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Abstract: A generalized net model of the mutation operator for the genetic algorithm is 
developed. The apparatus of generalized nets is considered as an appropriate tool for 
describing the performance of the genetic algorithm. The proposed generalized net model is a 
realization of the mutation operator for the Breeder genetic algorithm. The resulting GN 
model can be considered as a separate net, but also can be aggregated into a generalized net 
model which describes the whole genetic algorithm performance. 
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Introduction 
 
Evolution of natural organisms is based on three major components – reproduction, variation 
and selection. Some reproductions of natural organisms occur with “failures” called 
mutations. A more systematic variation of the genetic material happens in sexual 
reproduction. Each parent contributes half of its genetic material to the offspring. This method 
of variation is called recombination. The offspring will be identical to the parents if the 
parents are genetically equal. Variation is necessary to allow selection to work. Selection in 
nature is very difficult to define precisely. The term was introduced by Darwin very 
informally. “The preservation of favourable variations and the rejection of injurious 
variations, I call Natural Selection”. But how can an observer predict which are the favorable 
variations? The favorable variations are the variations which are preserved! The variations 
can only be judged after they have competed in the “struggle for life”. Natural selection is no 
independent force of nature, it is the result of the competition of natural organisms for 
resources. In contrast, in the science of breeding the above problem does not exist. The 
selection is done by human breeders. Their strategies are based on the assumption that mating 
two individuals with high fitness more likely produces an offspring of high fitness than two 
randomly mating individuals. The Breeder genetic algorithm (BGA) introduced by the author 
previously [8] is based on the science of breeding. The science is part of applied statistics. A 
major component is the parent-offspring correlation and the heritability coefficient [5, 6, 8, 9].  
 
The main purpose of this paper is to develop a Generalized Net (GN) model to realize the 
process of a mutation operator of the BGA. Until now GNs have been used for modelling of 
parallel processes in several areas [2, 3]. Among them a few GN models regarding GA 
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performance have been developed [1, 4, 10, 11]. The results show that the apparatus of GNs 
can be considered as an appropriate tool to model and perform parallel processes such as 
GAs. 
 
Mutation operator of the Breeder Genetic Algorithm 
 
Mutation is a genetic operator that alters one ore more gene values in a chromosome from its 
initial state. This can result in entirely new gene values being added to the gene pool. With 
these new gene values, the genetic algorithm may be able to arrive at better solution than was 
previously possible. Mutation is an important part of the genetic search as helps to prevent the 
population from stagnating at any local optima. Mutation occurs during evolution according 
to a user-definable mutation probability. This probability should usually be set fairly low. If it 
is set to high, the search will turn into a primitive random search. 
 
The goal of mutation operator is for modifying one or more parameters of zi (individuals or 
chromosomes), the modified objects (i.e. offspring) appear in the landscape within a certain 
distance of unmodified objects (i.e. parents). The mutation operator is defined as follows [7]: 
 
A chromosome xi is selected with probability pm for mutation. The BGA normally uses 
pm = 1/n. At least one variable will be mutated. A value out of an interval [– rangei, rangei] is 
added to the selected variable. rangei defines the mutation range. It is normally set to 
a·searchintervali, where a is a constant. searchintervali (upper-bound, lower-bound) is the 
domain of definition of variable xi. 
 
The new value zi (new chromosome) is computed according to 

zi (NewChrom) = xi (OldChrom) ± rangei·δ,  (1) 
where 
 ( )0.5range upperbound lowerbound= ⋅ − . (2) 

 
The + or – sign is chosen with probability 0.5 (see Eq. (1) - (2)).·δ is computed from a 
distribution which prefers small values. This is realized as follows 
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Before mutation iα = 0 is set. Then each iα  is mutated to 1 with probability pδ = 1/accur. Only 

iα = 1 contributes to the sum. On the average there will be just one iα with value 1 say jα . 
Then δ is given by 

 δ = 2-j (5) 
 
The mutation operator is similar in spirit to that used by the parallel GA [9] but the BGA 
operator is much more easy to understand. Furthermore, it is independent of the location in 
phenotype space. 
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The standard BGA mutation operator is able to generate any point in the hypercube with 
center x defined by xi ± rangei. But it tests much more often in the neigborhood of x. In 
Eq. (3), ‘accur’ (precision of mutation steps) is a parameter originally related to the machine 
precision, that is, the numbers of bits used to represent a real variable in the machine we are 
working with, traditionally there were used values of 8 and 16. 
 
Generalized Net Model 
 
The GN model of mutation operator of the BGA is shown in Fig. 1. The proposed GN model 
generates a matrix ‘Chrom’ with the real representation of the individuals in the current 
population, mutates the individuals with given mutation probability (pm) and returns the 
resulting population (NewChrom) – the same number of randomly initialized real valued 
individuals. 
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Fig. 1. Generalized net model of mutation operator 

 
The transition Z1 has the following definition: 

Z1 = <{l1, l2}, {l3, l4, l5}, r1, ∨(l1, l2)>, 
 

  l3 l4 l5 
r1 = l1 W1 false W3 
 l2 false W2 false 

 
where W1 = “estimation of the parameter range”; W2 = “evaluation of uniformly distributed 
random numbers αi”; W3 = “generation of a matrix Chrom”. 

 
After the transition Z1 the tokens take on the following characteristics: 

• In position l1 the preliminary parameters are given: individuals number (nvar) 
and matrix of the boundaries of each individual – upper-bound and lower-bound. 
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• In position l2 the initial parameters for mutation operator are given: probability 
for mutation of a variable (pm); mutation type - added (+) or subtracted (–) and 
accur. 

• In position l3 the value of the range is evaluated (according to Eq. (2)). 
• In position l4 the values of the αi parameters are evaluated (according to Eq. (4)). 
• In position l5 the matrix Chrom is formed. 

 
The form of the transition Z2 is: 

Z2 = <{l4}, {l6}, r2, ∨(l4)>, 
 

  l6 
r2 = l4 W4 

 
where W4 = “δ value evaluation”. 
 
In position l6 the δ value is obtained (according to Eq. (3)). 
 
The transition Z3 has the following formal definition: 
 

Z3 = <{l3, l4, l6, l10}, {l7}, r3, ∨( l3, l4, l6)>, 
 

  l7 
r3 = l3 W5 
 l4 W5 
 l6 W5 
 l10 W6 

 
where W5 = “mutation, based on standard BGA mutation operator”; W6 = “mutation, based 
on standard BGA mutation operator, if boundaries are not satisfied”. 
 
In position l7 the matrix of NewChrom is obtained. The matrix is in the same format as 
OldChrom and containes the chromosomes of the population after mutation. 
 
The next transition Z4 provides control of the variable boundaries validity, compared to lower 
and upper boundaries. The form of the transition Z4 is: 
 

Z4 = <{l7}, {l8}, r4, ∨(l7)>, 
 

  l8 
r4 = l7 W7 

 
where W7 = “control of variable boundaries”. 
 
The form of the transition Z5 is: 

Z5 = <{l8}, {l9, l10}, r5, ∨(l8)>, 
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  l9 l10 
r5 = l8 W8 ¬W8

 
where W8 = “end of mutation process”. 
 
In position l9 the new chromosome is ready for further examination of the genetic algorithm, 
if the boundaries of the chromosome are in the appropriate range. Otherwise, if the boundaries 
of the new chromosome are not in the appropriate range, the result is returned to the transition 
Z3 for a new mutation operation. 
 
Conclusion 
 
Using the apparatus of Generalized Nets a GN model has been constructed to realize the 
mutation operation of a genetic algorithm. Mutation is an important part of the genetic search 
that prevents the population from stagnation at any local optima. The proposed GN model 
performs mutation, based on the standard Breeder genetic algorithm mutation operator. 
 
The resulting GN model can be considered as a separate net, but the separate parts can also be 
accumulated into a composite GN model, which describes the whole genetic algorithm 
performance. 
 
References 
 
[1] Aladjov H., K. Atanassov, A Generalized Net for Genetic Algorithms Learning, Proc. of the 

XXX Spring Conference of the Union of Bulgarian Mathematicians, Borovets, 2001, 242-249. 
[2] Atanassov K., Generalized Nets and Systems Theory, Sofia, Academic Publishing House “Prof. 

M. Drinov”, 1997. 
[3] Atanassov K., Generalized Nets, Singapore, New Jersey, London, World Scientific, 1991. 
[4] Atanassov K., H. Aladjov, Generalized Nets in Artificial Intelligence, Vol. 2: Generalized nets 

and Machine Learning, Prof. M. Drinov Academic Publishing House, Sofia, 2000. 
[5] Crisan C., H. Mühlenbein, The Breeder Genetic Algorithm for Frequency Assignment, Lecture 

Notes in Computer Science, 1498, 1998, 897. 
[6] Montiel O., O. Castillo, P. Melin, R. Sepulveda, Application of a Breeder Genetic Algorithm for 

Filter Optimization, Natural Computing: An International Journal Archive, 4(1), 2005, 11-37. 
[7] Montiel O., O. Castillo, R. Sepulveda, P. Melin, Application of a Breeder Genetic Algorithm for 

Finite Impulse Filter Optimization, Information Sciences, 161, 2004, 139-158. 
[8] Mühlenbein H., D. Schlierkamp-Voosen, Predictive Model for Breeder Genetic Algorithm, 

Evolutionary Computation, 1, 1993, 25-49. 
[9] Mühlenbein H., M. Schomisch, J. Born, The Parallel Genetic Algorithm as Function Optimizer, 

Parallel Computing, 17, 1991, 619-632. 
[10] Roeva O., K. Atanassov, A. Shannon, Generalized Net for Evaluation of Genetic Algorithm 

Fitness Function, Proceedings of the Eighth International Workshop on Generalized Nets, 
Sofia, June 26, 2007, 48-55. 

[11] Roeva О., K. Atanassov, A. Shannon, Generalized Net for Selection of Genetic Algorithm 
Operators, Proceedings of Scientific Session of the Section “Informatics”, Union of Scientists in 
Bulgaria, in press. 

 
 


