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Abstract: The paper analyses the Ellsberg paradox from the point of view of 
fuzzy rational decision makers, who can only partially measure uncertainty in 
terms of interval probabilities. Alternatives are modeled as fuzzy-rational 
lotteries, and are brought down to classical risky lotteries using intuitionistic 
operators according to a preliminarily chosen decision criterion under strict 
uncertainty. The Hurwiczα  expected utility criterion serves to prove that declared 
preferences in the Ellsberg paradox are consistent and reasonable, if the fuzzy-
rational decision maker is a moderate or extreme pessimist. 
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1. Introduction 
 
When making choices under uncertainty, each alternative may be modeled as a lotteries, 

which is a full group of disjoint events (called states) and the respective consequences (called 
prizes) from these events. Ranking alternatives according to preference is called task under 
strict uncertainty, if the only thing the decision maker (DM) can do is to differentiate states to 
possible and impossible. Several criteria are proposed to rank alternatives in that setup, 
namely Wald [Wald, 1950], Hurwiczα  [Hurwicz, 1951], Savage [Savage, 1951] and Laplace 
criteria [Rapoport, 1989]. However, none of these leads to rational decisions. Ranking 
alternatives according to preference is called a task under risk if the DM is in position to 
measure the relative likelihood of all states in the alternatives in terms of probabilities. Then 
axioms and theorems of utility theory [von Neumann, Morgenstern, 1947] prove the existence 
of the utility function u(.) over prizes, whose values increase with the increase of preferences 
of the DM over prizes. The expected value of utility serves as a rational criterion to rank 
uncertain alternatives. Utilities and probabilities are subjective and typical for each DM 
[Bernstein, 1996]. 

Works document many paradoxes, i.e. systematic deviations of DM’s preference from 
normative rules of utility theory. One of these is the Ellsberg paradox [Ellsberg, 1961], where 
in two consecutive tasks of choice between alternatives, most people demonstrate mutually 
contradicting, preferences in terms of utility theory, at arbitrary probabilities and utilities. 
There are two ways to explain the observer paradox. 

The common opinion is that people are irrational in their behavior [Kahneman, Tversky, 
1973], and obey heuristic and non-heuristic biases and fallacies [Tversky, Kahneman, 1974; 
Clemen, 1996]. For example, ambiguity [Fox, Tversky, 1995] (a tendency to bet on known 
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probabilities than to bet on gambles with “unknown” probabilities) is a non-heuristic bias that 
causes the Ellsberg paradox. Another cause of this paradox might be irrationality of subjective 
probability statements [Kahneman, Tversky, 1979].  

There have been attempts to explain paradoxes by imperfections of utility theory, which 
is why it is replaced with other generalized new normative theoretical models. For example, 
the choice of individuals that complies with the Ellsberg paradox is reasonable and expected 
by the info-gap theory [Ben-Haim, 2006], by the anticipated utility approach [Segal, 1987], by 
Machina’s functional [Machina, 1982], by Chew’s weighted function [Chew, 1983] and by 
generalized expected utility approach [Quiggin, 1993]. Following these ideas, this paper 
analyzes the Ellsberg paradox from the point of view of a fuzzy rational DM, who chooses 
according to Hurwiczα  expected utility. This criterion generalizes utility theory in cases 
when uncertainty is partially quantified in terms of interval probabilities. 

Utility and probability elicitation procedures are relatively similar, and in both cases the 
DM must compare prizes and/or lotteries of certain structure according to preference. 
Elicitation techniques are based on several sets of rationality assumptions [Savage, 1954; De 
Groot, 1970], among which transitivity of binary relations of preference. These assumptions 
hold for the ideal DM, who identifies unique point estimates of utilities and probabilities due 
to her/his infinite discriminating abilities. The real DM partially disobeys transitivity of 
indifference and mutual transitivity of strict preference and indifference. That is why in 
[Nikolova, et al., 2005] such individuals are called fuzzy-rational DMs, and they identify 
interval estimates of utilities and probabilities. Probability intervals in each alternative are 
transformed into point estimates using intuitionistic operators, according to an irrational 
criterion under strict uncertainty. A task under risk is then defined and alternatives are ranked 
according to expected utility [French, Insua, 2000]. It is proven that if a pessimistic DM uses 
the Hurwiczα  criterion for the transformation of probabilities, then she/he would act 
according to Ellsberg paradox and shall exhibit ambiguity. 

In what follows, section two comments the setup of the Ellsberg paradox and the 
associated ambiguity. Section three formulates problems under strict uncertainty and under 
risk, and discusses criteria to rank alternatives in those two cases. Fuzzy rationality is 
discussed in section four, as well as the resulting interval estimates of probabilities. Fuzzy 
rational lotteries are constructed on that basis and three criteria are proposed to rank those. A 
formalization of the Ellsberg paradox is given in section five, and the Hurwiczα  expected 
utility criterion is used to prove that observed preferences of people are rational and 
consistent. 

  
 
2. Ellsberg paradox 
 
The formulation of the Ellsberg paradox is given in [Ellsberg, 1961]. An urn contains 

90 balls, of which 30 are red, and the other 60 are either blue of yellow in unknown 
proportion. The DM has to choose between gambles A and B, where A is “to receive $1000 if 
a red ball is drawn from the urn and nothing otherwise”, and B is “to receive $1000 if a blue 
ball is drawn and nothing otherwise”. A choice between gambles C and D is also proposed, 
where C is “to receive $1000 if a red or yellow ball is drawn and nothing otherwise”, and D is 
“to receive $1000 if a blue or yellow ball is drawn and nothing otherwise”. The works 
[Slovic, Tversky, 1974; MacCrimmon, Larsson, 1979] empirically prove the Ellsberg’s 
hypothesis that most people would choose A to B (since A gives a 1/3 chance to win, whereas 
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at B chances are vague and vary from 0 to 2/3), and at the same time would choose D to C 
(since at D the chance to win is exactly 2/3, whereas at C chances to win are vague and vary 
from 1/3 to 1). 

Such pair of choices contradicts the independence axiom of subjective probability 
[French, 1993]. Let G, S and T are three random events, such that G T O∩ = /  and S T O∩ = / . 
Then the axiom states that if the DM holds G lS (where l denotes the binary relation “at 
leas as likely as”), then she/he should also hold G∪T l S∪T. Statements of similar structure 
may be formulated for the binary relations “equally likely” (~l) and “more likely than” ( l; ).  

This axiom does not hold in the Ellsberg paradox, since preference of A over B means 
that the probability for a red ball is higher than the probability for a blue ball according to the 
DM. Drawing a yellow ball guarantees that neither red nor blue ball can be drawn. Then the 
probability for a red or yellow ball should still be higher than that of a blue and yellow ball. 
However, the preference of D over C states the opposite.  

The tendency in people to bet on gambles with known probabilities than on gambles 
with “unknown” probabilities is called ambiguity [Ellsberg, 1961]. This effect is empirically 
studied in [Fox, Tversky, 1995]. Evidence showed that people prefer to bet on “unknown” 
statements in cases when they feel competent, and vise versa – prefer known probabilities 
when they do not feel competent on the matter. It is also proven that avoiding uncertainty “… 
is driven by the feeling of incompetence … [and] will be present when subjects evaluate clear 
and vague prospects jointly, but it will greatly diminish or disappear when they evaluate each 
prospect in isolation”. For example, people knowledgeable in politics and ignorant about 
sports would prefer betting on political events than betting on games of chance at the same 
odds, but would prefer betting on games of chance to betting on sport games under the same 
conditions. 

 
 
3. Choosing alternatives under strict uncertainty and under risk 
 
A formalization of tasks under strict uncertainty and under risk is proposed in 

[Tenekedjiev, 2006]. A DM should compare, according to preference, a set of n uncertain 
alternatives that given r different prizes (consequences) xj, numbered so that x1 is most 
preferred, and xr is the least preferred prize. Let’s define the states 1θi , , 2θi , , …, θi ,r  , that are 
a set of hypotheses. If θi , j  occurs under the i-th alternative, then the DM would receive xj. 
Then the ordinary lottery may be represented as in (1) with conditions in (2): 

 
li=< 1θi , , x1; 2θi , , x2; …; θi ,r , xr >,       (1) 

 
1 2; ; ;
� � � rx x ... x  

θ ∅;
�i , j l , 

1θi , ∪ 2θi , ∪…∪ θi ,r =Θ , 

i , j i ,kθ θ∩ =∅ , for ≠j k .  

(2)

 
Here, ∅  is the impossible event, Θ  is the certain event, and ;

�
 is the binary relation „at 

least as preferred as” over prizes and lotteries. The DM has constructed a utility function u(.) 
over the prizes xj, such that 
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u(xj)≥ u(xk) ⇔ ;

�j kx x ,        (3) 
 

and with the conditions that u(x1)=1, u(xr)=0 [Keeney, Raiffa, 1993]. Under strict uncertainty, 
the DM only knows which states are possible and which are not. The discrete Boolean 
function b(.) over the states θi , j  may be defined: 

 
for 

( )
for 

i , j l
i , j

i , j l

' t ',
b

' f ', ~
θ

θ
θ

∅⎧
= ⎨ ∅⎩

;
        (4) 

 
1 2( ) ( ) ( )θ θ θ∨ ∨ ∨ =…i , i , i ,rb b b ' t ' .       (5) 

 
where ∨  is the Boolean operator “and”. Then formulae (2), (5) and (6) describe lotteries 
under strict uncertainty: 

 
su
il =<< 1θi , ,b( 1θi , )>, x1;< 2θi , ,b( 2θi , )>, x2;…; <θi ,r , b(θi ,r )>, xr>.   (6) 

 
Lotteries (6) may be ranked using several criteria, among which Wald and Hurwiczα  

criteria. 
Wald’s maximin return criterion [Wald, 1950] introduces the security level si, which 

coincides with the worst consequence of the i-th alternative: 
 

1
( )

{ ( )}
θ

=
=

=
i , j

r
i j

j
b ' t '

s min u x .         (7) 

 
The recommended alternative is lk, where the security level is maximal. That is why 

Wald’s criterion is suitable for extreme pessimists. 
If the DM is an extreme optimist, she/he can use the maximax criterion. The optimism 

level oi is introduced, which is the best possible outcome from the i-th alternative 
 

1
( )

{ ( )}
θ

=
=

=
i , j

r
i j

j
b ' t '

o max u x .         (8) 

 
The recommended alternative is lk, for which the optimism level is maximal. Since 

people are rarely extreme pessimists or optimists, the Hurwiczα  criterion weighs the security 
level and the optimism level by the pessimism-optimism index α ∈[0;1] [Hurwicz, 1951] 

 
α
ih =α si+(1–α  )oi.         (9) 

 
The recommended alternative is lk, for which α

ih  is maximal. The value of α  is a 
measure of pessimism of the DM. It is subjectively elicited and holds for all decision 
problems of that DM. A set of rationality conditions for each decision criterion is defined in 



43 
 

[French, 1993]. It is proven that none of the decision criteria under strict uncertainty is 
rational. 

Under risk, the ideal DM defines unique point estimates of probabilities of θi , j : 
 

( ) 0θ ≥i , jP ,          (10) 
P( 1θi , )+P( 2θi , )+…+P(θi ,r )=1.       (11) 

 
Then the lottery (1) may be brought down to (12), with conditions in (2), (10) and (11) 

and is called a classical risky lottery: 
 

cr
il =<P( 1θi , ), x1; P( 2θi , ), x2;…; P(θi ,r ), xr>.      (12) 

 
If certain rationality conditions hold [French, Insua, 2000], then these lotteries may be 

ranked in descending order of expected utility: 
 

Ei(u/p)=
1

( )
r

i , j j
j

P uθ
=
∑ .         (13) 

 
The recommended alternative is lk, where Ei(u/p) is maximal.  
Rationality conditions may be defined together for preference and expectations 

[Villigas, 1964; Tenekedjiev, 2004; De Groot, 1970] or in separate axiomatic sets [Ramsay, 
1931; Savage, 1954; Pratt, et al., 1995]. Transitivity of binary relations of preference is 
present in both cases.  

 
 
4. Choosing between alternatives with partially quantified uncertainty 
 
When eliciting the subjective probability of a random event B, the DM compares two 

gambles. The first gamble, l1(B), gives a huge prize if B occurs and nothing otherwise. The 
other gamble, l2(m,n), is based on an urn of n balls, of which m are white, and the rest are 
black. The DM receives the same huge prize if she/he draws a white ball, and nothing 
otherwise. The preferential equation l1(B)~l2(m,n) is solved according to m at given B and 
fixed n, using bisection [Press, et al., 1992]. When indifference is declared, P(B)=m(B)/n. 
This holds for the ideal DM. For the fuzzy-rational DM there exist two integers m1 and m2 
(m2>m1), such that l1(B)~l2(m1,n), l1(B)~l2(m2,n), l2(m2,n); l2(m1,n). That is why it is 
necessary to find the greatest m=mdown, where l1(B); l2(mdown,n), and the smallest m=mup, 
where l2(mup,n); l1(B). Then the root m(B)∈(mdown;mup) and mdown/n=Pd(B)< 
<P(B)<Pu(B)=mup/n. Finally, P(B)∈[Pd(B); Pu(B)], in order to accommodate the case when 
probabilities are known. The uncertainty interval of P(B) is elicited using triple bisection 
[Tenekedjiev, et al., 2004]. 

If the DM can elicit the uncertainty interval of the probabilities of θi , j , defined in (14) 
with conditions in (15), a problem with partially quantified uncertainty exists [Tenekedjiev, 
2006]:  

 
P(θi , j )∈[Pd(θi , j ); Pu(θi , j )], for i=1,2,…,n and j=1,2,…,r,    (14) 
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Pd(θi , j )≥ 0, for j=1, 2, …, r, 
Pd(θi , j ) ≤ Pu(θi , j ), for j=1, 2, …, r, 
Pu(θi , j ) ≤ 1, for j=1, 2, …, r, 
Pd( 1θi , )+Pd( 2θi , )+…+Pd(θi ,r )≤ 1, 
Pu( 1θi , )+Pu( 2θi , )+…+Pu(θi ,r )≥ 1. 

(15)

 
The lottery (1) with probabilities in (14) is called a fuzzy-rational lottery:  
 

fr
il =<< 1θi , ,Pd( 1θi , ),1–Pu( 1θi , )>,x1;< 2θi , ,Pd( 2θi , ),1–Pu( 2θi , )>,x2;…;    

<θi ,r , Pd(θi ,r ), 1–Pu(θi ,r )>, xr>.      (16) 
 
The same source justifies analogy between the triples „event from a field of events – 

interval subjective probability – point estimate of probability” and „object from a universe – 
degree of membership to an intuitionistic fuzzy set [Atanassov, 1999] – degree of 
membership to a (classical) fuzzy set”. On that basis, interval probabilities transform into 
point estimates using operators that transform intuitionistic degrees of membership into 
classical degrees of membership [Atanassov, 1988; Atanassov, 1989]. Then the uncertainty 
interval of the probability of a random event θ  transforms as follows: 
 

□θ =<θ , Pd(θ ), 1– Pd(θ )>,        (17) 
 

◊θ =<θ , Pu(θ ), 1– Pu(θ )>,        (18) 
 

αD (θ )=<x, Pd(θ )+α [Pu(θ )–Pd(θ )],1– Pu(θ )+(1–α )[ Pu(θ )–Pd(θ )]>,   
for α ∈ [0; 1],          (19) 

 
where □, ◊ and αD  are the operators necessity, possibility and their fuzzy generalization. 
Since 0 ≡D □, 1 ≡D ◊, then αD  transforms an arbitrary interval probability in the segment 
(□θ , ◊θ ).  

Fuzzy-rational lotteries cannot be ranked by expected utility, since (11) does not hold. 
On the other hand, ranking lotteries of the type (16) is problem under risk and under strict 
uncertainty, since part of the uncertainty is quantified by subjective probability, and the rest 
cannot be quantified by the DM. The works [Nikolova, 2006; Tenekedjiev, 2006] propose to 
transform interval probabilities into point estimate using Wald and Hurwiczα  criteria. The 
resulting lotteries are classical risky and are ranked according to Wald and Hurwiczα  
expected utility. 

Wald’s criterion assumes to increase the probabilities of prizes from their lowest limit 
Pd(θi , j ) (but not higher than their upper limit), initiating with the worst outcome, until the 
corrected probabilities sum to one. Then Wald lotteries are constructed: 

 
W
il =<□ 1θi , , x1;…; □ ( ) 1i

Wi , jθ
−

, ( ) 1i
Wj

x
−

; ( )iDβ ( ( )i
Wi , jθ ), ( )i

Wj
x ;◊ ( ) 1i

Wi , jθ
+

, ( ) 1i
Wj

x
+

;…; ◊θi ,r , xr>, (20) 
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where ( )i
Wj  and ( )iβ  are assessed using ( )i

kβ , for k=1,2,…,r: 
 

1 1

( )

1 1

1 1

1 ( ) ( )
for ( ) ( )

( ) ( )

0 for ( ) ( ) and ( ) ( ) or <

1 for ( ) ( ) and ( ) ( ) and 

r k
u i , j d i , j

j k j
u i ,k d i ,k

u i ,k d i ,k

r ri
u i ,k d i ,k u i ,k d i ,kk

k k

r
u i ,k d i ,k u i ,k d i ,k

k k

P P
, P P

P P

, P P P P k r

, P P P P k r

θ θ
θ θ

θ θ

β θ θ θ θ

θ θ θ θ

= + =

= =

= =

− −
>

−

⎛ ⎞= = >⎜ ⎟
⎝ ⎠

= = =

∑ ∑

∑ ∑

∑
r

⎧
⎪
⎪
⎪
⎪⎪
⎨
⎪
⎪
⎪
⎪
⎪⎩

∑

  (21) 

 
( )i
Wj =arg{ ( )i

kβ ∈ (0; 1]}, ( )iβ =
( )

( )
ijW

iβ .       (22) 

 
Regardless of the fact that (20) is a fuzzy rational lottery, uncertainty is completely 

quantified and the lottery may be structured as a classical risky one: 
 

Wcr
il =<PW( 1θi , ), x1; PW( 2θi , ), x2;…; PW(θi ,r ), xr>,     (23) 

 
( )

( )( )

( )

( ) for

( ) ( ) [ ( ) ( )] for

( ) for

i
d i , j W

iW i
i , j d i , j u i , j d i , j W

i
u i , j W

P j j

P P P P j j

P j j

θ

θ θ β θ θ

θ

⎧ <
⎪⎪= + − =⎨
⎪ >⎪⎩

    (24) 

 
Expected utility (25) may be used to rank lotteries (23), which is the Wald expected 

utility criterion to rank fuzzy-rational lotteries: 
 

( )W
iE u/p =

1
( ) ( )θ

=
∑
r W

i , j j
j

P u x .        (25) 

 
If the maximax criterion is used, then probabilities of prizes are decreased from their 

upper margin Pu(θi , j ) (but not lower than their lower margin), initiating with the best prize, 
until the corrected probabilities sum to one. The anti-Wald lottery is constructed: 

 
W

il¬ =<◊ 1θi , , x1;…; ◊ ( ) 1i
Wi , jθ

¬ −
, ( ) 1i

Wjx
¬ −

; γD ( ( )i
Wi , jθ

¬
), ( )i

Wjx
¬

;□ ( ) 1i
Wi , jθ

¬ +
, ( ) 1i

Wjx
¬ +

;…; □θi ,r , xr>, (26) 

 
where ( )i

Wj¬  and ( )iγ  are assessed using ( )i
kγ  for k=1,2,…,r: 
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1

1

( )

1 1

1 1

1 ( ) ( )
   for ( ) ( )

( ) ( )

0 for ( ) ( ) and ( ) ( ) or >1

1 for ( ) ( ) and ( ) ( ) a

r k
d i , j u i , j

j k j
u i ,k d i ,k

u i ,k d i , j

r ri
k u i ,k d i ,k u i ,k d i ,k

k k

r r
u i ,k d i ,k u i ,k d i ,k

k k

P P
, P P

P P

, P P P P k

, P P P P

θ θ
θ θ

θ θ

γ θ θ θ θ

θ θ θ θ

−

= =

= =

= =

− −
>

−

⎛ ⎞= = >⎜ ⎟
⎝ ⎠

= =

∑ ∑

∑ ∑

∑ ∑ nd 1k

⎧
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪ =⎪⎩

  (27) 

 
( )i

Wj¬ =arg{ ( )i
kγ ∈ (0; 1]}, ( )iγ =

( )

( )
ij W

iγ
¬

.       (28) 

 
Regardless of the fact that (26) is a fuzzy rational lottery, uncertainty is completely 

quantified and the lottery may be structured as a classical risky one: 
 

W
il¬ =< ¬WP ( 1θi , ), x1; ¬WP ( 2θi , ), x2;…; ¬WP (θi ,r ), xr>,    (29) 

 
( )

( )( )

( )

( ) for

( ) ( ) [ ( ) ( )] for

( ) for

i
u i , j W

iW i
i , j d i , j u i , j d i , j W

i
d i , j W

P , j j

P P P P , j j

P , j j

θ

θ θ γ θ θ

θ

¬

¬
¬

¬

⎧ <
⎪⎪= + − =⎨
⎪ >⎪⎩

   (30) 

 
Expected utility (31) may be used to rank lotteries (29), which is the anti-Wald expected 

utility criterion to rank fuzzy-rational lotteries: 
 

( )¬W
iE u/p =

1
( ) ( )θ¬

=
∑
r W

i , j j
j

P u x .       (31) 

 
If the Hurwiczα  criterion is used, the Hurwiczα  lottery is constructed, where Wald and 

anti-Wald probabilities are weighted by α : 
 

H cr
il α =< HP α ( 1θi , ), x1; HP α ( 2θi , ), x2;…; HP α (θi ,r ), xr>,    (32) 

 
( ) ( ) (1 ) ( )α θ α θ α θ¬= + −H W W

i, j i , j i , jP P P .      (33) 
 
Expected utility (34) may be used to rank lotteries (32), which is the Hurwiczα  

expected utility criterion to rank fuzzy-rational lotteries: 
 

( )αH
iE u/p =

1
( ) ( )α θ

=
∑
r

H
i , j j

j
P u x .       (34) 
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5. Formalization of the Ellsberg paradox 
  
5.1. Setup  
Let x1 be the prize of $1000, x2 be the prize of $0, and the random events 1θ , 2θ  and 3θ  

are respectively „to draw red/blue/yellow ball from an urn of 90 balls, of which exactly 30 are 
red”. The gambles A, B, C and D may be represented as ordinary lotteries: 

  
lA=< 1A,θ , x1; 2A,θ , x2>,        (35) 

 
lB =< 1B,θ , x1; 2B,θ , x2>,        (36) 

 
lC =< 1C ,θ , x1; 2C ,θ , x2>,        (37) 

 
lD=< 1D,θ , x1; 2D,θ , x2>,        (38) 

where  
 

1A,θ ≡ 1θ ; 2A,θ ≡ 2 3θ θ∪ ≡ 1θ ;  

1B,θ ≡ 2θ ; 2B,θ ≡ 1 3θ θ∪ ≡ 2θ ;  

1C ,θ ≡ 1 3θ θ∪ ≡ 2θ ; 2C ,θ ≡ 2θ ;  

1D,θ ≡ 2 3θ θ∪ ≡ 1θ ; 2D,θ ≡ 1θ .  

(39)

 
The task is to compare according to preference the lotteries in the pairs lA – lB, lC – lD.  
 
5.2. Solution using classical risky lotteries 
According to each rational DM: 
a) x1 and x2 are the most and the least preferred prize, thus u1=u(x1)=1, u2=u(x2)=0; 
b) the probability to draw a red ball is P( 1θ )=30/90=1/3 and then the probability not to 

draw a red ball is 1( )P θ =1– P( 1θ )= 1–1/3=2/3;  
c) the subjective probability to draw a blue ball is an unique value not greater than 1/3: 

P( 2θ )=a∈[0; 2/3]. Then the subjective probability not to draw a blue ball is 2( )P θ =1– 
P( 2θ )= 1–a; 

According to (39), the lotteries (35)-(38) are presented as classical risky ones: 
 

cr
Al =<P( 1A,θ ), x1; P( 2A,θ ), x2>=<1/3, x1; 2/3, x2>,     (40) 

 
cr
Bl  =<P( 1B,θ ), x1; P( 2B,θ ), x2>=<а, x1; 1–а, x2>,     (41) 

 
cr
Cl  =<P( 1C ,θ ), x1; P( 2C ,θ ), x2>=<1–а, x1; а, x2>,     (42) 

 
cr
Dl =<P( 1D,θ ), x1; P( 2D,θ ), x2>>=<2/3, x1; 1/3, x2>.     (43) 

 
The expected utilities of (40)-(43) are  
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EA(u/p)=1/3u1+2/3u2=1/3,        (44) 

 
EB(u/p)= au1+(1–a)u2=a,        (45) 

 
EC(u/p)=(1–a)u1+au2=1–a,        (46) 

 
ED(u/p)=2/3u1+1/3u2=2/3.        (47) 

 
Let the DM prefers A to B and then 
 

EA(u/p) > EB(u/p) => 1/3>a.        (48) 
 
Then (–1/3) < (–a), which means that 2/3=1–1/3< (1–a), and it follows that 

 
EC(u/p)= 1–a > 2/3= ED(u/p).        (49) 

 
From (49) it follows that the DM should prefer C to D. It follows that people that prefer 

A to B and C to D, are not rational. 
 
5.3. Solution using fuzzy-rational lotteries 
According to each fuzzy-rational DM: 
a) x1 and x2 are the most and least preferred prizes, thus u(x1)=1, u2=u(x2)=0; 
b) the probability to draw a red ball is P( 1θ )=30/90=1/3, thus the probability not to draw 

a red ball is 1( )P θ =1– P( 1θ )= 1–1/3=2/3;  
c) the subjective probability to draw a blue ball P( 2θ )∈[0; 2/3]; 
d) the subjective probability to draw a yellow ball P( 3θ )∈[0; 2/3]; 
e) the subjective probability not to draw a blue ball equals the sum of the subjective 

probability to draw a red ball and of the subjective probability to draw a yellow ball: 
2( )P θ = 1 3( )P θ θ∪ = P( 1θ )+P( 3θ )∈[1/3; 1]. 

According to (39), the lotteries (35)–(38) may be presented as fuzzy-rational lotteries: 
 

fr
Al =<< 1A,θ ,Pd( 1A,θ ),1–Pu( 1A,θ )>, x1; < 2A,θ , Pd( 2A,θ ),1–Pu( 2A,θ )>, x2>=    

=<< 1A,θ , 0, 1>, x1;< 2A,θ , 1/3, 0>, x2>,      (50) 
 
fr

Bl =<< 1B,θ ,Pd( 1B,θ ),1–Pu( 1B,θ )>, x1; < 2B,θ , Pd( 2B,θ ),1–Pu( 2B,θ )>, x2>=    
=<< 1B,θ , 0, 1>, x1;< 2B,θ , 1/3, 0>, x2>,      (51) 

 
fr

Cl =<< 1C ,θ ,Pd( 1C ,θ ),1–Pu( 1C ,θ )>, x1; < 2C ,θ , Pd( 2C ,θ ),1–Pu( 2C ,θ )>, x2>=    
=<< 1C ,θ , 1/3, 0>, x1;< 2C ,θ , 0, 1/3>, x2>,      (52) 

 
fr

Dl =<< 1D,θ ,Pd( 1D,θ ),1–Pu( 1D,θ )>, x1; < 2D,θ , Pd( 2D,θ ),1–Pu( 2D,θ )>, x2>=    
=<< 1D,θ , 1/3, 0>, x1;< 2D,θ , 0, 1/3>, x2>.      (53) 
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If Wald expected utility criterion is used, then according to (21) and (22) it follows that 

( )
1

Bβ =0, ( )
2
Bβ =1, ( )B

Wj =2, ( )Bβ =1, 1 1( ) ( )W
B, d B,P Pθ θ= =0, 2 2( ) ( )+W

B, d B,P Pθ θ=  
( )

2 2+ ( ) ( )B
u B, d B,P Pβ θ θ−⎡ ⎤⎣ ⎦=1 and (51) transforms into the Wald lottery 

 
Wcr
Bl =<PW( 1B,θ ), x1; PW( 2B,θ ), x2>=<0, x1; 1, x2>.     (54) 

 
By analogy, ( )

1
Cβ =0, ( )

2
Cβ =1, ( )C

Wj =2, ( )Cβ =1, 1 1( ) ( )W
C , d C ,P Pθ θ= =1/3, 2( )W

C ,P θ =  
( )

2 2 2( )+ ( ) ( )B
d C , u C , d C ,P P Pθ β θ θ= −⎡ ⎤⎣ ⎦=2/3 and (52) transforms into the Wald lottery 

 
Wcr
Cl =<PW( 1C ,θ ), x1; PW( 2C ,θ ), x2>=<1/3, x1; 2/3, x2>.    (55) 

 
If the anti-Wald criterion is used, then according to (27) and (28) it follows that ( )

1
Bγ =1, 

( )
2
Bγ =0, ( )B

Wj¬ =1, ( )Bγ =1, ( )
1 1 1 1( ) ( )+ ( ) ( )W B

B, d B, u B, d B,P P P Pθ θ γ θ θ¬ = −⎡ ⎤⎣ ⎦=2/3, 2( )W
B,P θ¬ =  

2( )d B,P θ= =1/3 and (51) transforms into the anti-Wald lottery 
 

Wcr
Bl¬ =< ¬WP ( 1B,θ ), x1; ¬WP ( 2B,θ ), x2>=<2/3, x1; 1/3, x2>.    (56) 

 
By analogy, ( )

1
Cγ =1, ( )

2
Cγ =0, ( )C

Wj¬ =1, ( )Cγ =1, 1 1( ) ( )+W
C , d C ,P Pθ θ¬ =  

( )
1 1+ ( ) ( )B

u C , d C ,P Pγ θ θ−⎡ ⎤⎣ ⎦=1, 2 2( ) ( )W
C , d C ,P Pθ θ¬ = =0 and (52) transforms into the anti-Wald 

lottery 
 

Wcr
Cl¬ =< ¬WP ( 1C ,θ ), x1; ¬WP ( 2C ,θ ), x2>=<1, x1; 0, x2>.    (57) 

 
If the Hurwiczα  criterion is used at a given value of α , then according to (33) for the 

lottery (51), 1 1 1( ) ( ) (1 ) ( )H W W
B, B, B,P P Pα θ α θ α θ¬= + − =2/3–2/3α , 2( )H

B,P α θ =  

2 2( ) (1 ) ( )W W
B, B,P Pα θ α θ¬= + − =1/3+2/3α . Then (51) transforms into the Hurwiczα  lottery 

 
H cr
Bl α =< HP α ( 1B,θ ), x1; HP α ( 2B,θ ), x2>=<2/3–2/3α , x1; 1/3+2/3α , x2>.   (58) 

By analogy, for (52) 1 1 1( ) ( ) (1 ) ( )H W W
C , C , C ,P P Pα θ α θ α θ¬= + − =1 2/3α− , 

2( )H
C ,P α θ =  2 2( ) (1 ) ( )W W

C , C ,P Pα θ α θ¬= + − = 2/3α  and (52) transforms into the Hurwiczα  
lottery 

 
H cr
Cl α =< HP α ( 1C ,θ ), x1; HP α ( 2C ,θ ), x2>=<1–2/3α , x1; 2/3α , x2>.    (59) 

 
Regardless of the fact that (50) and (53) are fuzzy rational lotteries, uncertainty is 

completely quantified and then 
 

H cr
Al α = Wcr

Al = Wcr
Al¬ = cr

Al =<P( 1A,θ ), x1; P( 2A,θ ), x2>=<1/3, x1; 2/3, x2>,  (60) 
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H cr
Dl α = Wcr

Dl = Wcr
Dl¬ = cr

Dl =<P( 1D,θ ), x1; P( 2D,θ ), x2>=<2/3, x1; 1/3, x2>.  (61) 
 

The expected utilities of (58) – (61) may be found using (34): 
 

( )H
AE u/pα =1/3u1+2/3u2=1/3,        (62) 

 
( )H

BE u/pα =(2/3–2/3α )u1+(1/3+2/3α )u2=2/3–2/3α ,    (63) 
 

( )H
CE u/pα =(1–2/3α )u1+2/3α u2=1–2/3α ,      (64) 

 
( )H

DE u/pα =2/3u1+1/3u2=2/3.        (65) 
 

Let the DM prefers A to B and then 
 

( )H
AE u/pα > ( )H

BE u/pα =>1/3>2/3–2/3α =>α >1/2.     (66) 
 
Then (–2/3α )<(–1/3), thus 1–2/3α <1–1/3=2/3, and it follows that 

 
( )H

DE u/pα = 2/3>1–2/3α = ( )H
CE u/pα .       (67) 

 
From (67) it follows that the DM must prefer D to C. Thus, people who prefer A to B 

and D to C, make а consistent choice, in case they are moderate or extreme pessimists, since 
α >1/2. Regardless of Hurwicz’s initial idea, it is not a problem for the DM to elicit α  in 
each problem. It is assumed in [Rapoport, 1989], on the basis of empirical evidences in 
[Cohen, Jaffray, Said, 1985] that in situation of expected profit people prefer to be pessimists 
and α  is greater than 1/2. The Ellsberg paradox is a task with expected profit and thus it is 
not surprising that most people, acting as pessimists, intuitively choose A to B and D to C. 
Since this is also the recommended choice of the Hurwiczα  expected utility, then there is 
actually no paradox. 

 
 
Conclusion 
 
Obviously, interval estimates of probabilities should not be related to the DM’s value 

system, i.e. her/his preferences over prizes should not change her/his expectations to receive 
them. However, if the Ellsberg paradox is analyzed from the point of view of the rational DM, 
then it is assumed without argumentation that finding point estimates is also not related to the 
value system of the DM. On the contrary, point estimates of probabilities in the Hurwiczα  
lotteries strongly rely on the fact that prizes are ordered according to preferences, and account 
for pessimism/optimism of DMs.  

The Hurwiczα  expected utility criterion may also justify ambiguity. Wide probability 
uncertainty intervals shall be identified for events that the DM feels incompetent about, and 
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vise versa. Assume that the DM must choose between the gambles l1=<P( 1θ ), x1; P( 1θ ), x2> 
and l2=<P( 2θ ), x1; P( 2θ ), x2>, where 1θ  is a random event that the DM feels competent about, 
and 2θ  is an event that the DM feels incompetent about. Assume also that the DM has elicited 
the probabilities of both events as P( 1θ )∈[Pd( 1θ ); Pu( 1θ )] and P( 2θ )∈[Pd( 2θ ); Pu( 2θ )], 
where Pd( 1θ )+Pu( 1θ )≈Pd( 2θ )+Pu( 2θ ). Then usually Pu( 2θ )–Pd( 2θ )>Pu( 1θ )–Pd( 1θ ) and 
Pd( 1θ )>Pd( 2θ ), since the DM is more confident in her/his knowledge about 1θ  than about 2θ . 
Having in mind that most people choose according to the Hurwiczα  expected utility criterion 
at values α  close to one, and that u1=1, u2=0, then the expected utilities of l1 and l2 shall be 
E1(u/p)=Pd( 1θ ), E2(u/p)=Pd( 2θ ). Then ambiguity seems quite rational, since it recommends 
the choice of the gamble l1 that the DM understands well than the gamble l2 that is unclear for 
the DM. Due to the interval estimates of subjective probabilities, human behavior does not 
seem to be as irrational as normative decision schemes claim it to be. 
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