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Abstract: We consider a group G, with identity element e, as a universal set and assume that the
knowledge about objects is restricted by an intuitionistic fuzzy normal subgroup A = (µA, νA)

of G. For each α, β ∈ [0, 1] such that α + β ≤ 1, the set U(A,α, β) = U(µA, α) ∩ U(νA, β)
is a congruence relation on G, where U(µA, α) = {(x, y) ∈ G × G : µA(xy

−1) ≥ α} and
U(νA, β) = {(x, y) ∈ G×G : νA(xy

−1) ≤ β}. In this paper, the notion of U(A,α, β)-lower and
U(A,α, β)-upper approximation of a non-empty subset of G and an intuitionistic fuzzy set of G
are introduced and some important properties of the above approximations are presented.
Keywords: Rough set, Fuzzy set, Intuitionistic fuzzy set, Intuitionistic fuzzy normal subgroup,
Congruence relation, Lower and Upper approximations of crisp and fuzzy sets.
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1 Introduction

After the introduction of the concept of fuzzy sets by Zadeh [18] several researches were con-
ducted on the generalizations of the notion of fuzzy sets. The idea of “intuitionistic fuzzy set”
was first published by Atanassov [1, 2] as a generalization of the notion of the fuzzy set. This
subject has been studied by [4, 7, 12] and others.
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In 1982, Pawlak [16] proposed rough set theory as a new mathematical tool for dealing with
uncertainties, which is an extension of set theory, in which a subset of a universe is described by
a pair of ordinary sets called the lower and upper approximations. The notion of rough set and
its properties were applied to various areas such as semigroups [15], groups [5, 13, 14], rings [6],
ideals [8, 17], modules [9], lattices [11] and fuzzy sets [10].
In this paper, we are to study the rough set based on intuitionistic fuzzy normal subgroup. In
fact, the study concerns the relationship between rough sets, intuitionistic fuzzy sets and group
theory. First of all, in Section 2, we review some basic definitions and notation. In Section 3
& 4, we consider a group as a universe set and we assume that the knowledge about objects is
restricted by intuitionistic fuzzy normal subgroups. Let A = (µA, νA) be an intuitionistic fuzzy
normal subgroup of G and α, β ∈ [0, 1] be such that α + β ≤ 1. For a b ∈ G, we say that a is
congruent to b (mod A) = (µA, νA), written a ≡(α,β) b if µA(xy−1) ≥ α and νA(xy−1) ≤ β.
In Section 2.4, we describe some properties of this congruence relation. These properties are
used in Section 3 & 4. In Section 3, we analyzed the lower and upper approximations of a
subset of a group with respect to the above congruence relation. In Section 4, we analyzed the
lower and upper approximations of an intuitionistic fuzzy set of a group with respect to the above
congruence relation, which is the main aim of this paper. At last, a conclusion is presented.

2 Definitions and notation

We introduce in this section some definitions and notation used in the present paper.

2.1 Rough set

Let U be a universal set. For an equivalence relation θ on U , the set of the elements of U that are
related to x ∈ U , is called the equivalence class of x, and is denoted by [x]θ. A pair (U, θ), where
U 6= ∅ and θ is an equivalence relation of U , is called an approximation space.

Definition 1 ([8]). For an approximation space (U, θ), by a rough approximation in (U, θ) we
mean a mapping (U, θ, ...) : P (U) → P (U) × P (U) define for every X ∈ P (U) by (U, θ,X) =

((U, θ,X), (U, θ,X)), where (U, θ,X) = {x ∈ U : [x]θ ⊆ X}, (U, θ,X) = {x ∈ U : [x]θ∩X 6=
∅}. (U, θ,X) is called a lower rough approximation of X in (U, θ), where as (U, θ,X) is called
a upper rough approximation of X in (U, θ).

2.2 Intuitionistic fuzzy set

Throughout this paper G is a group. By a fuzzy set of G is a function µ : G → [0, 1]. Let
µ be a fuzzy set of G. For each t ∈ [0, 1] µt = {x ∈ G : µ(x) ≥ t} is called a t-level set
of µ or t-cut of µ. Let µ and λ be two fuzzy sets of G. The inclusion λ ⊆ µ is denoted by
λ(x) ≤ µ(x) for all x ∈ G, and µ ∩ λ is defined by (µ ∩ λ)(x) = µ(x) ∧ λ(x) for all x ∈ G and
(µ ∗ λ)(x) = ∨yz=x(µ(y) ∧ λ(z)).
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Definition 2 ([1]). An intuitionistic fuzzy set (IFS) A in a non-empty set G is an object having the
form

A = {〈x, µA(x), νA(x)〉|x ∈ G}

where the functions µA : G → [0, 1] and νA : G → [0, 1] defined the degree of membership and
the degree of membership and the degree of non-membership of the element x ∈ G to the set A,
which is a subset of G, respectively, and

0 ≤ µA(x) ≤ νA(x) ≤ 1

for all x ∈ G. An IFS A = {〈x, µA(x), νA(x)〉|x ∈ G} in G can be identified to an ordered pair
(µA, νA) in [0, 1]G × [0, 1]G. For the sake of simplicity, we shall use the symbol A = (µA, νA) for
the IFS A = {〈x, µA(x), νA(x)〉|x ∈ G}.

Definition 3 ([1]). Let A = (µA, νA) be an IFS of G and α, β ∈ [0, 1] such that α + β ≤ 1. The
sets Aα = {x ∈ G : µA(x) ≥ α} and Aβ = {x ∈ G : νA(x) ≤ β} are called, respectively, the
α-level set or α-cut of µA and β-level set or β-cut of νA; and the set A(α,β) = Aα ∩ Aβ is called
a (α, β)-level set or (α, β)-cut of the IFS A = (µA, νA).

Definition 4 ([1]). Let A = (µA, νA) and B = (µB, νB) be any two IFSs of G, then

(i) A ⊆ B ⇔ (∀x ∈ G)(µA(x) ≤ µB(x), νA(x) ≥ νB(x)).

(ii) A = B ⇔ A ⊆ B and B ⊆ A.

(iii) A ∪B = (µA ∨ µB, νA ∧ νB) = {〈x, µA(x) ∨ µB(x), νA(x) ∧ νB(x)〉|x ∈}.

(iv) A ∩B = (µA ∧ µB, νA ∨ νB) = {〈x, µA(x) ∧ µB(x), νA(x) ∨ νB(x)〉|x ∈ G}.

According to [3] we have the following definition.

Definition 5. Let A = (µA, νA) and B = (µB, νB) be any two IFSs of G. Then we defined the
IFS A ∗B = (µA∗B, νA∗B) of G is given by

µA∗B(x) = ∨yz=x(µA(y) ∧ µB(z)) ∀y, z ∈ G, yz = x,

νA∗B(x) = ∧yz=x(νA(y) ∨ νB(z)) ∀y, z ∈ G, yz = x.

2.3 Intuitionistic fuzzy normal subgroup

A fuzzy set µ of G is called a fuzzy subgroup of G if it has the following properties:

(i) µ(xy) ≥ µ(x) ∧ µ(y) for all x, y ∈ G,

(ii) µ(x−1) = µ(x) for all x ∈ G.

A fuzzy subgroup µ of G is called normal subgroup of G if µ(xy) = µ(yx) for all x, y ∈ G.
For a normal fuzzy subgroup µ of G, we have the following:
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(i) µ(x) ≤ µ(e) for all x ∈ G.

(ii) µ(xy−1) = µ(e) implies µ(x) = µ(y), where x, y ∈ G.

(iii) If µ and λ be a fuzzy normal subgroup of G, then so is µ ∩ λ.

(iv) A fuzzy set µ of G is a fuzzy normal subgroup of G if and only if for any t ∈ [0, 1], such
that µt 6= ∅, µt is a normal subgroup of G.

Definition 6 ([12]). An IFS A = (µA, νA) of a group G is called an intuitionistic fuzzy subgroup
(IFSG) of G if it has the following properties:

(i) µA(xy) ≥ µA(x) ∧ µA(y) for all x, y ∈ G,

(ii) µA(x−1) = µA(x) for all x ∈ G,

(iii) νA(xy) ≤ νA(x) ∨ νA(y) for all x, y ∈ G,

(iv) νA(x−1) = νA(x) for all x ∈ G,

An IFSG A = (µA, νA) of G is called an intuitionistic fuzzy normal subgroup (IFNSG) of G
if µA(xy) = µA(yx) and νA(xy) = νA(yx) for all x, y ∈ G.

Lemma 1. For an IFNSG A = (µA, νA) of G, we have the following:

(i) µA(x) ≤ µA(e) and νA(x) ≥ νA(e) for all x ∈ G,

(ii) µA(xy−1) = µA(e) and νA(xy−1) = νA(e) implies µA(x) = µA(y) and νA(x) = νA(y)

where x, y ∈ G,

(iii) If A = (µA, νA) and B = (µB, νB) are two IFNSGs of G, then so is A ∩ B = (µA ∧
µB, νA ∨ νB).

(iv) An IFS A = (µA, νA) of G is an IFNSG of G if and only if A(α,β) is a normal subgroup of
G, for any α, β ∈ [0, 1] (α + β ≤ 1) and A(α,β) 6= ∅.

2.4 Congruence relation

Let µ be a normal subgroup of G. For each t ∈ [0, 1], the set U(µ, t) = {(a, b) ∈ G × G :

µ(ab−1) ≥ t} is called a t-level relation of µ. It is no difficult to show that U(µ, t) is a congruence
relation.

Definition 7. Let A = (µA, νA) be an IFNSG of G and α, β ∈ [0, 1] such that α + β ≤ 1.
The sets U(µA, α) = {(a, b) ∈ G × G : µA(ab

−1) ≥ α} and U(νA, β) = {(a, b) ∈ G × G :

νA(ab
−1) ≤ β} are called, respectively, the α-level relation of µA and β-level relation of νA; and

the set U(A,α, β) = U(µA, α) ∩ U(νA, β) is called a (α, β)-level relation of A = (µA, νA).
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The following two lemmas are straightforward.
Lemma 2. Let A = (µA, νA) be an IFNSG of G and α, β ∈ [0, 1] such that α + β ≤ 1. Then
U(A,α, β) = U(µA, α) ∩ U(νA, β) is a congruence relation of G.
Lemma 3. Let A = (µA, νA) and B = (µB, νB) be two IFNSGs of G and α, β ∈ [0, 1] such that
α + β ≤ 1. Then

(i) U(µA ∧ µB, α) = U(µA, α) ∩ U(µB, α).

(ii) U(νA ∨ νB, β) = U(νA, β) ∪ U(νB, β).

We denote [x](A,α,β) = [x](µA,α) ∩ [x](νA,β) the equivalence class of U(A,α, β) = U(µA, α) ∩
U(νA, β).
Lemma 4. Let A = (µA, νA) be an IFNSG of G and α, β ∈ [0, 1] such that α + β ≤ 1. Then

(i) [a](µA,α)[b](µA,α) = [ab](µA,α) and [a](νA,β)[b](νA,β) = [ab](νA,β).

(ii) [a−1](µA,α) = ([a](µA,α))
−1 and [a−1](νA,β) = ([a](νA,β))

−1.

Proof. (i) Let x ∈ [a](µA,α)[b](µA,α). Then there exists y ∈ [a](µA,α) and z ∈ [b](µA,α) such that
yz = x. Since (a, y) ∈ U(µA, α) and (b, z) ∈ U(µA, α). By Lemma 2, we have (ab, yz) ∈
U(µA, α) or (ab, x) ∈ U(µA, α), and so x ∈ [ab](µA,α).

Conversely, let x ∈ [ab](µA,α), then (x, ab) ∈ U(µA, α). Hence (xb−1, a) ∈ U(µA, α) and so
xb−1 ∈ [a](µA,α) i.e., x ∈ [a](µA,α)b, which implies x ∈ [a](µA,α)[b](µA,α).

The proof of the second part is similar to the proof of first part.
(ii) We have

x ∈ [a−1](µA,α) ⇔ (x, a−1) ∈ U(µA, α)
⇔ (e, a−1x−1) ∈ U(µA, α)
⇔ (a, x−1) ∈ U(µA, α)
⇔ x−1 ∈ [a](µA,α)

⇔ x ∈ ([a](µA,α))
−1.

The rest is similar.

Lemma 5. Let A = (µA, νA) be an IFNSG of G and α, β ∈ [0, 1] such that α + β ≤ 1. For any
a ∈ G, we have a[e](µA,α) = [a](µA,α) and a[e](νA,β) = [a](νA,β).

Proof. Let a ∈ G, and then we have

x ∈ a[e](µA,α)⇔a−1x ∈ [e](µA,α)⇔(a−1x, e) ∈ U(µA, α)⇔(x, a) ∈ U(µA, α)⇔x ∈ [a](µA,α).

The rest is similar.

Lemma 6. Let A = (µA, νA) and B = (µB, νB) be two IFNSGs of G and α, β ∈ [0, 1] such that
α + β ≤ 1. If A ⊆ B, then [x](µA,α) ⊆ [x](µB ,α) and [x](νA,β) ⊆ [x](νB ,β).
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Proof. We have y ∈ [x](µA,α) ⇒ (x, y) ∈ U(µA, α) ⇒ µA(xy
−1) ≥ α ⇒ µB(xy

−1) ≥ α ⇒
(x, y) ∈ U(µB, α)⇒y ∈ [x](µB ,α). The rest is similar.

Let A = (µA, νA) and B = (µB, νB) be two IFNSGs of G and α, β ∈ [0, 1] such that
α + β ≤ 1. The composition of congruence relations U(A,α, β) = U(µA, α) ∩ U(νA, β) and
U(B,α, β) = U(µB, α) ∩ U(νB, β) is defined as follows:

U(A,α, β) ◦ U(B,α, β) = U(µA◦B, α) ∩ U(νA◦B, β),

where U(µA◦B, α) = {(a, b) ∈ G×G : (a, c) ∈ U(µA, α), (c, b) ∈ U(µB, α)} and U(νA◦B, β) =
{(a, b) ∈ G×G : (a, c) ∈ U(νA, β), (c, b) ∈ U(νB, β)}. It is no difficult to show that U(µA◦B, α)
and U(νA◦B, β) are also congruence relations. Therefore, U(A,α, β)◦U(B,α, β) is a congruence
relation. We denote this congruence relation by U(A ◦B,α, β) = U(µA◦B, α)∩U(νA◦B, β).

Lemma 7. Let A = (µA, νA) and B = (µB, νB) be two IFNSGs of G and α, β ∈ [0, 1] such that
α + β ≤ 1. Then U(µA◦B, α) ⊆ U(µA∗B, α) and U(νA◦B, β) ⊆ U(νA∗B, β).

Proof. Let (a, b) ∈ U(µA◦B, α). Then there exists c ∈ G such that (a, c) ∈ U(µA, α) and
(c, b) ∈ U(µB, α). Therefore we have µA(ac−1) ≥ α and µA(cb−1) ≥ α. Then µA∗B(ab−1) =

∨yz=ab−1(µA(y) ∧ µB(z)) ≥ µA(ac
−1) ∧ µA(cb−1) ≥ α and so (a, b) ∈ U(µA∗B, α). The rest is

similar.

Lemma 8. Let A = (µA, νA) and B = (µB, νB) be two IFNSGs of G and α, β ∈ [0, 1] such that
α + β ≤ 1 with finite image. Then U(µA◦B, α) = U(µA∗B, α) and U(νA◦B, β) = U(νA∗B, β).

Proof. We are only to proof second part. By Lemma 7, we have U(νA◦B, β) ⊆ U(νA∗B, β),
therefore we can show that U(νA◦B, β) ⊇ U(νA∗B, β). For this let (x, y) ∈ U(νA∗B, β), then
νA∗B(xy

−1) ≤ β. We have ∧ab=xy−1(νA(a) ∨ νB(b)) ≤ β. Since Im(νA) and Im(νB) are finite,
then νA(a0) ∨ νB(b0) ≤ β for some a0, b0 ∈ G, such that xy−1 = a0b0. Thus νA(a0) ≤ β or
νB(b0) ≤ β. Now we have νA(a0e−1) ≤ β or νB(a−10 xy−1) ≤ β i.e., we have νA(a0e−1) ≤ β

or νB(xy−1a−10 ) ≤ β, which imply (a0, e) ∈ U(νB, β) or (xy−1, a0) ∈ U(νB, β). Therefore
(xy−1, e) ∈ U(νA◦B, β) i.e., (x, y) ∈ U(νA◦B, β).

3 Approximations of crisp set based on IFNSGs

Let A = (µA, νA) and B = (µB, νB) be two IFNSGs of G and α, β ∈ [0, 1] such that α + β ≤ 1.
By Lemma 2, U(A,α, β) = U(µA, α) ∩ U(νA, β) is a congruence relation on G. Therefore,
when U = G and θ = U(A,α, β), then we use (G,A, α, β) = ((G, µA, α), (G, νA, β)) instead of
approximation space (U, θ). In the rest of this paper A = (µA, νA) is an IFNSG of G.

Definition 8. Let U(A,α, β) = U(µA, α) ∩ U(νA, β) be a congruence relation of an IFNSG of
G and α, β ∈ [0, 1] such that α+ β ≤ 1. Let X be a non-empty subset of G. Then we defined the
sets U(µA, α,X), U(µA, α,X), U(νA, β,X) and U(νA, β,X) as follows:

U(µA, α,X) = {x ∈ G : [x](µA,α) ⊆ X} and U(µA, α,X) = {x ∈ G : [x](µA,α) ∩X 6= ∅};
U(νA, β,X) = {x ∈ G : [x](µA,β) ∩X 6= ∅} and U(νA, β,X) = {x ∈ G : [x](µA,β) ⊆ X}.

96



The sets U(µA, α,X) and U(µA, α,X) are called, respectively, the lower and upper approxima-
tions of the set X with respect to U(µA, α); and the sets U(νA, β,X) and U(νA, β,X) are called,
respectively, the lower and upper approximations of the set X with respect to U(νA, β); and the
setsU(A,α, β,X) = ((U(µA, α,X), U(νA, β,X)) andU(A,α, β,X) = (U(µA, α,X), U(νA, β,
X)) are called, respectively, the lower and upper approximations of the set X with respect to
U(A,α, β) = U(µA, α) ∩ U(νA, β).

U(A,α, β,X) = (U(A,α, β,X), U(A,α, β,X)) is called a rough set with respect to U(A,α,
β) = U(µA, α) ∩ U(νA, β).

The following proposition is exactly obtained from Definition 8.
Proposition 1. For every approximation space (G,A, α, β) = ((G, µA, α), (G, νA, β)) and every
subsets X, Y of G we have:

(1) U(µA, α,X) ⊆ X ⊆ U(µA, α,X) and U(νA, β,X) ⊇ X ⊇ U(νA, β,X).

(2) U(µA, α, ∅) = ∅ = U(µA, α, ∅) and U(νA, β, ∅) = ∅ = U(νA, β, ∅).

(3) U(µA, α,G) = G = U(µA, α,G) and U(νA, β,G) = G = U(νA, β,G).

(4) If X ⊆ Y , then

U(µA, α,X) ⊆ U(µA, α, Y ) and U(νA, β,X) ⊆ U(νA, β, Y ),

U(µA, α,X) ⊆ U(µA, α, Y ) and U(νA, β,X) ⊆ U(νA, β, Y ).

(5) U(µA, α, (U(µA, α,X)) = U(µA, α,X) and U(νA, β, (U(νA, β,X)) = U(νA, β,X).

(6) U(µA, α, (U(µA, α,X)) = U(µA, α,X) and U(νA, β, (U(νA, β,X)) = U(νA, β,X).

(7) U(µA, α, (U(µA, α,X)) = U(µA, α,X) and U(νA, β, (U(νA, β,X)) = U(νA, β,X).

(8) U(µA, α, (U(µA, α,X)) = U(µA, α,X) and U(νA, β, (U(νA, β,X)) = U(νA, β,X).

(9) U(µA, α,X ∩ Y ) = U(µA, α,X) ∩ U(µA, α, Y ) and U(νA, β,X ∩ Y ) ⊆ U(νA, β,X) ∩
U(νA, β, Y ).

(10) U(µA, α,X ∩ Y ) ⊆ U(µA, α,X) ∩ U(µA, α, Y ) and U(νA, β,X ∩ Y ) = U(νA, β,X) ∩
U(νA, β, Y ).

(11) U(µA, α,X ∪ Y ) ⊇ U(µA, α,X) ∪ U(µA, α, Y ) and U(νA, β,X ∪ Y ) = U(νA, β,X) ∪
U(νA, β, Y ).

(12) U(µA, α,X ∪ Y ) = U(µA, α,X) ∪ U(µA, α, Y ) and U(νA, β,X ∪ Y ) ⊇ U(νA, β,X) ∪
U(νA, β, Y ).

(13) U(µA, α, [x](µA,α)) = U(µA, α, [x](µA,α)) and U(νA, β, [x](νA,β)) = U(νA, β, [x](νA,β)), for
all x ∈ G.
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Proposition 2. Let A = (µA, νA) and B = (µB, νB) be two IFNSGs of G and α, β ∈ [0, 1] such
that α + β ≤ 1. If X is a non-empty subset of G, then

(i) U(µA ∧ µB, α,X) ⊆ U(µA, α,X) ∩ U(µB, α,X).

(ii) U(νA ∧ νB, β,X) ⊆ U(νA, β,X) ∩ U(νB, β,X).

Proof. We have

x ∈ U(µA ∧ µB, α,X)⇒ [x](µA∧µB ,α) ∩X 6= ∅
⇒ ∃a ∈ [x](µA∧µB ,α) ∩X
⇒ (a, x) ∈ U(µA ∧ µB, α) and a ∈ X
⇒ (µA ∧ µB)(ax−1) ≥ α and a ∈ X
⇒ µA(ax

−1) ≥ α and µB(ax−1) ≥ α and a ∈ X
⇒ (a, x) ∈ U(µA, α), a ∈ X and (a, x) ∈ U(µB, α), a ∈ X
⇒ [x](µA,α) ∩X 6= ∅ and [x](µB ,α) ∩X 6= ∅
⇒ x ∈ U(µA, α,X) and x ∈ U(µA, α,X)

Therefore, U(µA ∧ µB, α,X) ⊆ U(µA, α,X) ∩ U(µB, α,X). The rest is similar.

Proposition 3. Let A = (µA, νA) and B = (µB, νB) be two IFNSGs of G and α, β ∈ [0, 1] such
that α + β ≤ 1. If X is a non-empty subset of G, then

(i) U(µA, α,X) ∩ U(µB, α,X) ⊆ U(µA ∧ µB, α,X).

(ii) U(νA, β,X) ∩ U(νB, β,X) ⊆ U(νA ∧ νB, β,X).

Proof. We have

x ∈ U(µA, α,X) ∩ U(µB, α,X)⇒ x ∈ U(µA, α,X) and x ∈ U(µB, α,X)

⇒ [x](µA,α) ⊆ X and [x](µB ,α)

⇒ [x](µA∧µB ,α) ⊆ X By Lemma 6

⇒ x ∈ U(µA ∧ µB, α,X).

Therefore, U(µA, α,X) ∩ U(µB, α,X) ⊆ U(µA ∧ µB, α,X). The rest is similar.

Lemma 9. Let A = (µA, νA) be an IFNSG of G and α, β ∈ [0, 1] such that α + β ≤ 1. If H is a
normal subgroup of G, then U(µA, α,H) and U(νA, β,H) are normal subgroups of G.

Proof. Let a, b ∈ U(µA, α,H) and g ∈ G, then [a](µA,α) ∩ H 6= ∅ and [b](µA,α) ∩ H 6= ∅. So
there exists x ∈ [a](µA,α) ∩H and y ∈ [b](µA,α) ∩H . Since H is a normal subgroup of G, we have
xy−1 ∈ H and gxg−1 ∈ H , where g ∈ G. By Lemma 4, we have xy−1 ∈ [a](µA,α)([b](µA,α))

−1 =

[a](µA,α)[b
−1](µA,α) = [ab−1](µA,α). Hence, xy−1 ∈ [ab−1](µA,α) ∩ H i.e., [ab−1](µA,α) ∩ H 6= ∅,

which implies that ab−1 ∈ U(µA, α,H).
Since (x, a) ∈ U(µA, α), then µA(xa

−1) ≥ α. Now we have µA(gxg
−1(gag−1)−1) =

µA(gxg
−1ga−1g−1) = µA(gxa

−1g−1) = µA(xa
−1) ≥ α. Hence, (gxg−1, gag−1) ∈ U(µA, α),

98



i.e., gxg−1 ∈ [gag−1](µA,α), thus gxg−1 ∈ [gag−1](µA,α)∩H , which implies [gag−1](µA,α)∩H 6= ∅.
Therefore, gag−1 ∈ U(µA, α,H). Hence U(µA, α,H) is a normal subgroup of G. The rest is
similar.

Lemma 10. Let A = (µA, νA) be an IFNSG of G and α, β ∈ [0, 1] such that α+β ≤ 1. Let X be
a non-empty subset ofG. If U(µA, α,X) and U(νA, β,X) are non-empty sets then, [e](µA,α) ⊆ X

and [e](νA,β) ⊆ X .

Proof. Since U(µA, α,X) 6= ∅, then there exists x ∈ U(µA, α,X), i.e., [x](µA,α) ⊆ X . So
([x](µA,α))

−1 ⊆ (X)−1 ⊆ {a−1 : a ∈ X} = X . Now by Lemma 4 we have [e](µA,α) =

[xx−1](µA,α) = [x](µA,α)[x
−1](µA,α) = [x](µA,α)([e](µA,α))

−1 ⊆ XX ⊆ X . The rest is similar.

Lemma 11. Let A = (µA, νA) be an IFNSG of G and α, β ∈ [0, 1] such that α + β ≤ 1. If H is
a normal subgroup of G, then U(µA, α,H) and U(νA, β,H) are non-empty sets, then its equal to
H .

Proof. By Proposition 1(1), we have U(µA, α,H) ⊆ H . We show that H ⊆ U(µA, α,H). For
this, let h ∈ H . By Lemma 10, we have [e](µA,α) ⊆ H . Since H is a normal subgroup of
G, we have h[e](µA,α) ⊆ hH ⊆ H . By Lemma 5, we have [h](µA,α) ⊆ H , which implies that
h ∈ U(µA, α,H). Therefore, H ⊆ U(µA, α,H). The rest is similar.

From Lemmas 9 and 11, the following Corollaries 1 and 2 are true.

Corollary 1. Let A = (µA, νA) be an IFNSG of G and α, β ∈ [0, 1] such that α+β ≤ 1. If H is a
normal subgroup of G, then U(A,α, β,H) = (U(µA, α,H), U(νA, β,H)) is a normal subgroup
of G.
Corollary 2. Let A = (µA, νA) be an IFNSG of G and α, β ∈ [0, 1] such that α+β ≤ 1. If H is a
normal subgroup of G, then U(A,α, β,H) = (U(µA, α,H), U(νA, β,H)) is a normal subgroup
of G.

LetA = (µA, νA) be an IFNSG ofG and α, β ∈ [0, 1] such that α+β ≤ 1; and (U(A,α, β,H),
U(A,α, β,H)) a rough set in the approximation space (G,A, α, β). If U(A, α, β, H) = (U(µA,
α, H), U(νA, β,H)) and U(A,α, β,H) = (U(µA, α,H), U(νA, β,H)) are normal subgroup of
G, then we call (U(A, α, β, H), U(A,α, β,H)) a rough normal subgroup. Therefore, from
Corollaries 1 and 2, we give the following Corollary.
Corollary 3. Let A = (µA, νA) be an IFNSG of G and α, β ∈ [0, 1] such that α + β ≤ 1. If H is
a normal subgroup of G, then (U(A,α, β,H), U(A,α, β,H)) a rough normal subgroup of G.
Proposition 4. Let A = (µA, νA) and B = (µB, νB) be two IFNSGs of G and α, β ∈ [0, 1] such
that α + β ≤ 1. If X is a non-empty subset of G and A ⊆ B, then

(i) U(µA, α,X) ⊆ U(µB, α,X) and U(νA, β,X) ⊆ U(νB, β,X).

(ii) U(µB, α,X) ⊆ U(µA, α,X) and U(νB, β,X) ⊆ U(νA, β,X).

Proof. (i) Let x ∈ U(µA, α,X), then [x](µA,α)∩X 6= ∅. By Lemma 6, since [x](µA,α) ⊆ [x](µB ,α),
we have [x](µB ,α) ∩ X 6= ∅, which implies that x ∈ U(µB, α,X). Again let, y ∈ U(νB, β,X),
then [y](νA,β) ⊆ X . Now by Lemma 6, since [y](νB ,β) ⊆ [y](νA,β) we have [y](νB ,β) ⊆ X , which
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implies y ∈ U(νB, β,X).
(ii) The proof is similar to the proof of statement (i).

Proposition 5. Let A = (µA, νA) and B = (µB, νB) be two IFNSGs of G and α, β ∈ [0, 1] such
that α + β ≤ 1. If X is a non-empty subset of G and U(A,α, β) ⊆ U(B,α, β) then,

(i) U(µA, α,X) ⊆ U(µB, α,X) and U(νA, β,X) ⊆ U(νB, β,X).

(ii) U(µB, α,X) ⊆ U(µA, α,X) and U(νB, β,X) ⊆ U(νA, β,X).

Proof. (i) Let x ∈ U(µA, α,X), then we have there exists a ∈ [x](µA,α) ∩ X . Then (a, x) ∈
U(µA, α) ⊆ (µB, α) and a ∈ X . Therefore, a ∈ [x](µB ,α) ∩X , and so x ∈ U(µB, α,X). Again
let, y ∈ U(νB, β,X), then we have [y](νA,β) ⊆ X . Since [y](νB ,β) ⊆ [y](νA,β), i.e., [y](νB ,β) ⊆ X ,
which implies y ∈ U(νB, β,X).
(ii) The proof is similar to the proof of statement (i).

Proposition 6. Let A = (µA, νA) and B = (µB, νB) be two IFNSGs of G and α, β ∈ [0, 1] such
that α + β ≤ 1. If X is a non-empty subset of G, then

(i) U(µA◦B, α,X) ⊆ U(µA∗B, α,X) and U(νA◦B, β,X) ⊆ U(νA∗B, β,X).

(ii) U(µA∗B, α,X) ⊆ U(µA◦B, α,X) and U(νA∗B, β,X) ⊆ U(νA◦B, β,X).

Proof. This follows Lemma 7 and Proposition 5.

Proposition 7. Let A = (µA, νA) and B = (µB, νB) be two IFNSGs of G with finite images and
α, β ∈ [0, 1] such that α + β ≤ 1. If X is a non-empty subset of G, then

(i) U(µA◦B, α,X) = U(µA∗B, α,X) and U(νA◦B, β,X) = U(νA∗B, β,X).

(ii) U(µA◦B, α,X) = U(µA∗B, α,X) and U(νA◦B, β,X) = U(νA∗B, β,X).

Proof. This follows Lemma 8.

4 Approximations of IFS based on IFNSGs

Let A = (µA, νA) and B = (µB, νB) are two IFNSGs of G and α, β ∈ [0, 1] such that α+ β ≤ 1.
By Lemma 2, U(A,α, β) = U(µA, α) ∩ U(νA, β) is a congruence relation on G. Therefore,
when U = G and θ = U(A,α, β), then we use (G,A, α, β) = ((G, µA, α), (G, νA, β)) instead of
approximation space (U, θ).

Definition 9. Let U(A,α, β) = U(µA, α) ∩ U(νA, β) is a congruence relation of an IFNSGs of
G and α, β ∈ [0, 1] such that α + β ≤ 1. Let B = (µB, νB) be an IFS of G. Then we define the
fuzzy sets U(µA, α, µB), U(µA, α, µB), U(νA, β, νB), U(νA, β, νB) as follows:

U(µA, α, µB)(x) = ∧a∈[x](µA,α)µB(a) and U(µA, α, µB)(x) = ∨a∈[x](µA,α)µB(a)

U(νA, β, νB)(x) = ∨a∈[x](νA,β)νB(a) and U(νA, β, νB)(x) = ∧a∈[x](νA,β)νB(a).
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The fuzzy sets U(µA, α, µB) and U(µA, α, µB) are called, respectively, the U(µA, α)-lower and
U(µA, α)-upper approximations of the fuzzy set µB with respect to U(µA, α); and the fuzzy
sets U(νA, β, νB) and U(νA, β, νB) are called, respectively, the U(νA, β)-lower and U(νA, β)-
upper approximations of the fuzzy set νB with respect to U(νA, β); and the IFSs U(A,α, β,B) =

(U(µA, α, µB), U(νA, β, νB)) and U(A,α, β,B) = (U(µA, α, µB), U(νA, β, νB)) are called, re-
spectively, the U(A,α, β)-lower and U(A,α, β)-upper approximations of the IFS B = (µB, νB)

with respect to U(A,α, β) = U(µA, α) ∩ U(νA, β).
U(A,α, β,B) = (U(A,α, β,B), U(A,α, β,B)) is called a rough IFS with respect to U(A,α,

β) = U(µA, α) ∩ U(νA, β) if U(A,α, β,B) 6= U(A,α, β,B).

The following proposition is exactly obtained from Definition 9.
Proposition 8. For every approximation space (G,A, α, β) = ((G, µA, α), (G, νA, β)) and every
IFSs B = (µB, νB) and C = (µC , νC) of G we have:

(1) U(µA, α, µB) ⊆ µB ⊆ U(µA, α, µB) and U(νA, β, νB) ⊇ νB ⊇ U(νA, β, νB).

(2) If B ⊆ C, then

U(µA, α, µB) ⊆ U(µA, α, µC) and U(νA, β, νB) ⊇ U(νA, β, νC).

(3) If B ⊆ C, then

U(µA, α, µB) ⊆ U(µA, α, µC) and U(νA, β, νB) ⊇ U(νA, β, νC).

(4) U(µA, α, (U(µA, α, µB)) = U(µA, α, µB) and U(νA, β, (U(νA, β, νB)) = U(νA, β, νB).

(5) U(µA, α, (U(µA, α, µB)) = U(µA, α, µB) and U(νA, β, (U(νA, β, νB)) = U(νA, β, νB).

(6) U(µA, α, ((µA, α, µB)) = U(µA, α, µB) and U(νA, β, (U(νA, β, νB)) = U(νA, β, νB).

(7) U(µA, α, (U(µA, α, µB)) = U(µA, α, µB) and U(νA, β, (U(νA, β, νB)) = U(νA, β, νB).

(8) U(µA, α, µB∧µC) = U(µA, α, µB)∧U(µA, α, µC) and U(νA, β, νB∨νC) = U(νA, β, νB)∨
U(νA, β, νC).

(9) U(µA, α, µB∧µC) = U(µA, α, µB)∧U(µA, α, µC) and U(νA, β, νB∨νC) = U(νA, β, νB)∨
U(νA, β, νC).

(10) U(µA, α, µB∨µC) = U(µA, α, µB)∨U(µA, α, µC) and U(νA, β, νB∧νC) = U(νA, β, νB)∧
U(νA, β, νC).

(11) U(µA, α, µB∨µC) = U(µA, α, µB)∨U(µA, α, µC) and U(νA, β, νB∧νC) = U(νA, β, νB)∧
U(νA, β, νC).

(12) U(µA, α, µB)(x) = U(µA, α, µB)(a) and U(µA, α, µB)(x) = U(µA, α, µB)(a) for all x ∈
G and a ∈ [x](µA,α).
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(13) U(νA, β, νB)(x) = U(νA, β, νB)(a) and U(νA, β, νB)(x) = U(νA, β, νB)(a) for all x ∈ G
and a ∈ [x](νA,β).

Proposition 9. Let A = (µA, νA) be an IFNSG of G and α, β ∈ [0, 1] such that α + β ≤ 1. If
B = (µB, νB) be any IFS of G and X a non-empty subset of G, then

(i) U(µA, α, µB)(U(µA, α,X)) = U(µA, α, µB)(X)

and U(νA, β, νB)(U(νA, β,X)) ⊆ U(νA, β, νB)(X).

(ii) U(µA, α, µB)(U(µA, α,X)) = U(µA, α, µB)(X)

and U(νA, β, νB)(U(νA, β,X)) ⊆ U(νA, β, νB)(X).

(iii) U(µA, α, µB)(U(µA, α,X)) ⊆ U(µA, α, µB)(X)

and U(νA, β, νB)(U(νA, β,X)) = U(νA, β, νB)(X).

(iv) U(µA, α, µB)(U(µA, α,X)) ⊆ U(µA, α, µB)(X)

and U(νA, β, νB)(U(νA, β,X)) = U(νA, β, νB)(X).

Where for every non-empty subset Y of G, U(µA, α, µB)(Y ) = {U(µA, α, µB)(y) : y ∈ Y } and
U(νA, β, νB)(Y ) = {U(νA, β, νB)(y) : y ∈ Y }; U(µA, α, µB)(Y ) = {U(µA, α, µB)(y) : y ∈ Y }
and U(νA, β, νB)(Y ) = {U(νA, β, νB)(y) : y ∈ Y }.

Proof. (i) Since U(µA, α,X) = ∪x∈X [x](µA,α). We can conclude from the Proposition 8(12),
that U(µA, α, µB)(U(µA, α,X)) = ∪x∈XU(µA, α, µB)([x](µA,α)) = U(µA, α, µB)(X). Then by
Proposition 1(1), it is straightforward.

The proof of the other part is similar to the proof of statement (i).

Proposition 10. Let A = (µA, νA) and B = (µB, νB) be two IFNSGs of G and α, β ∈ [0, 1] such
that α + β ≤ 1. If C = (µC , νC) is an IFS of G, then

U(µA ∧µB, α, µC) = U(µA, α, µC)∧U(µB, α, µC) and U(νA ∧ νB, β, νC) = U(νA, β, νC)∧
U(νB, β, νC).

Proof. For x ∈ G, we have

U(µA ∧ µB, α, µC)(x) = ∨a∈[x](µA∧µB,α)µC(a)

= ∨a∈[x](µA,α)µC(a) ∧ ∨a∈[x](µB,α)µC(a)

= U(µA, α, µC) ∧ U(µB, α, µC).

The rest is similar.

Proposition 11. Let A = (µA, νA) and B = (µB, νB) be two IFNSGs of G and α, β ∈ [0, 1] such
that α + β ≤ 1. If C = (µC , νC) is an IFS of G, then

U(µA ∧µB, α, µC) = U(µA, α, µC)∧U(µB, α, µC) and U(νA ∧ νB, β, νC) = U(νA, β, νC)∧
U(νB, β, νC).

Proof. The proof is similar to the Proposition 10.
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Proposition 12. Let A = (µA, νA) be an IFNSG of G and α, β ∈ [0, 1] such that α + β ≤ 1.
If B = (µB, νB) be any IFNSG of G, then U(A,α, β,B) = (U(µA, α, µB), U(νA, β, νB)) is an
IFNSG of G.

Proof. For all x, y ∈ G, we have

(i) U(µA, α, µB)(xy) = ∨z∈[xy](µA,α)µB(z)

≥ ∨a∈[x](µA,α),b∈[y](µA,α)(µB(a) ∧ µB(b))

= ∨a∈[x](µA,α)µB(a) ∧ ∨b∈[y](µA,α)µB(b)

= U(µA, α, µB)(x) ∧ U(µA, α, µB)(y).

(ii) U(µA, α, µB)(x−1) = ∨a∈[x−1](µA,α)
µB(a) = ∨a−1∈[x](µA,α)

µB(a
−1) = U(µA, α, µB)(x).

(iii) U(νA, β, νB)(xy) = ∧z∈[xy](νA,β)νB(z)

≤ ∧a∈[x](νA,β),b∈[y](νA,β)(νB(a) ∨ νB(b))

= ∧a∈[x](νA,β)νB(a) ∨ ∧b∈[y](νA,β)νB(b)

= U(νA, β, νB)(x) ∨ U(νA, β, νB)(y).

(iv) U(νA, β, νB)(x−1) = ∧a∈[x−1](νA,β)
νB(a) = ∧a−1∈[x](νA,β)

νB(a
−1) = U(νA, β, νB)(x).

Also, U(µA, α, µB)(yx) = ∨z∈[yx](µA,α)µB(z) = ∨xzx−1∈[xy](µA,α)
µB(xzx

−1) = U(µA, α, νB)(xy)

and U(νA, β, νB)(yx) = ∧z∈[yx](νA,β)νB(z) = ∧xzx−1∈[xy](νA,β)
νB(xzx

−1) = U(µA, α, µB)(xy).

Proposition 13. Let A = (µA, νA) be an IFNSG of G and α, β ∈ [0, 1] such that α + β ≤ 1.
If B = (µB, νB) be any IFNSG of G, then U(A,α, β,B) = (U(µA, α, µB), U(νA, β, νB)) is an
IFNSG of G.

Proof. The proof is similar to the Proposition 12.

LetA = (µA, νA) be an IFNSG ofG and α, β ∈ [0, 1] such that α+β ≤ 1; and (U(A,α, β,B),
U(A,α, β,B)) a rough IFS in the approximation space (G,A, α, β). If U(A,α, β, B) = (U(µA,
α, µB),U(νA, β, νB)) and U(A,α, β,B) = (U(µA, α, µB), U(νA, β, νB)) are normal subgroup of
G, then we call (U(A,α, β,B), U(A,α, β,B)) a rough IFNSG. Therefore, from Propositions 12
& 13, we have the following corollary.

Corollary 4. Let A = (µA, νA) be an IFNSG of G and α, β ∈ [0, 1] such that α + β ≤ 1. If
B = (µB, νB) be any IFNSG of G, then (U(A,α, β,B), U(A,α, β,B)) a rough IFNSG.

Proposition 14. Let A = (µA, νA) and B = (µB, νB) be two IFNSGs of G and α, β ∈ [0, 1] such
that α + β ≤ 1. If C = (µC , νC) is IFS of G and A ⊆ B, then

(i) U(µA, α, µC) ⊆ U(µB, α, µC) and U(νA, β, νC) ⊆ U(νB, β, νC).
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(ii) U(µB, α, µC) ⊆ U(µA, α, µC) and U(νB, β, νC) ⊆ U(νA, β, νC).

Proof. By Lemma 6, it is straightforward.

Proposition 15. Let A = (µA, νA) and B = (µB, νB) be two IFNSGs of G and α, β ∈ [0, 1]

such that α + β ≤ 1. If C = (µC , νC) is a IFS of G and U(A,α, β) ⊆ U(B,α, β) (i.e.,
U(µA, α) ⊆ U(µB, α) and U(νA, β) ⊆ U(νB, β)) then,

(i) U(µA, α, µC) ⊆ U(µB, α, µC) and U(νA, β, νC) ⊆ U(νB, β, νC).

(ii) U(µB, α, µC) ⊆ U(µA, α, µC) and U(νB, β, νC) ⊆ U(νA, β, νC).

Proof. It is straightforward.

Proposition 16. Let A = (µA, νA) and B = (µB, νB) be two IFNSGs of G and α, β ∈ [0, 1] such
that α + β ≤ 1. If C = (µC , νC) is a IFS of G, then

(i) U(µA◦B, α, µC) ⊆ U(µA∗B, α, µC) and U(νA◦B, β, νC) ⊆ U(νA∗B, β, νC).

(ii) U(µA∗B, α, µC) ⊆ U(µA◦B, α, µC) and U(νA∗B, β, νC) ⊆ U(νA◦B, β, νC).

Proof. This follows Lemma 7 and Proposition 15.

Proposition 17. Let A = (µA, νA) and B = (µB, νB) are two IFNSGs of G with finite images
and α, β ∈ [0, 1] such that α + β ≤ 1. If C = (µC , νC) is IFS of G, then

(i) U(µA◦B, α, µC) = U(µA∗B, α, µC) and U(νA◦B, β, νC) = U(νA∗B, β, νC).

(ii) U(µA◦B, α, µC) = U(µA∗B, α, µC) and U(νA◦B, β, νC) = U(νA∗B, β, νC).

Proof. This follows Lemma 8 and Proposition 15.

5 Conclusions

This paper is devoted to the theoretical study of the rough set and intuitionistic fuzzy rough
set within the context of intuitionistic fuzzy normal subgroup. In fact, the study concerns the
relationship between three research topic, rough sets, groups and intuitionistic fuzzy sets, each of
them have applications across many fields. We have presented a definition of the lower and upper
approximations of a non empty crisp subsets and intuitionistic fuzzy sets of a group with respect
to an intuitionistic fuzzy normal subgroup. Based on these results, we will study rough sets and
intuitionistic fuzzy rough sets with respect to an intuitionistic fuzzy ideal in the next paper.
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