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Abstract: The proposed GN model presents the functioning of recurrent neural networks. Here 
we discuss the Elman network and the ‘backpropagation’ algorithm for learning. In comparison 
with other types of neural networks, here we describe the process in its temporal development. 
In a series of papers, we have described many different neural networks using the apparatus of 
generalized nets. The present research deals with another kind – neural network with feedback 
into the hidden layer. 
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1 Introduction 

The Elman neural network (ENN) is described commonly as a two-layer network with 
feedback from the first-layer output to the first-layer input, [4]. This recurrent connection 
allows the Elman network to both detect and generate time-varying patterns. A two-layer 
Elman neural network is shown on the Figure 1, where: 

• am is the exit of the m- layer of the neural network for m = 1, 2, 3; 
• w is a matrix of the weight coefficients of the everyone of the entries; 
• b is neuron’s entry bias; 
• fm  is the transfer function of the m-layer. 

The Elman network has neurons in its hidden (recurrent) layer with hyperbolic tangents 
transfer function, and neurons in its output layer with linear transfer function. This combination 
is special in that two-layer networks with these transfer functions can approximate any function 
(with a finite number of discontinuities) with arbitrary accuracy. The only requirement is that 
the hidden layer must have enough neurons. More hidden neurons are needed as the function 
being fitted increases in complexity. 
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The Elman network differs from conventional two-layer networks in that the first layer has a 
recurrent connection. The delay in this connection stores values from the previous time step, 
which can be used in the current time step. 

Thus, even if two Elman networks, with the same weights and biases, are given identical 
inputs at a given time step, their outputs can be different because of different feedback states. 

Because the network can store information for future reference, it is able to learn temporal 
patterns as well as spatial patterns.  

The neuron in the first layer receives outside entries р. 
The neurons’s exits from the last layer determine the neural network’s exits а. 
Since it belongs to the supervised learning methods, to the algorithm are submitted couple 

numbers (an entry value and an achieving aim – on the network’s exit) 

 {p1, t1}, {p2 , t2}, ..., {pQ , tQ}, (1) 

Q ∈ (1, ..., n), n being the number of learning couples, where рQ is the entry value (on the 
network entry), and tQ is the exit’s value replying to the aim. Every network’s entry is 
preliminary established and constant and the exit have to reply to the aim. The difference 
between the entry values and the aim is the error  e = t − a. 

The “back propagation” algorithm [6] use least-quarter error: 

 2)(ˆ atF −=  = e2. (2) 

While learning the neural network, the algorithm recalculates the network’s parameters (W 
and b) so to achieve least-square error. 

The ‘backpropagation’ algorithm for the i-th neuron, for the (k + 1)-st iteration, uses 
equations: 
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Figure 1: Two-layers Elman neural network 



51 

where:  
• α  is the learning rate for neural network; 

• m
iw

F̂
∂
∂  is the relation between changes of square error and changes of the weights; 

• m
ib

F̂
∂
∂  is the relation between changes of square error and changes of the biases; 

The network is considered learned when  

 e2 < Emax, (5) 
where Emax is maximum square error. 

The fundamental part, giving the algorithm’s name “Back Propagation” [2, 3, 6, 9], is the 
way of  calculating the error in the many-layered neural network. For error’s calculation, it is 
used the notion “sensibility”. It reflects the alteration of the error’s function compared to the 
alteration of every one of the weight coefficients and biases. The sensibility is the basic 
implement for calculating the new weight coefficients and biases.  

For the calculation of the sensibility of the M-th layer, it is necessary to know this sensibility 
for  the (M + 1)-st layer, so in this way the sensibilities are propagating back through the 
network, from the last layer to the first one:  

sM → sM – 1 → … → s2 → s1. 

This backward propagation gives the algorithm’s name.  
In our previous research [8], we described the forward propagation of the process – 

calculating of the outputs of the Elman neural networks [2, 3]. Here, we will describe a 
backpropagation of the calculating of the weight coefficients and biases. 

Shortly, the backpropagation algorithm (according to [9]) can be described for each epoch 
in the following manner:  

1. The entire input sequence is presented to the network, and its outputs are calculated 
and compared with the target sequence to generate an error sequence (forward 
propagation).  

2. For each time step, the error is backpropagated to find gradients of errors for each 
weight and bias. This gradient is actually an approximation since the contributions of 
weights and biases to errors via the delayed recurrent connection are ignored.  

3. This gradient is then used to update the weights with the backpropagation training 
function chosen by the user (here we describes as s fm).  

2 Constructing the generalized net  
All definitions related to the concept of generalized nets (GNs) are taken from [1]. The 
network, describing the work of the neural network learned by the backpropagation algorithm 
[4], is shown on Figure 2. 

The constructed GN-model, as illustrated on Figure 1, is a reduced one. It does not feature 
temporal components, and the priorities of the transitions, places and tokens are equal, with 
places’ and arcs’ capacities being equal to infinity. 
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Figure 2: Generalized net model of the backpropagation algotirhm of the Elman neural network 

Initially there is one α-token that is located in place SG  with characteristic 

=α
0x “Generator of random values between 0 and 1”. 

In the next time moment, this token will generate a new α-tokens (α′, α″ and so on). The 
original α-token will continue to stay in place SG, while the other α-tokens will move to 
transitions Z2 and Z3 via transition Z1. 

Initially the following tokens enter in the generalized net: 
• in place SF1  ⎯ one δ ′-token with characteristic =′δ0x  “transfer funcion f 1”.  

• in place SP ⎯ γ ″-token with characteristic =′γ0x  “{p1}, {p2}, ..., {pQ }”; 

• in place SF2  ⎯ one δ ″- token with characteristic =′′δ0x  “transfer funcion f 2 ”;  

• in place St ⎯ γ ″-token with characteristic =′′γ0x  “{t1}, {t2}, ..., {tQ }”; 

• in place Sthr ⎯ β-token with characteristic =β
0x “Threshhold value for the least square 

error”. 

The generalized network is present by the set of transitions [1]: 

А = {Z1, Z2, Z3, Z4}, 

where the transitions describe the following processes: 
• Z1 ⎯ generating random vector for values of the weight matrix W and b; 
• Z2 ⎯ calculating the forward values of the firts layer; 
• Z3 ⎯ calculating the forward values of the second layer; 
• Z4 ⎯ checking if the neural network is learned or calculating the new weight coeffi-

cients and neural network’s bias.  
The four transitions are described in details below. 

 
Z1 = 〈{SG}, {SWb1, SWb2, SG }, R1, ∧(SG)〉 

where: 
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and the predicates in the index matrix R1 have the form: WG,Wb1 = WG,Wb2= “Random vector for 
calculating the network exit is generalized”. 

The token that enters place SWb1 obtains characteristic [W1, b1]. The token that enters place 
SWb2 obtains characteristic [W2, b2].  
 

Z2 = 〈{SWb1, SF1,  SP, SNWb1, SAwb1}, {Sa1, SAwb1}, R2, 
∨(SNWb1, SP, SWb1, ∧(SF1, SAwb1))〉 

where 
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and the predicate in the index matrix R2 has the following meaning: WAwb1,a1 = “The outputs of 
the first neural layer are calculated”. 

The token that enters place Sa1 obtains characteristic [a1, W1, b1]. The token that enters place 
SAwb1 obtains characteristic [W1, b1].  
 

Z3 = 〈{SWb2, Sa1,  SF2, SNWb2, SAwb2}, {Sa2, SAwb2}, R3, 
∨(SNWb2, Sa1, SWb2, ∧(SF2, SAwb2))〉 

where: 
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and the predicate in the index matrix R3 is WAwb2,a2 = “The outputs of the second neural layer 
are calculated”. 

The token that enters place Sa2 obtains characteristic [a2, W2, b2]. The token that enters place 
SAwb2 obtains characteristic [W2, b2].  
 

Z4 = 〈{Sa2, St, Sthr, Se, SA4}, {So, SNWb1, SNWb2, Se, SA4 }, R4,  
∨(∧(Sa2, St), ∧(Sthr, Se), ∧(SA4, Se))〉 

where: 
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and the predicates in the index matrix R4 have the meaning: 
• Wa2,O = “e < thr”; 
• Wa2,A4 = We,A4 = WA4,O = “e > thr”; 
• WA4,NWb1 = WA4,NWb2 = ¬Wa2,A4. 

where e is the mean square error and thr is the threshold value for the mean square error. 
 
In the first activation of the transition values in the token from the place Sa2 subtracts from 

the value of the token from place St. This is the mean square error.  
The token from the places Se, SA4, Sa2 united in one token in place SA4 with characteristic 

“New weight coefficients, new biases”. 
 The token that enters in place So obtains characteristic “output values of the weight 

coefficients, outputs value of the biases of the neural network”. 
The token that enters in places SNWb1 and SNWb2 obtain characteristics “New weight 

coefficients for the first layer, new biases for the first layer” and “New weight coefficients for 
the second layer, new biases for the second layer. 

Conclusion  

This model introduces the working method of the Elman neural network with forward 
propagation and its learning using the backpropagation algorithm. 

For the construction of a model of the information processes in the so described structure, 
generalized nets are used, because they offer powerful apparatus for modeling of parallel 
processes and allow tracing their behavior in future, as well as their management and 
optimization.  

The Elman networks are one of the dynamic kinds of neural networks, which are appro-
priate for prediction of processes in their temporal development. 
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