) of a higher dimensional intuition-
istic fuzzy set in a more natural way. In this paper we prove many theorems in the new context in
both algebraic and topological points of view.
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1 Introduction

One cannot classify a student as intelligent or not, and a person as good or not; so an ambiguity
arises while considering classes like the class of all intelligent students and class of all good
people. Yet the fact remains that, such vaguely defined classes play a vital role in the society.
Keeping this in mind, in 1965 Zadeh [16] introduced the concept of fuzzy sets, as functions from
a setX to the closed interval [0, 1] to study the uncertainties as a gradual membership of an object
in a set.

In 1966, Goguen [10] extended the concept by defining fuzzy sets to be functions from a set
into a lattice. Many others [7–9, 13–15] studied and developed the concept of fuzzy. In 1983,
Atanassov [1] developed the concept of intuitionistic fuzzy subset, as an object having the form
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A∗ = {〈x, µA(x), νA(x)〉/x ∈ X}, where µA and νA are functions from the set X to [0, 1]

satisfying µ(x) + ν(x) ≤ 1 for all x ∈ X and defined some new operations over the intuitionistic
fuzzy sets in [2].

The fuzzy theory helps us to rate a single property of an individual; for example the intelli-
gence of a student, whereas the intuitionistic fuzzy theory helps us to discuss about the acceptance
as well as the opposition of an individual; for example, how much the citizens of a country like
and dislike their prime minister.

But in realistic situations the concept is much complicated. For example, while electing a
minister, a citizen will have his own expectation; a voter may think the man who is going to be
his minister should have some qualifications like education, easily approachable, good physic,
capable of making own decisions with some gradation. Clearly it is not possible for one single
person to posses all the qualifications. So, a voter has to convince himself, in certain qualifications
of his minister; thus the matter of acceptance and opposition of qualification level, plays a vital
role in voter’s decision making, to cast his vote to a particular person.

Thus to discuss about the level of acceptance and the level of opposition, of a finite set of
properties both fuzzy theory as well as the intuitionistic fuzzy theory are in some sense insuf-
ficient. To discuss similar problems, Atanassov defined and developed a theory of intuitionistic
fuzzy sets of multi-dimension [3–6]. In [3], intuitionistic fuzzy multi-dimensional sets are defined
as an object of the form

〈x, µA(x, z1, z2, . . . , zn), νA(x, z1, z2, . . . , zn)〉

where µA and νA are functions from E×Z1×Z2 · · ·×Zn to I where E,Z1, Z2, . . . , Zn are fixed
sets.

In this paper, to study the level of acceptance and the level of opposition, of a finite set of
properties, we develop a new structure called k-intuitionistic fuzzy structure and we discuss some
theory on this new concept in the context of algebra as well as topology. The theory developed
here shows that the concept of k-intuitionistic fuzzy theory nicely fits with both algebraic and
topological setup. This can be further developed where ever fuzzy theory can be discussed.

In Section 2, we define a k-intuitionistic fuzzy subset and fix some notations; in Section 3, we
develop our theory in context of algebra; in the Section 4, we develop our theory in the context
of topology.

2 k-intuitionistic fuzzy structures

For any set X , a function µ : X → [0, 1] is called a fuzzy subset of X . Throughout this paper, by
I and IX we denote the closed interval [0, 1] and the set of all fuzzy subsets of X .

In [3], intuitionistic fuzzy multi-dimensional theory is studied using two functions µA and
νA from E × Z1 × Z2 · · · × Zn to I . But in this paper, the theory is studied using two k-tuples
(µ1, µ2, . . . , µk) and (ν1, ν2, . . . , νk) of fuzzy subsets of a set X . This way of seeing higher
dimensional intuitionistic fuzzy theory helps us to define and discuss the concept of negation
(complement) of a higher dimensional intuitionistic fuzzy set in a more natural way.
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Definition 2.1. Let X be a nonempty set and let k be a positive integer. Then a k-intuitionistic
fuzzy subset of a set X is an ordered 2k-tuple (µ1, µ2, . . . , µk, ν1, ν2, . . . , νk) of functions from X

to I satisfying
µi(x) + νi(x) ≤ 1 for all i = 1, 2, . . . , k

and for all x ∈ X .

We abbreviate a k-intuitionistic fuzzy subset as k-ifs and we denote a k-ifs A as the ordered
2k-tuple (µA1 , µA2 , . . . , µAk , νA1 , νA2 , . . . , νAk) throughout this paper.

Definition 2.2. For any two k-intuitionistic fuzzy subsets A and B of a set X , we define

• A ⊆ B if µAi(x) ≤ µBi(x) and νAi(x) ≥ νBi(x), for all x ∈ X and for all i = 1, 2, . . . , k.

• A = B if A ⊆ B and B ⊆ A.

• Ā(x) = (νA1(x), . . . , νAk(x), µA1(x), . . . , µAk(x)), for all x ∈ X .

• (A ∩B)(x) = ((µA1(x) ∧ µB1(x)), . . . , (µAk(x) ∧ µBk(x)),

(νA1(x) ∨ νB1(x)), . . . , (νAk(x) ∨ νBk(x))), for all x ∈ X .

• (A ∪B)(x) = (µA1(x) ∨ µB1(x)), . . . , (µAk(x) ∨ µBk(x)),

(νA1(x) ∧ νB1(x)), . . . , (νAk(x) ∧ νBk(x)), for all x ∈ X .

Definition 2.3. Let f be a function from X to Y and let

A = (µA1 , µA2 , . . . , µAk , νA1 , νA2 , . . . , νAk)

be a k-ifs in X . The image of A, written as f(A) is a k-ifs in Y is given by,

f(A) = (µf(A)1 , µf(A)2 , . . . , µf(A)k , νf(A)1 , νf(A)2 , . . . , νf(A)k)

where,

µf(A)i(y) =

 sup
x∈f−1(y)

{µAi(x)} if f−1(y) 6= ∅

0 otherwise

and

νf(A)i(y) =

 inf
x∈f−1(y)

{νAi(x)} if f−1(y) 6= ∅

0 otherwise

Definition 2.4. Let f be a function from X to Y and let

A = (µA1 , µA2 , . . . , µAk , νA1 , νA2 , . . . , νAk)

be a k-ifs in Y . Then the inverse of A is written as f−1(A) is a k-ifs in X given by,

f−1(A) = (µf−1(A)1 , . . . , µf−1(A)k , νf−1(A)1 , . . . , νf−1(A)k)

where µf−1(A)i(x) = µAi(f(x)) and νf−1(A)i(x) = νAi(f(x)), i = 1, 2, . . . , k and for all x ∈ X .
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3 k-Intuitionistic Fuzzy Algebraic Structures

For algebraic terminologies which are not defined explicitly in this paper we refer to [11].

Definition 3.1. Let G be a group. A k-intuitionistic fuzzy subset A of G is said to be a
k-intuitionistic fuzzy subgroup of G if it satisfies:

i. µAi(xy) ≥ (µAi(x) ∧ µAi(y))

ii. µAi(x
−1) ≥ µAi(x)

iii. νAi(xy) ≤ (νAi(x) ∨ νAi(y))

iv. νAi(x
−1) ≤ νAi(x)

for all i = 1, 2, . . . , k and for all x, y ∈ G.

The following theorems can be proved easily.

Theorem 3.2. Let G be a group. Let A and B be any two k-intuitionistic fuzzy subgroups. Then,
A ∩B is a k-intuitionistic fuzzy subgroup.

Theorem 3.3. If A is a k-intuitionistic fuzzy subgroup of a group G. Then,

i. µAi(x
−1) = µAi(x)

ii. νAi(x
−1) = νAi(x)

iii. µAi(x) ≤ µAi(e)

iv. νAi(x) ≥ νAi(e)

for all i = 1, 2, . . . , k and for all x ∈ G.

Theorem 3.4. If A is a k-intuitionistic fuzzy subgroup of a group G. Then,

i. µAi(xy
−1) = µAi(e)⇒ µAi(x) = µAi(y)

ii. νAi(xy
−1) = νAi(e)⇒ νAi(x) = νAi(y)

for all i = 1, 2, . . . , k and for all x, y ∈ G.

Theorem 3.5. LetG be a group andA be a k-ifs ofG. ThenA is a k-intuitionistic fuzzy subgroup
of a group G if and only if

µAi(xy
−1) ≥ µAi(x) ∧ µAi(y) and νAi(xy

−1) ≤ νAi(x) ∨ νAi(y),

for all i = 1, 2, . . . , k and for all x, y ∈ G.

Theorem 3.6. Let G and G′ be two groups and f : G → G′ be an onto homomorphism. Let A
be a k-intuitionistic fuzzy subgroup of G. Then f(A) is a k-intuitionistic fuzzy subgroup of G′.
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Proof. Let A be a k-intuitionistic fuzzy subgroup of G. We have to prove that f(A) is a k-
intuitionistic fuzzy subgroup of G′. If u ∈ f−1(x) and v ∈ f−1(y), then f(u) = x and f(v) = y;
as f is an onto homomorphism which implies that, f(u)f(v) = f(uv) = xy and hence uv ∈
f−1(xy). Thus for every pair (u, v) where u ∈ f−1(x) and v ∈ f−1(y), we get an element
uv ∈ f−1(xy). Since f is an onto homomorphism, the sets f−1(x) and f−1(y) are not empty and
hence f−1(xy) is non empty. Now,

µf(A)i(xy) = sup
z∈f−1(xy)

{µAi(z)}

≥ sup
uv∈f−1(xy)

{µAi(uv)}

≥ sup
uv∈f−1(xy)

{(µAi(u) ∧ µAi(v))}

( Since µAi(uv) ≥ µAi(u) ∧ µAi(v) )

≥ sup
u∈f−1(x)

{(µAi(u))} ∧ sup
v∈f−1(y)

{(µAi(v))}

= µf(A)i(x) ∧ µf(A)i(y).

Hence (i) of Definition 3.1 follows. Similarly, we can prove the other conditions in Definition
3.1.

Similarly, we can prove the following theorem.

Theorem 3.7. Let G and G′ be two groups and f : G → G′ be an homomorphism. Let A′ is a
k-intuitionistic fuzzy group of G′, then f−1(A′) is a k-intuitionistic fuzzy subgroup of G.

Definition 3.8. Let A be a k-ifs of a set X and let α = (α1, α2, . . . , αk) and β = (β1, β2, . . . , βk),
where αi, βi ∈ [0, 1], for all i. Then a (α, β) level subset of k-ifs A is defined as

A(α,β) = {x ∈ X/µAi(x) ≥ αi and νAi(x) ≤ βi, for all i}.

Theorem 3.9. If A and B be two k-ifs, then the following properties hold:

i. A(α,β) ⊆ A(α′,β′) if α ≥ α′ and β ≤ β′.

ii. A ⊆ B ⇒ A(α,β) ⊆ B(α,β).

iii. (A ∩B)(α,β) = A(α,β) ∩B(α,β).

iv. A(α,β) ∪B(α,β) ⊆ (A ∪B)(α,β) equality holds if αi + βi = 1 ∀ i.

Theorem 3.10. Let A be a k-intuitionistic fuzzy subset of a group G. Then A is a k-intuitionistic
fuzzy subgroup of G if and only if all (α, β) level subsets of A, are subgroups of G.

Proof. Let A = (µA1 , . . . , µAk , νA1 , . . . , νAk) be a k-intuitionistic fuzzy subgroup of G and let
A(α,β) be a (α, β) level subset of A. We claim that A(α,β) is a subgroup of G. Let x, y ∈ A(α,β).
Then, we have

µAi(x) ≥ αi, νAi(x) ≤ βi and µAi(y) ≥ αi, νAi(y) ≤ βi,
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for all i = 1, 2, . . . , k. Now,

µAi(xy
−1) ≥ µAi(x) ∧ µAi(y−1) = µAi(x) ∧ µAi(y) ≥ αi ∧ αi = αi,

for all i. Similarly, we can prove that, νAi(xy
−1) ≤ βi, for all i. Thus, xy−1 ∈ A(α,β) and hence

the claim follows.
Conversely, assume that all (α, β) level subsets of A are subgroups of G. We claim that A is

k-intuitionistic fuzzy subgroup of G. Let x, y ∈ G. Now since A = (µA1 , . . . , µAk , νA1 , . . . , νAk)

is an k-ifs, there exists some ai, bi, ci, di ∈ [0, 1] such that µAi(x) = ai, νAi(x) = bi, µAi(y) = ci
and νAi(y) = di, for all i.

Let αi = ai ∧ ci and βi = bi ∨ di for all i. Let α = (α1, α2, . . . , αk) and β = (β1, β2, . . . , βk)

then, x, y ∈ A(α,β). Now since A(α,β) is a subgroup of G, we have xy ∈ A(α,β).
Therefore, µAi(xy) ≥ αi and νAi(xy) ≤ βi, for all i and hence µAi(xy) ≥ µAi(x) ∧ µAi(y)

and νAi(xy) ≤ µAi(x) ∨ µAi(y) for all i. Thus (i) and (iii) of Definition 3.1 follows. Similarly,
we can prove (ii) and (iv) of Definition 3.1. Thus A is k-intuitionistic fuzzy subgroup of G.

Definition 3.11. A k-intuitionistic fuzzy subgroup A, of a group G, is said to be a k-intuitionistic
fuzzy normal subgroup of G, if

µAi(xyx
−1) ≥ µAi(y) and νAi(xyx

−1) ≤ νAi(y)

for all i = 1, 2, . . . , k and for all x, y ∈ G.

Theorem 3.12. Let A be a k-intuitionistic fuzzy subgroup of a group G. Then the following
conditions are equivalent:

i. A is k-intuitionistic fuzzy normal.

ii. µAi(xyx
−1) = µAi(y) and νAi(xyx

−1) = νAi(y) for all x, y ∈ G and for all i = 1, 2, . . . , k.

iii. µAi(xy) = µAi(yx) and νAi(xy) = νAi(yx) for all x, y ∈ G and for all i = 1, 2, . . . , k.

iv Each (α, β) level subset A(α,β) of A is a normal subgroup of G.

Theorem 3.13. LetA andA′ be k-intuitionistic fuzzy normal subgroups ofG andG′ respectively.
Let f : G→ G′ be a homomorphism. Then the following statements are true.

i. f(A) is a k-intuitionistic fuzzy normal subgroup of G′ if f is onto.

ii. f−1(A′) is a k-intuitionistic fuzzy normal subgroup of G.

Proof. Let A and A′ be k-intuitionistic fuzzy normal subgroups of G and G′ and let
f : G → G′ be an onto homomorphism. Then by Theorem 3.6 it follows that f(A) is a
k-intuitionistic fuzzy subgroup of G′. So it is enough to prove that, µf(A)i(xy) = µf(A)i(yx)

and νf(A)i(xy) = νf(A)i(yx), for all i and for all x, y ∈ G′.
Let x, y ∈ G′, then there exist u and v in G such that, f(u) = x and f(v) = y. Since A is an

k-ifs ofG, there exists a1, a2, . . . , ak and b1, b2, . . . , bk in [0, 1] such that µAi(u) = ai, νAi(u) = bi,
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µAi(v) = ci and µAi(v) = di. Let αi = ai ∧ ci and βi = bi ∨ di and let α = (α1, α2, . . . , αk)

and β = (β1, β2, . . . , βk) then, u, v ∈ A(α,β). This implies that f(u), f(v) ∈ f(A(α,β)). That is
x, y ∈ f(A(α,β)). Now, since A is a k-intuitionistic fuzzy normal subgroup of G, by Theorem
3.12 it follows that, every (α, β) level subset A(α,β) of A is a normal subgroup of G. Also, we
know that the homomorphic image of a normal subgroup is normal subgroup. This implies that,
f(A(α,β)) is a normal subgroup of G′. Thus, we have xy = yx. Since the above arguement holds
for all x, y ∈ G′, it follows that, µf(A)i(xy) = µf(A)i(yx) and νf(A)i(xy) = νf(A)i(yx), for all i
and for all x, y ∈ G′.

Now we claim that, f−1(A′) is a k-intuitionistic fuzzy normal subgroup of G. By Theorem
3.7 it follows that f−1(A′) is a k-intuitionistic fuzzy subgroup of G. So, it is enough to prove that
f−1(A′) k-intuitionistic fuzzy normal in G. Let x, y ∈ G. Then, for all i and for all x, y ∈ G,

µf−1(A)′i
(xy) = µA′i(f(xy))

= µA′i(f(x)f(y)) (since f is a group homomorphism)

= µA′i(f(y)f(x)) (since A′ is a k-intuitionistic fuzzy

normal subgroup of G′)

= µA′i(f(yx))

= µf−1(A)′i
(yx).

Similarly νf−1(A)′i
(xy) = νf−1(A)′i

(yx) for all i and for all x, y ∈ G.

Definition 3.14. A k-intuitionistic fuzzy subgroup A of a group G is said to be a k-intuitionistic
fuzzy characteristic subgroup of G, if it satisfies the following conditions:

i. µAi(g) = µAi(f(g))

ii. νAi(g) = νAi(f(g)),

for all i = 1, 2, . . . , k, g ∈ G and f ∈ Aut(G).

Theorem 3.15. Let A be a k-intuitionistic fuzzy subgroup of a group G. Then the following
statements are equivalent.

i. A is a k-intuitionistic fuzzy characteristic subgroup of G.

ii. Each (α, β) level subset A(α,β) of A is a characteristic subgroup of G.

Proof. Assume that A is a k-intuitionistic fuzzy characteristic subgroup of G. Let A(α,β) be a
(α, β) level subset of A. We claim that A(α,β) is a characteristic subgroup of G. That is to prove
that f(A(α,β)) = A(α,β) for all f ∈ Aut(G). Let f ∈ Aut(G) and y ∈ f(A(α,β)). Then there
exists x ∈ A(α,β) such that f(x) = y. Since A is a k-intuitionistic fuzzy characteristic subgroup
of G, we have,

µAi(f(g)) = µAi(g) and νAi(g) = νAi(f(g)),

for all i = 1, 2, . . . , k, g ∈ G and f ∈ Aut(G). This implies that,

µAi(y) = µAi(f(x)) = µAi(x) ≥ αi,
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for all i. Similarly, we can prove that νAi(y) ≤ βi, for all i and hence it follows that, y ∈ A(α,β).
Thus, f(A(α,β)) ⊆ A(α,β). Similarly, we can prove the reverse inequality.

Conversely, assume that each (α, β) level subset A(α,β) of A is a characteristic subgroup of G.
We claim that A is a k-intuitionistic fuzzy characteristic subgroup of G.

Let g ∈ G and f ∈ Aut(G).
Since A is a k-ifs of G, there exist αi, βi ∈ [0, 1] such that, µAi(g) = αi and νAi(g) = βi, for

all i. This implies that g ∈ A(α,β), where (α, β) = (α1, α2, . . . , αk, β1, β2, . . . , βk). Now, since
g ∈ A(α,β) we have f(g) ∈ f(A(α,β)). But by our assumption, we have f(A(α,β)) = A(α,β), for all
(α, β) level subsets of A. Hence it follows that, f(g) ∈ A(α,β). This implies that, µAi(f(g)) ≥ αi
and νAi(f(g)) ≤ βi, for all i.

Now, we claim that, µAi(f(g)) = αi and νAi(f(g)) = βi, for all i. Suppose µAj(f(g)) > αj
and νAj(f(g)) < βj , for some 1 ≤ j ≤ k. Then there exist δj and θj such that δj > αj and θj < βj
with µAj(f(g)) = δj and νAj(f(g)) = θj . Let δ = (δ1, δ2, . . . , δk) and θ = (θ1, θ2, . . . , θk), where
δi = 0 = θi if i 6= j. Then, clearly f(g) ∈ A(δ,θ) = f(A(δ,θ)) and thus g ∈ A(δ,θ). This implies
that, µAi(g) ≥ δi and νAi(g) ≤ θi, for all i. But this is not possible since,

µAj(g) = αj < δj and νAj(g) = βj > θj.

Thus our assumption µAj(f(g)) > αj and νAj(f(g)) < βj , for some 1 ≤ j ≤ k, is wrong. Hence,
µAi(f(g)) = αi and νAi(f(g)) = βi, for all i.

Theorem 3.16. Every k-intuitionistic fuzzy characteristic subgroup of a groupG is a k-intuitioni-
stic fuzzy normal subgroup of G.

Proof. Assume A be any k-intuitionistic fuzzy characteristic subgroup of G. Let f : G → G be
a function defined by f(x) = yxy−1, then f ∈ Aut(G). Now, let x, y ∈ G, then

µAi(xy) = µAi(f(xy)) = µAi(y(xy)y−1) = µAi(yx(yy−1)) = µAi(yx),

for all i and for all x, y ∈ G.

4 k-Intuitionistic fuzzy topological structures

Let (0, 0, . . . , 0, 1, 1, . . . , 1) and (1, 1, . . . , 1, 0, 0, . . . , 0) be k-intuitionistic fuzzy sets, where 1
and 0 are the constant maps defined by 1(x) = 1, for all x ∈ X and 0(x) = 0, for all x ∈
X . We denote the k-ifs (0, 0, . . . , 0, 1, 1, . . . , 1) by 0̃ and the k-ifs (1, 1, . . . , 1, 0, 0, . . . , 0) by 1̃.
The k-ifs 0̃ and 1̃ of a set X are also denoted by ∅ and X .

For topological terminologies which are not defined explicitly in this paper we refer to [12].

Definition 4.1. A k-intuitionistic fuzzy topology on a non-empty set X , is a family T of
k-intuitionistic fuzzy subsets of X which satisfy the following conditions :

i. 0̃, 1̃ ∈ T .

ii. G1 ∩G2 ∈ T , for all G1, G2 ∈ T .
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iii. ∪Gλ ∈ T , for any arbitrary collection, {Gλ/Gλ ∈ T }λ∈Λ.

A set for which a k-intuitionistic fuzzy topology is specified, is called a k-intuitionistic fuzzy
topological space. A k-intuitionistic fuzzy topological space is denoted by the pair (X, T ).

Elements of T are called k-intuitionistic fuzzy open sets. A k-intuitionistic fuzzy subset is
said to be closed if its complement is open. We abbreviate a k-intuitionistic fuzzy closed set as
k-ifcs and k-intuitionistic fuzzy open set as k-ifos.

Theorem 4.2. Let {Tλ/λ ∈ Λ} be a family of k-intuitionistic fuzzy topologies on X . Then ∩Tλ
is also a k-intuitionistic fuzzy topology on X . Furthermore, ∩Tλ is the coarsest k-intuitionistic
fuzzy topology on X containing all Tλ.

Definition 4.3. Let (X, T ) be a k-intuitionistic fuzzy topological space and let A = (µA1 ,

. . . , µAk , νA1 , . . . , νAk) be a k-ifs in X . Then k-intuitionistic fuzzy interior and k-intuitionistic
fuzzy closure of A are defined by,

cl(A) = ∩{F/F is an k-ifcs in X and A ⊆ F}

int(A) = ∪{G/G is an k-ifos in X and G ⊆ A}

Note that cl(A) is a k-ifcs and int(A) is a k-ifos in X . Further,

• A is a k-ifcs in X if and only if cl(A) = A.

• A is a k-ifos in X if and only if int(A) = A.

Definition 4.4. Let (X, T ), (Y, σ) be two k-intuitionistic fuzzy topological spaces and let
f : X → Y be a function. Then f is said to be k-intuitionistic fuzzy continuous if inverse
image of each k-ifs in σ is a k-ifs in T .

Definition 4.5. Let (X, T ) and (Y, σ) be two k-intuitionistic fuzzy topological spaces and let
f : X → Y be a function. Then f is said to be k-intuitionistic fuzzy open if image of each k-ifs
in T is a k-ifs in σ.

Theorem 4.6. Let (X, T ) and (Y, σ) be two k-intuitionistic fuzzy topological spaces. Then a
function f : (X, T ) → (Y, σ) is k-intuitionistic fuzzy continuous if and only if the inverse image
of each k-ifcs in σ is a k-ifcs in T .

Theorem 4.7. Let (X, T ) and (Y, σ) be two k-intuitionistic fuzzy topological spaces and let f be
a function from (X, T ) to (Y, σ). Then following statements are equivalent:

i. f : (X, T )→ (Y, σ) is fuzzy continuous.

ii. f−1(int(B)) ⊆ int(f−1(B)) for each k-ifs B in Y .

iii. cl(f−1(B)) ⊆ f−1(cl(B)) for each k-ifs B in Y .
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Proof. First let us assume that f : (X, T ) → (Y, σ) be k-intuitionistic fuzzy continuous. We
claim that, f−1(int(B)) ⊆ int(f−1(B)) for each k-ifs B in Y .

Let B = (µB1 , µB2 , . . . , µBk , νB1 , νB2 , . . . , νBk), be a k-ifs of Y . Let

{Gλ = (µGλ1 , µGλ2 , . . . , µGλk , νGλ1 , νGλ2 , . . . , νGλk )/ λ ∈ Λ},

be the collection of all k-intuitionistic fuzzy open sets contained in B, then by the definition of
k-intuitionistic fuzzy interior of a k-ifs, we have

int(B) = {(∨µGλ1 , . . . ,∨µGλk ,∧νGλ1 , . . . ,∧νGλk )/λ ∈ Λ}.

Now,

f−1(int(B))(x) = f−1
(
∨ µGλ1 , . . . ,∨µGλk ,∧νGλ1 , . . . ,∧νGλk

)
(x)

=
(
(∨µGλ1)(f(x)), . . . , (∨µGλk)(f(x)),

(∧νGλ1)(f(x)), . . . , (∧νGλk)(f(x))
)

=
(
∨ (µGλ1(f(x))), . . . ,∨(µGλk(f(x))),

∧(νGλ1(f(x))), . . . ,∧(νGλk(f(x)))
)(

∨ (µf−1(Gλ)1)(x), . . . ,∨(µf−1(Gλ)k)(x),

∧(νf−1(Gλ)1)(x), . . . ,∧(νf−1(Gλ)1)(x)
)

= ∨f−1(Gλ)(x).

Now, since Gλ ⊆ B for all λ ∈ Λ, we have f−1(Gλ) ⊆ f−1(B), for all λ ∈ Λ. By
our assumption, f is a k-intuitionistic fuzzy continuous function and since Gλ is a k-ifos for
all λ ∈ Λ, it follows that, f−1(Gλ) is k-ifos for all λ ∈ Λ. Therefore, f−1(Gλ) is a k-ifos
contained in f−1(B) for all λ ∈ Λ. This implies that, ∨f−1(Gλ) is a k-ifos contained in f−1(B).
Thus we have, ∨f−1(Gλ) ⊆ int(f−1(B)). But since f−1(int(B)) = ∨f−1(Gλ), it follows that,
f−1(int(B)) ⊆ int(f−1(B)).

Now, let us assume that f−1(int(B)) ⊆ int(f−1(B)), for each k-ifs B in Y . We claim that
f is k-intuitionistic fuzzy continuous. Let B ∈ σ, then we have to prove that f−1(B) ∈ T . That
is, we have to prove that, int(f−1(B)) = f−1(B). Now since B ∈ σ we have, int(B) = B and
hence f−1(int(B)) = f−1(B). But by our assumption, it follows that, f−1(B) ⊆ int(f−1(B)).

But we know that, for any k-ifs, its k-intuitionistic fuzzy interior is contained in itself. Thus,
f−1(B) = int(f−1(B)).

Now, assume that f is a k-intuitionistic fuzzy continuous function from (X, T ) to (Y, σ). We
claim that cl(f−1(B)) ⊆ f−1(cl(B)), for each k-ifs B in Y . Let

B = (µB1 , µB2 , . . . , µBk , νB1 , νB2 , . . . , νBk),

be a k-ifs in Y . Let

{Fλ = (µFλ1 , µFλ2 , . . . , µFλk , νFλ1 , νFλ2 , . . . , νFλk )/ λ ∈ Λ},

be the collection of all k-intuitionistic fuzzy closed sets containing in B, then by the definition of
k-intuitionistic fuzzy closure of a k-ifs, we have

cl(B) = {(∧µFλ1 , . . . ,∧µFλk ,∨νFλ1 , . . . ,∨νFλ1 )/λ ∈ Λ}.
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Consider,

f−1(cl(B))(x) = f−1
(
∧ µFλ1 , . . . ,∧µFλk ,∨νFλ1 , . . . ,∨νFλ1

)
(x)

=
(
(∧µFλ1)(f(x)), . . . , (∧µFλk)(f(x)),

(∨νFλ1)(f(x)), . . . , (∨νFλk)(f(x))
)

=
(
∧ (µFλ1(f(x))), . . . ,∧(µFλk(f(x))),

∨(νFλ1(f(x))), . . . ,∨(νFλk(f(x)))
)(

∧ (µf−1(Fλ)1)(x), . . . ,∧(µf−1(Fλ)k)(x),

∨(νf−1(Fλ)1)(x), . . . ,∨(νf−1(Fλ)1)(x)
)

= ∧f−1(Fλ)(x).

This implies that, f−1(cl(B)) = ∧f−1(Fλ). Now, since B ⊆ Fλ for all λ ∈ Λ, we have
f−1(B) ⊆ f−1(Fλ), for all λ ∈ Λ. By our assumption, f is a k-intuitionistic fuzzy continuous
function and since Fλ is a k-ifcs for all λ ∈ Λ, it follows that, f−1(Fλ) is k-ifcs for all λ ∈ Λ.
Thus, f−1(Fλ) is a k-ifcs containing f−1(B) for all λ ∈ Λ. This implies that, ∧f−1(Fλ) is a k-ifcs
containing f−1(B). Thus we have, cl(f−1(B)) ⊆ ∧f−1(Gλ).But since f−1(cl(B)) = ∧f−1(Fλ),

it follows that, cl(f−1(B)) ⊆ f−1(cl(B)).
Now assume that cl(f−1(B)) ⊆ f−1(cl(B)) for each k-ifs B in Y . We claim that f is

k-intuitionistic fuzzy continuous, that is, we have to prove that the inverse image of each k-ifcs
in Y is a k-ifcs in X . Let B be a k-ifcs of X , then we have to prove that f−1(B) is a k-ifcs of Y .
Since B is k-ifcs, we have B = cl(B) and thus it follows that, f−1(B) = f−1(cl(B)). But by our
assumption, cl(f−1(B)) ⊆ f−1(cl(B)). This implies that, cl(f−1(B)) ⊆ f−1(B). The reverse
inequality follows obviously. Thus, f−1(B) is a k-intuitionistic fuzzy closed set in X .

Definition 4.8. Let A be a collection of k-intuitionistic fuzzy subsets of a set X . Then A is
called a cover for a k-ifs B of X if

B ⊂ ∪{A/A ∈ A }.

Correspondingly, A is called an open cover if each member of A is a k-intuitionistic fuzzy open
set. A subcover is a subfamily of A which is also a cover for B.

Definition 4.9. Let E be a k-ifs of a k-intuitionistic fuzzy topological space (X, T ). Then E is
said to be k-intuitionistic fuzzy compact if every open cover of E has a finite subcover.

Definition 4.10. A family A of k-ifs of X is said to have the finite intersection property if for
every finite subfamily {A1, A2, . . . , An} of A , the intersection

n
∩
i=1

An is non-empty.

Theorem 4.11. Let A be a collection of k-ifs in a k-intuitionistic fuzzy topological space (X, T )

and let C =
{
A/A ∈ A

}
be the collection of their complements, then the following holds.

i. A is a collection of k-intuitionistic fuzzy open sets if and only if C is a collection of k-
intuitionistic fuzzy closed sets.
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ii. The collection A covers X if and only if the intersection ∩
C∈C

C of all elements of C is
empty.

iii. The finite subcollection {A1, A2, · · · , An} of A covers X if and only if the intersection of
the corresponding elements Cλ = Aλ of C is empty.

Proof. (i) follows trivially from the definition of k-ifos and k-ifcs. To prove (ii), first let us assume
that, the collection A covers X , then we have, X ⊆ ∪

λ∈Λ
{Aλ/Aλ ∈ A }. That is,

1̃ ⊆ ∪
λ∈Λ
{(µλ1 , . . . , µλk , νλ1 , . . . , νλk)/Aλ ∈ A } .

This implies that,

(1, . . . , 1, 0, . . . , 0) ⊆ ∪
λ∈Λ
{(µλ1 , . . . , µλk , νλ1 , . . . , νλk)/Aλ ∈ A } .

This implies that,

(1, 1, . . . , 1, 0, 0, . . . , 0) ⊆ (∨µλ1 , . . . ,∨µλk ,∧νλ1 , . . . ,∧νλk).

Thus,
(∨µλ1 , . . . ,∨µλk ,∧νλ1 , . . . ,∧νλl) ⊆ (1, 1, . . . , 1, 0, 0, . . . , 0).

This implies that,

(∧νλ1 , . . . ,∧νλl ,∨µλ1 , . . . ,∨µλk) ⊆ (0, 0, . . . , 0, 1, 1, . . . , 1) = 0̃.

Thus, ( ∩
λ∈Λ

{
Aλ/Aλ ∈ A

}
) ⊆ 0̃, and hence ( ∩

λ∈Λ

{
Aλ/Aλ ∈ A

}
) = ∅. Similarly, we can prove

the converse.
The proof of (iii) is analogous to the proof of (ii).

Theorem 4.12. Let (X, T ) be a k-intuitionistic fuzzy topological space. ThenX is k-intuitionistic
fuzzy compact if and only if for every collection C of k-intuitionistic fuzzy closed sets inX having
the finite intersection property, the intersection ∩C∈CC of all elements of C is non-empty.

Proof. If A is a family of k-ifs in a k-intuitionistic fuzzy topological space (X, T ). Let
C = {Ā/A ∈ A } be the collection of their complements, then by Theorem 4.11 the follow-
ing holds:

i. A is a collection of k-intuitionistic fuzzy open sets if and only if C is a collection of
k-intuitionistic fuzzy closed sets.

ii. The collection A covers X if and only if the intersection ∩C∈CC of all the elements of C

is empty.

iii. The finite subcollection {A1, A2, . . . , An} of A covers X if and only if the corresponding
elements Ci = Āi of C is empty.
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Now, the statement X is k-intuitionistic fuzzy compact is equivalent to: “Given any collec-
tion A of k-intuitionistic open sets of X , if A covers X , then some finite subcollection of A

covers X .” This statement is equivalent to the contrapositive which is the following: “Given any
collection A of k-intuitionistic fuzzy open sets if no finite subcollection of A covers X . Then,
A does not cover X .”

Let C be the collection {Ā/A ∈ A }, then by Conditions (i) and (iii), we see that the above
statement is in turn is equivalent to the following: “Given any collection C of k-intuitionistic
fuzzy closed sets, if every finite intersection of elements of C is non-empty, then the intersection
of all elements of C is non-empty.”

Theorem 4.13. Let (X, T ) and (Y, σ) be two k-intuitionistic fuzzy topological spaces and let f be
a continuous function X onto Y . If X is k-intuitionistic fuzzy compact then Y is k-intuitionistic
fuzzy compact.

Proof. Let B be an open cover of Y . Then, for any x ∈ X We have,

µ(∪B∈Bf−1(B))i(x) = sup
B∈B
{µf−1(B)i(x)} for all i = 1, 2, . . . , k

= sup
B∈B
{µBi(f(x))} for all i = 1, 2, . . . , k

= 1 for all i = 1, 2, . . . , k.

And for any x ∈ X ,

ν(∪B∈Bf−1(B))i(x) = inf
B∈B
{νf−1(B)i(x)} for all i = 1, 2, . . . , k

= inf
B∈B
{νBi(f(x))} for all i = 1, 2, . . . , k

= 0 for all i = 1, 2, . . . , k.

Note that, as f is k-intuitionistic fuzzy continuous f−1(B) is a k-ifos for all B ∈ B. Thus family
of all k-intuitionistic fuzzy sets of the form f−1(B), for B in B, is an open cover for X . Since
X is k-intuitonistic fuzzy compact, the corresponding collection has a finite subcover. Let

{f−1(B1), . . . , f−1(Bn)/Bk ∈ B, for all k = 1, 2, . . . , n}

be the finite subcollection coveringX . Then since f is onto, it can be easily seen that f(f−1(B)) =

B, for any fuzzy set B in Y . Thus, the finite subcollection {B1, B2, . . . , Bn/Bk ∈ B, for all
k = 1, 2, . . . , n}, is a finite subfamily of B, which covers Y .

5 Conclusion

In this paper, we discussed a more natural and necessary generalization of the intuitionistic fuzzy
theory. We proved that this theory fits nicely with almost all algebraic and topological structures
and the theory is consistent with the existing intuitionistic fuzzy theory. This can be further
developed wherever fuzzy theory can be discussed.
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