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Abstract: In paper [4] the authors studied probability on two lattices and they showed that these
two lattices are isomorphic. First lattice was the geometrical interpretation of intuitionistic fuzzy
sets introduced by K. T. Atanassov and the second lattice was the geometrical interpretation of
interval valued sets introduced by L. A. Zadeh. Later in papers [3, 6] authors studied intuitionistic
fuzzy events and interval-valued events. They showed that these two systems are isomorphic and
they illustrated the connection between intuitionistic fuzzy state and interval valued state. In this
paper, we define the notion of interval valued observable and we display the connection to the in-
tuitionistic fuzzy observable. We define the notion of interval valued mean value and dispersion
and we show the relation between interval-valued distribution function and intuitionistic fuzzy
distribution function, too.
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1 Introduction

In paper [4] K. Lendelová and A. Michalı́ková studied probability on two lattices (L∗,≤L∗) and
(L1,≤L1). The first lattice (L∗,≤L∗) given by
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L∗ = {(x, y) | (x, y) ∈ [0, 1]2 and x+ y ≤ 1}

(x1, y1) ≤L∗ (x2, y2)⇔ x1 ≤ x2 and y1 ≥ y2 ∀ (x1, y1), (x2, y2) ∈ L∗

(see Figure 1) is the geometrical interpretation of intuitionistic fuzzy sets introduced by K. T.
Atanassov in [1, 2]. They used for each (x1, y1), (x2, y2) ∈ L∗ the Łukasiewicz connectives ⊕, �
defined by

(x1, y1)⊕ (x2, y2) =
(
(x1 + x2) ∧ 1, (y1 + y2 − 1) ∨ 0

)
(x1, y1)� (x2, y2) =

(
(x1 + x2 − 1) ∨ 0, (y1 + y2) ∧ 1

)
where ∧ = min and ∨ = max.

Figure 1. The shaded area constitutes the set L∗.

The second lattice (L1,≤L1) given by

L1 = {(x, y) | (x, y) ∈ [0, 1]2 and x ≤ y}

(x1, y1) ≤L1 (x2, y2)⇔ x1 ≤ x2 and y1 ≤ y2 ∀ (x1, y1), (x2, y2) ∈ L1

(see Figure 2) is the geometrical interpretation of interval-valued sets introduced by L. A. Zadeh
in [10]. They used for (x1, y1), (x2, y2) ∈ L1 the operations ⊕̂ and �̂ defined by

(x1, y1)⊕̂(x2, y2) =
(
(x1 + x2) ∧ 1, (y1 + y2) ∧ 1

)
(x1, y1)�̂(x2, y2) =

(
(x1 + x2 − 1) ∨ 0, (y1 + y2 − 1) ∨ 0

)
where ∧ = min and ∨ = max.

K. Lendelová and A. Michalı́ková showed that these two lattices with their operations are
isomorphic by the one-to-one correspondence ϕ : L1 → L∗ defined by

ϕ
(
(x, y)

)
= (x, 1− y)
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Figure 2. The shaded area constitutes the set L1.

for each (x, y) ∈ L1. Therefore, the following relations hold

(x1, y1) ≤L1 (x2, y2) ⇔ ϕ
(
(x1, y1)

)
≤L∗ ϕ

(
(x2, y2)

)
,

ϕ
(
(x1, y1)⊕̂(x2, y2)

)
= ϕ

(
(x1, y1)

)
⊕ ϕ

(
(x2, y2)

)
ϕ
(
(x1, y1)�̂(x2, y2)

)
= ϕ

(
(x1, y1)

)
� ϕ

(
(x2, y2)

)
for each (x1, y1), (x2, y2) ∈ L1

Later in papers [3, 6] B. Riečan, P. Král and A. Michalı́ková studied a connection between the
family of intuitionistic fuzzy events

F = {(µA, νA) |µA + νA ≤ 1Ω and µA, νA : Ω→ [0, 1] are S-measurable functions}

with the operations and relation

A ≤ B ⇔ µA ≤ µB, νA ≥ νB,

A⊕B =
(
(µA + µB) ∧ 1Ω, (νA + νB − 1Ω) ∨ 0Ω

)
,

A�B = ((µA + µB − 1Ω) ∨ 0Ω, (νA + νB) ∧ 1Ω)).

and the family of interval-valued events

K = {(πC , ρC) |πC ≤ ρC and πC , ρC : Ω→ [0, 1] are S-measurable functions}

with the operations and relation

C � D ⇔ πC ≤ πD, ρC ≤ ρD

C⊕̂D =
(
(πC + πD) ∧ 1Ω, (ρC + ρD) ∧ 1Ω

)
C�̂D =

(
(πC + πD − 1Ω) ∨ 0Ω, (ρC + ρD − 1Ω) ∨ 0Ω

)
.
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They showed that these two systems are isomorphic by the mapping ψ : F → K given by

ψ
(
(µA, νA)

)
= (µA, 1Ω − νA)

for each A = (µA, νA) ∈ F . Therefore, the following relations hold

ψ(A⊕B) = ψ(A)⊕̂ψ(B), (1)

ψ(A�B) = ψ(A)�̂ψ(B), (2)

A ≤ B ⇔ ψ(A) � ψ(B), (3)

An ↗ A ⇔ ψ(An)↗ ψ(A), (4)

for each An,A,B ∈ F . They illustrated the connection between intuitionistic fuzzy state
m : F → [0, 1] and interval-valued state k : K → [0, 1] and that was m = k ◦ ψ.

In this paper, we define the notion of interval-valued observable and we display the connec-
tion to the intuitionistic fuzzy observable, too. First the notion of intuitionistic fuzzy observable
x : B(R) → F was introduced in paper [5]. We define the notion of interval-valued mean value
and dispersion and we show the connection between the interval-valued distribution function and
the intuitionistic fuzzy distribution function, too.

Remark that in a whole text we use a notation “IF” for short a phrase “intuitionistic fuzzy”
and a notation “IV” for short a phrase “interval-valued”.

2 Interval-valued events and interval-valued states

First we start with definitions of basic notions (see [3, 6]).

Definition 2.1 Let Ω be a nonempty set. An interval-valued set (IV-set) C on Ω is a pair (πC , ρC)

of mappings πC , ρC : Ω→ [0, 1] such that πC ≤ ρC .

Definition 2.2 Start with a measurable space (Ω,S). Hence S is a σ-algebra of subsets of Ω. An
interval-valued event (IV-event) is called an IV-set C = (πC , ρC) such that πC , ρC : Ω → [0, 1]

are S-measurable. The family of all IV-events on (Ω,S) will be denoted by K.

If C = (πC , ρC) ∈ K, D = (πD, ρD) ∈ K, then we define the Łukasiewicz binary operations
⊕̂, �̂ on K by

C⊕̂D =
(
(πC + πD) ∧ 1Ω, (ρC + ρD) ∧ 1Ω

)
C�̂D =

(
(πC + πD − 1Ω) ∨ 0Ω, (ρC + ρD − 1Ω) ∨ 0Ω

)
and the partial ordering is given by

C � D⇔ πC ≤ πD, ρC ≤ ρD.
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The continuity is given by

C↗ D ⇔ πC ↗ πD, ρC ↗ ρD,

C↘ D ⇔ πC ↘ πD, ρC ↘ ρD.

In the IV-probability theory instead of the notion of probability we use the notion of state (see
[3, 6]).

Definition 2.3 Let K be the family of all IV-events in Ω. A mapping k : K → [0, 1] is called an
interval valued state (IV-state), if the following conditions are satisfied:

(i) k((1Ω, 0Ω)) = 1 , k((0Ω, 0Ω)) = 0;

(ii) if C�̂D = (0Ω, 0Ω) and C,D ∈ K, then k(C⊕̂D) = k(C) + k(D);

(iii) if Cn ↗ C (i.e. πCn ↗ πC , ρCn ↗ ρC), then k(Cn)↗ k(C).

Probably the most useful result in the IV-state theory is the following representation theorem.

Theorem 2.4 To each IV-state k : K → [0, 1] there exists exactly one probability measure
P : S → [0, 1] and exactly one α ∈ [0, 1] such that

k(C) = (1− α)

∫
Ω

πC dP + α

∫
Ω

ρC dP

for each C = (πC , ρC) ∈ K.

Between IV-states and IF-states is one-to-one correspondence by the mapping ψ : F → K
given by

ψ
(
(µA, νA)

)
= (µA, 1Ω − νA)

for each A = (µA, νA) ∈ F . About this says the following proposition.

Proposition 2.1 If k : K → [0, 1] is an IV-state and m = k ◦ ψ : F → [0, 1], then m is an
IF-state.

Recall that by an intuitionistic fuzzy state (IF-state) m we understand each mapping
m : F → [0, 1] which satisfies the following conditions (see [7]):

(i) m((1Ω, 0Ω)) = 1 , m((0Ω, 1Ω)) = 0;

(ii) if A�B = (0Ω, 1Ω) and A,B ∈ F , then m(A⊕B) = m(A) + m(B);

(iii) if An ↗ A (i.e. µAn ↗ µA, νAn ↘ νA), then m(An)↗m(A).
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3 Interval-valued observables

The third basic notion in the probability theory is the notion of an observable. Let J be the family
of all intervals in R of the form

[a, b) = {x ∈ R : a ≤ x < b}.

Then the σ-algebra σ(J ) is denoted B(R) and it is called the σ-algebra of Borel sets, its elements
are called Borel sets.

Definition 3.1 By an interval-valued observable (IV-observable) on K we understand each map-
ping z : B(R)→ K satisfying the following conditions:

(i) z(R) = (1Ω, 1Ω), z(∅) = (0Ω, 0Ω);

(ii) if A ∩B = ∅, then z(A)�̂z(B) = (0Ω, 0Ω) and z(A ∪B) = z(A)⊕̂z(B);

(iii) if An ↗ A, then z(An)↗ z(A).

Theorem 3.2 Let z : B(R)→ K be an IV-observable on K. If we denote z(A) =
(
z[(A), z](A)

)
for each A ∈ B(R), then z[, z] : B(R) → T are observables, where T = {f : Ω →
[0, 1]; f is S−measurable}.

Proof. Since (1Ω, 1Ω) = z(R) =
(
z[(R), z](R)

)
, (0Ω, 0Ω) = z(∅) =

(
z[(∅), z](∅)

)
, then

z[(R) = 1Ω, z
[(∅) = 0Ω,

z](R) = 1Ω, z
](∅) = 0Ω.

Let A ∩B = ∅, then

(0Ω, 0Ω) = z(A)�̂z(B) =
(
z[(A), z](A)

)
�̂
(
z[(B), z](B)

)
=

(
z[(A)� z[(B), z](A)� z](B)

)
.

Hence z[(A)� z[(B) = 0Ω, z](A)� z](B) = 0Ω. Moreover(
z[(A ∪B), z](A ∪B)

)
= z(A ∪B) = z(A)⊕̂z(B)

=
(
z[(A)⊕ z[(B), z](A)⊕ z](B)

)
,

hence
z[(A ∪B) = z[(A)⊕ z[(B),

z](A ∪B) = z](A)⊕ z](B).

Finally, let An ↗ A. Then(
z[(An), z](An)

)
= z(An)↗ z(A) =

(
z[(A), z](A)

)
,

therefore,
z[(An)↗ z[(A), z](An)↗ z](A).

This completes the proof. 2
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Remark 3.3 Sometimes we need to work with an n-dimensional IV-observable z : B(Rn) → K
defined as a mapping with the following conditions:

(i) z(Rn) = (1Ω, 1Ω), z(∅) = (0Ω, 0Ω);

(ii) if A ∩B = ∅, A,B ∈ B(Rn), then z(A)�̂z(B) = (0Ω, 0Ω) and z(A ∪B) = z(A)⊕̂z(B);

(iii) if An ↗ A, then z(An)↗ z(A) for each A,An ∈ B(Rn).

If n = 1 we simply say that z is an IV-observable.

Now we show a connection between an IV-observable and an IF-observable. Recall that by
intuitionistic fuzzy observable (IF-observable) on F we understand each mapping x : B(R)→
F satisfying the following conditions (see [5, 8]):

(i) x(R) = (1Ω, 0Ω), x(∅) = (0Ω, 1Ω);

(ii) if A ∩B = ∅, then x(A)� x(B) = (0Ω, 1Ω) and x(A ∪B) = x(A)⊕ x(B);

(iii) if An ↗ A, then x(An)↗ x(A).

If we denote x(A) =
(
x[(A), 1 − x](A)

)
for each A ∈ B(R), then x[, x] : B(R) → T are

observables, where T = {f : Ω→ [0, 1]; f is S-measurable}.

Proposition 3.1 Let ψ : F → K, ψ((u, v)) = (u, 1Ω − v). If x : B(R)→ F is an IF-observable
and z = ψ ◦ x : B(R)→ K, then z is an IV-observable.

Proof. Let x : B(R)→ F be an IF-observable, ψ
(
(u, v)

)
= (u, 1Ω − v). Put z = ψ ◦ x. Then

z(R) = ψ
(
x(R)

)
= ψ

(
(1Ω, 0Ω)

)
= (1Ω, 1Ω − 0Ω) = (1Ω, 1Ω),

z(∅) = ψ
(
x(∅)

)
= ψ

(
(0Ω, 1Ω)

)
= (0Ω, 1Ω − 1Ω) = (0Ω, 0Ω).

Let A,B ∈ R. If A ∩B = ∅, then x(A)� x(B) = (0Ω, 1Ω) and using (2) we have

z(A)�̂z(B) = ψ
(
x(A)

)
�̂ψ
(
x(B)

)
= ψ

(
x(A)� x(B)

)
= ψ

(
(0Ω, 1Ω)

)
= (0Ω, 0Ω).

Moreover, using (1), we obtain

z(A ∪B) = ψ
(
x(A ∪B)

)
= ψ

(
x(A)⊕ x(B)

)
= ψ

(
x(A)

)
⊕̂ψ
(
x(B)

)
= z(A)⊕̂z(B).

Finally, let An ↗ A. Then x(An)↗ x(A) and by (4)

z(An) = ψ(x(An))↗ ψ(x(A)) = z(A).

Therefore, z is an IV-observable. 2
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4 Interval-valued mean value and dispersion

In this section, we define the notion of interval-valued mean value and dispersion for IV-observable.
Similarly as in the classical case the following theorem can be proved.

Theorem 4.1 Let z : B(R) → K be an IV-observable, k : K → [0, 1] be an IV-state. Define the
mapping kz : B(R)→ [0, 1] by the formula

kz(C) = k
(
z(C)

)
,

for each C ∈ B(R). Then kz : B(R)→ [0, 1] is a probability measure. Moreover,

kz(C) = mx(C),

where mx = m ◦ x is a probability measure induced by IF-state m and IF-observable x.

Proof. Let z : B(R) → K be an IV -observable, k : K → [0, 1] be an IV-state. Put ψ
(
(u, v)

)
=

(u, 1Ω − v).
Using Proposition 3.1, there exists an IF-observable x = ψ−1 ◦ z such that z = ψ ◦ x and by

Proposition 2.1 there exists an IF-state m such that m = k ◦ ψ. Hence

kz(C) = k
(
z(C)

)
= k
(
ψ ◦ x(C)

)
= m

(
x(C)

)
= mx(C),

for each C ∈ B(R). 2

Remark 4.2 Theorem 4.1 says that kz and mx are the same probability measures.

Recall now the Kolmogorov case. If ξ : Ω→ R is a random variable, then

E(ξ) =

∫
Ω

ξ dP =

∫
R

t dPξ(t),

where
Pξ(B) = P (ξ−1(B)).

Since now kz : B(R) → [0, 1] plays an analogous role as Pξ : B(R) → [0, 1], we can define
interval-valued expected value Ê(z) by the same formula.

Definition 4.3 We say that an IV-observable z is an integrable IV-observable, if the integral∫
R
t dkz(t) exists. In this case, we define an interval-valued expected value (IV-expected value)

Ê(z) by

Ê(z) =

∫
R

t dkz(t).

If the integral
∫
R
t2 dkz(t) exists, then we define interval-valued dispersion (IV-dispersion) D̂2(x)

by the formula

D̂2(z) =

∫
R

t2 dkz(t)−
(
Ê(z)

)2
=

∫
R

(t− Ê(z))2 dkz(t).
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A very important notion is the notion of distribution function, as the following definition
states.

Definition 4.4 If z : B(R) → K is an IV-observable, and k : K → [0, 1] is an IV-state, then the
interval-valued distribution function (IV-distribution function) of z is the function F̂ : R→ [0, 1]

defined by the formula
F̂ (t) = k

(
z((−∞, t))

)
for each t ∈ R.

Of course, the IV-distribution function fulfils the same properties as the classical distribution
function. We show a connection between IV-distribution function and IF-distribution function,
too. Recall that by intuitionistic fuzzy distribution function (IF-distribution function) of an
IF-observable x : B(R)→ F we understand each function F : R→ [0, 1] defined by the formula

F(t) = m
(
x((−∞, t))

)
for each t ∈ R, where m : F → [0, 1] is an IF-state.

Theorem 4.5 Let F̂ : R→ [0, 1] be the IV-distribution function of an IV-observable z : B(R)→
K. Then F̂ is non-decreasing on R, left continuous in each point t ∈ R and

lim
t→−∞

F̂ (t) = 0, lim
t→∞

F̂ (t) = 1.

Moreover,
F̂ (t) = F(t),

for each t ∈ R, where F is an IF-distribution function of an IF-observable x : B(R)→ F .

Proof. Let F̂ : R → [0, 1] be the IV-distribution function of an IV-observable z : B(R) → K.
Then by Theorem 4.1 and Definition 4.4 we have

F̂ (t) = k
(
z((−∞, t))

)
= kz

(
(−∞, t)

)
= mx

(
(−∞, t)

)
= m

(
x((−∞, t))

)
= F(t),

for each t ∈ R, where F(t) is an IF-distribution function.
Since F is an IF-distribution function, then it is non-decreasing on R, left continuous in each

point t ∈ R and limt→−∞F(t) = 0, limt→∞F(t) = 1 (see [9]). Hence F̂ is non-decreasing on
R, left continuous in each point t ∈ R and

lim
t→−∞

F̂ (t) = lim
t→−∞

F(t) = 0, lim
t→∞

F̂ (t) = lim
t→∞

F(t) = 1.

This completes the proof. 2

Remark 4.6 Theorem 4.5 says that an IV-observable z and an IF-observable x have the same
distribution functions.
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Theorem 4.7 Let F̂ : R −→ [0, 1] be the IV-distribution function of an IV-observable
z : B(R)→ K. Then,

Ê(z) =

∫
R

t dF̂ (t),

D̂2(z) =

∫
R

t2 dF̂ (t)−
(
Ê(z)

)2
=

∫
R

(t− Ê(z))2 dF̂ (t).

Proof. Since F̂ is the IV-distribution function of the probability distribution kz, we have

λF̂
(
[a, b)

)
= F̂ (b)− F̂ (a) = kz

(
[a, b)

)
,

hence,
λF̂ = kz.

Therefore, ∫
R

t dF̂ (t) =

∫
R

t dλF̂ (t) =

∫
R

t dkz(t) = Ê(z).

Similarly the other equality can be obtained. 2

5 Conclusion

In this paper, we illustrated the connection between intuitionistic fuzzy observable x : B(R)→ F
and interval-valued observable z : B(R) → K and that is z = ψ ◦ x. We proved the equality of
distribution functions in interval-valued and intuitionistic fuzzy case. Therefore, the equality of
mean values and the equality of dispersions result from this in interval-valued and intuitionistic
fuzzy case, too.
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