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Abstract: In the paper we study the notion of the entropy of dynamical systems based on IF-
events (Kolmogorov–Sinaj type). We define the notion of the IF-generator and we study some
relationships between this notions. We show some possibility how to calculate this entropy.
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1 Introduction

We start with classical dynamical systems (Ω,S, P, T ), where (Ω,S, P ) is a probability space
and T : Ω → Ω is a measure preserving map, i.e. T−1(A) ∈ S and P (T−1(A)) = P (A) for
any A ∈ S. The entropy of the dynamical system is defined as follows (see [11]). Consider

measurable partition A = {A1, ..., Ak}, where Ai ∈ S; i = 1, ..., k, Ai ∩ Aj = ∅; i 6= j,
k⋃
i=1

Ai =

Ω. Its entropy is the number

H(A) =
k∑
i=1

ϕ(P (Ai)),

where ϕ(x) = −x log x, if x > 0, and ϕ(0) = 0. If A = {A1, ..., Ak} and B = {B1, ..., Bl} are
two measurable partitions, then T−1(A) = {T−1(A1), ..., T−1(Ak)} and A ∨ B = {A ∩ B;A ∈
A, B ∈ B} are measurable partitions, too. It can be proved that there exists

h(A, T ) = lim
n→∞

H

(
n−1∨
i=0

T−i(A)

)
.

The entropy h(T ) of (Ω,S, P, T ) is defined as the supremum

42



h(T ) = sup{h(A, T );A is a measurable partition}.

The aim of the Kolmogorov–Sinaj entropy was to distinguish non-isomorphic dynamical sys-
tems. Two dynamical systems with different entropies cannot be isomorphic.

The notion of the entropy has been extended using fuzzy partitions instead of set partitions
(see [7, 11]). Let T be a tribe of fuzzy sets on Ω. Fuzzy partition is a set of functions A =

{f1, ..., fk} ⊂ T such that
k∑
i=1

fi = 1. Then we define its entropy

H(A) =
k∑
i=1

ϕ(m(fi)) (1)

and the conditional entropy

H(A|B) =
k∑
i=1

l∑
j=1

m(gj)ϕ

(
m(fi · gj)
m(gj)

)
, (2)

where A = {f1, ..., fk},B = {g1, ..., gl} are fuzzy partitions. Further

h(A, τ) = lim
n→∞

1

n
H

(
n−1∨
i=0

τ i(A)

)
,

and, if G ⊂ T is an arbitrary non-empty set, then

hG(τ) = sup{h(A, τ);A is a fuzzy partition, A ⊂ G}.

We extend the notion of the entropy to dynamical systems based on IF-events (see [1, 2, 3, 4,
12]). An IF-event is a pair A = (µA, νA) of S-measurable function µA, νA : Ω→ [0, 1] such that

µA + νA ≤ 1.

If fA : Ω→ [0, 1] is a fuzzy set, then the pair (fA, 1− fA) is an IF-event, of course IF-events
present a larger family. Denote by F the family of all IF-events. On F we define a partial binary
operation + and a binary operation · by the formulas

A⊕B = (µA, νA)⊕ (µB, νB) = (µA + µB, νA + νB − 1),
whenever µA + µB ≤ 1 and 0 ≤ νA + νB − 1 ≤ 1,

and
A�B = (µA, νA)� (µB, νB) = (µAµB, νA + νB − νAνB).

Also, on F we define partial a unary operation ∗ by the formula

A∗ = (µA, νA)∗ = (1− µA, 1− νA),

whenever (1− µA) + (1− νA) ≤ 1. Further

A ≤ B ⇐⇒ µA ≤ µB, νA ≥ νB,

where A = (µA, νA), B = (µB, νB) ∈ F . So, the smallest element in family F is (0, 1) and the
biggest one is element (1, 0).
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2 IF-dynamical system

Definition 2.1. By a state on the family F of all IF-events we mean a mapping m : F → [0, 1]

satisfying following conditions

(i) m((1, 0)) = 1;

(ii) If A,B,C ∈ F and A⊕B = C, then m(A) +m(B) = m(C);

(iii) If An ∈ F(n = 1, 2, ...), An ↗ A, then m(An)↗ m(A).

Definition 2.2. Let m : F → [0, 1] be a state on the family of all IF-events F and τ : F → F be
a mapping satisfying following conditions

(I) If A ∈ F , then τ(A) ∈ F and m(A) = m(τ(A)).

(II) If A,B ∈ F and there exists A⊕B, then τ(A+B) = τ(A) + τ(B).

Then a triplet (F ,m, τ) is an IF-dynamical system.

To any state on F there exists α ∈ [0, 1] such that

mα(A) = m(A) = m((µA, νA)) = (1− α)

∫
Ω

µAdP + α

∫
Ω

(1− νA)dP. (3)

See [8]. Following this result it is reasonable to consider the family F and a mapping (state)
mα : F → [0, 1] defined by (3). Finally, let a mapping τ : F → F be defined by τ(A) =

τ((µA, νA)) = (µA ◦ T, νA ◦ T ) = A ◦ T . Then (F ,mα, τ) is an IF-dynamical system (see [5]).

3 Entropy of IF-partition

We want to define the entropy of the dynamical system (F ,mα, τ). The crucial point in the
definition is the notion of an IF-partition. We shall consider a family of all couples of fuzzy sets

M = {(f, g) : Ω→ [0, 1]2; f, g are S-measurable}.

OnM we define a partial binary operation + and a binary operation · by the formulas

(f, g) + (h, k) = (f + h, g + k − 1), whenever f + h ≤ 1 and 0 ≤ g + k − 1 ≤ 1,

and
(f, g) · (h, k) = (fh, g + k − gk).

See [9]. Of course, these partial binary operations are extensions of partial binary operations ⊕
and � from the family F of all IF-events to the family M . Recall that operations + and · fulfill
the commutative, associative and distributive law, and a couple (M, ·) is an MV-algebra with
product (see [10]).
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Definition 3.1. An IF-partition is any set A = {(µA1 , νA1), ..., (µAk
, νAk

)} ⊂ M such that

(µA1 , νA1)⊕ (µA2 , νA2)⊕ ...⊕ (µAk
, νAk

) = (1, 0).

IfA = {(µA1 , νA1), ..., (µAk
, νAk

)} and B = {(µB1 , νB1), ..., (µBl
, νBl

)} are two IF-partitions,
then τ(A) = {τ((µA1 , νA1)), ..., τ((µAk

, νAk
))} and A ∨ B = {(µAi

, νAi
) � (µBj

, νBj
); i =

1, ..., k, j = 1, ..., l} are IF-partitions, too.
The definition of the entropy of the fuzzy partition in the definition of the of the IF-partition

is used [5], [6]. If A = {(µA1 , νA1), ..., (µAk
, νAk

)} is an IF-partition, then A[ = {µA1 , ..., µAk
}

and A] = {1− νA1 , ..., 1− νAk
} are fuzzy partitions.

Definition 3.2. If A = {(µA1 , νA1), ..., (µAk
, νAk

)} is an IF-partition, then we define its entropy
(with respect to a given state mα)

Hα(A) = (1− α)H(A[) + αH(A]),

where H is the entropy of the fuzzy partition (see equation (1)).

Definition 3.3. If A and B are two IF-partitions, then we define the conditional entropy (with
respect to a given state mα)

Hα(A|B) = (1− α)H(A[|B[) + αH(A]|B]),

where H is the conditional entropy of fuzzy partitions (see equation (2)).

Proposition 3.4. If A,B, C are IF-partitions, then the following properties are satisfied:

(i) If B ≤ C, then Hα(A|C) ≤ Hα(A|B);

(ii) Hα(B ∨ C|A) = Hα(B|A) +Hα(C|B ∨ A).

Proof. See [6].

4 Entropy on IF-dynamical system

Definition 4.1. For every IF-partition A we define

hα(A, τ) = lim
n→∞

1

n
Hα

(
n−1∨
i=0

τ i(A)

)

and, if G ⊂M is an arbitrary set, then the entropy of IF-dynamical system (F ,mα, τ) is

Ghα(τ) = sup{hα(A, τ);A is an IF-partition, A ⊂ G}.

Theorem 4.2.
hα(A, τ) ≤ hα(C, τ) +Hα(A|C)

for any IF-partitions A, C.
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Proof. By Proposition 3.4 we obtain that

Hα

(
n−1∨
i=0

τ i(A)

)
≤ Hα

[(
n−1∨
i=0

τ i(A)

)
∨

(
n−1∨
j=0

τ j(C)

)]
=

= Hα

(
n−1∨
j=0

τ j(C)

)
+Hα

(
n−1∨
i=0

τ i(A)|
n−1∨
j=0

τ j(C)

)
,

and

Hα

(
n−1∨
i=0

τ i(A)|
n−1∨
j=0

τ j(C)

)
≤

n−1∑
i=0

Hα

(
τ i(A)|

n−1∨
j=0

τ j(C)

)
≤

≤
n−1∑
i=0

Hα

(
τ i(A)|τ i(C)

)
= nHα(A|C).

Therefore

lim
n→∞

1

n
Hα

(
n−1∨
i=0

τ i(A)

)
≤ lim

n→∞

1

n
Hα

(
n−1∨
j=0

τ j(C)

)
+Hα(A|C).

Finally we have
hα(A, τ) ≤ hα(C, τ) +Hα(A|C).

Theorem 4.3. Let C = {C1, ..., Ct} be a measurable partition of Ω being a generator, i.e.

σ(
∞⋃
i=0

τ i(C)) = S. Then for every IF-partition A = {(µA1 , νA1), ..., (µAk
, νAk

)} there holds

hα(A, τ) ≤ hα(C, τ) +

∫
Ω

(
k∑
i=1

(1− α)ϕ(µAi
) + αϕ(1− νAi

)

)
dP.

Proof. See [9].

Of course the notion of the IF-entropy has the following defect. If

G = {(µ, 1− µ);µ ∈ [0, 1]},

then Ghα(τ) = ∞ ([5]). To eleminate this defect Maličký–Riečan modification [6] and also
Hudetz modification [5] was used.

5 IF-generators

In the previous section we mention Theorem 4.3 about the set generators C = {C1, ..., Ct}. We
shall now prove a theorem about an IF-generator. We shall take as a measure of proximity the
operation

A M B = A�B∗ +B � A∗.

Definition 5.1. An IF-partition C is called an IF-generator, if to every λ > 0 and every A ∈ F
there is an element B ∈

∞⋃
i=0

τ i(C) such that

m(A M B) < λ.
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For a set B ⊂ M denote by s(B) ⊃ B the minimal set of elements ofM closed under the
complement A∗, Łukasiewicz sum A⊕B and the maximum A ∨B.

Proposition 5.2. To a given IF-partition A = {A1, ..., An} and every δ > 0 there exists λ > 0

such that for every B = {B1, ..., Bn} with m(Ai M Bj) < λ (i, j = 1, 2, ..., n) there is an
IF-partition {C1, ..., Cn} ⊂ s(B) such that m(Ai M Cj) < δ (i, j = 1, 2, ..., n).

Proof. Put C1 = B1, Ci = Bi ∧
(
i−1∑
k=1

Ck

)∗
and Cn =

(
n−1∑
k=1

Ck

)∗
. Evidently {C1, ..., Cn} is an

IF-partition included in s(B). Let i = j ∈ {1, 2, ..., n− 1}. If Ci = Bi, then Ai M Ci = Ai M Bi.

Conversely, if Ci =

(
i−1∑
k=1

Ck

)∗
≤ Bi, then

Ci � A∗i ≤ Bi � A∗i ≤ Ai M Bi,

Ai � C∗i = Ai �

(
i−1∑
k=1

Ck

)
=

i−1∑
k=1

Ai � Ck ≤
i−1∑
k=1

A∗k � Ck ≤
i−1∑
k=1

Ak M Ck.

So that

Ai M Ci ≤ Ai M Bi +
i−1∑
k=1

Ak M Ck,

which implies

m(Ai M Ci) ≤ m(Ai M Bi) +
i−1∑
k=1

m(Ak M Ck).

Now let i = j = n. Then Cn =

(
n−1∑
k=1

Ck

)∗
and

An � C∗n = An �

(
n−1∑
k=1

Ck

)
=

n−1∑
k=1

An � Ck ≤
n−1∑
k=1

A∗k � Ck ≤
n−1∑
k=1

Ak M Ck,

Cn � A∗n = Cn �

(
n−1∑
k=1

Ak

)
=

n−1∑
k=1

Cn � Ak ≤
n−1∑
k=1

C∗k � Ak ≤
n−1∑
k=1

Ck M Ak.

Hence

An M Cn ≤ 2
n−1∑
k=1

Ak M Ck

and

m(An M Cn) ≤ 2
n−1∑
k=1

m(Ak M Ck).

Now let i, j ∈ {1, 2, ..., n − 1}; i 6= j. If Cj = Bj , then Ai M Cj = Ai M Bj . Conversely, if

Cj =

(
j−1∑
k=1

Cj

)∗
≤ Bj , then

A∗i � Cj ≤ A∗i �Bj ≤ Ai M Bj
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Ai � C∗j = Ai �

(
j−1∑
k=1

Ck

)
=

j−1∑
k=1

Ai � Ck ≤
j−1∑
k=1

A∗k � Ck ≤
j−1∑
k=1

Ak M Ck.

Thus

m(Ai M Cj) ≤ m(Ai M Bj) +

j−1∑
k=1

m(Ak M Ck).

Now let i ∈ {1, 2, ..., n− 1} and j = n. Then Cn =

(
n−1∑
k=1

Ck

)∗
and

Ai � C∗n = Ai �

(
n−1∑
k=1

Ck

)
=

n−1∑
k=1

Ai � Ck ≤
n−1∑
k=1

A∗k � Ck ≤
n−1∑
k=1

Ak M Ck,

Cn � A∗i = Cn �

(
n∑

k=1;k 6=i

Ak

)
=

n∑
k=1;k 6=i

Cn � Ak ≤
n∑

k=1;k 6=i

C∗k � Ak ≤
n∑

k=1;k 6=i

Ck M Ak.

So that

m(Ai M Cn) ≤
n−1∑
k=1

m(Ak M Ck) +
n∑

k=1;k 6=i

m(Ck M Ak).

Finally, let i = n and j ∈ {1, 2, ..., n− 1}. If Cj = Bj , then An M Cj = An M Bj . Conversely, if

Cj =

(
j−1∑
k=1

Ck

)∗
≤ Bj , then

A∗n � Cj ≤ A∗n �Bj ≤ An M Bj

An � C∗j = An �

(
j−1∑
k=1

Ck

)
=

j−1∑
k=1

An � Ck ≤
j−1∑
k=1

A∗k � Ck ≤
j−1∑
k=1

Ak M Ck

Hence

m(An M Cj) ≤ m(An M Bj) +

j−1∑
k=1

m(Ak M Ck)

Since m(Ai M Bj) < λ (i, j = 1, 2, ..., n), we obtain

m(Ai M Cj) < 2min{i,j}−1λ

for all i, j ∈ {1, 2, ..., n}. Therefore we can put λ = δ/2n−1.

Proposition 5.3. For every ε > 0 there exists δ > 0 such that Hα(A|D) < ε for any IF-partitions
A = {A1, ..., An}, D = {D1, ..., Dn} satisfying the condition

m(Ai M Dj) < δ

for all i, j ∈ {1, 2, ..., n}

Proof. First choose δ0 ∈ (0, 1) such that ϕ(t) < ε/n for every t /∈ (δ0, 1− δ0) and put

δ =
∧{δ0

2
m(Ai);m(Ai) > 0

}
.
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Then

m(Ai) ≤ m(Ai M Dj) +m(Dj) < δ +m(Dj) ≤ δ0
m(Ai)

2
+m(Dj),

m(Ai)

2
< m(Ai)− δ0

m(Ai)

2
< m(Dj),

m(Dj)−m(Ai �Dj) ≤ m(Ai M Dj) ≤ δ ≤ δ0m(Dj).

If we consider an i such that m(Dj) > 0, then

m(Ai �Dj)

m(Dj)
> 1− δ0,

hence

ϕ

(
m(Ai �Dj)

m(Dj)

)
<
ε

n
.

Therefore

Hα(A|D) =
n∑
i=1

n∑
j=1

m(Dj)ϕ

(
m(Ai �Dj)

m(Dj)

)
<

n∑
i=1

n∑
i=1

m(Dj)
ε

n
=

n∑
j=1

ε

n
= ε.

Theorem 5.4. If C is an IF-generator, then

hα(τ) = hα(C, τ).

Proof. Let A = {A1, ..., An} be IF-partition, Cn =
n⋃
i=0

τ i(C). Let ε > 0 be given. Choose δ > 0

according to Proposition 5.3 and λ > 0 according to Proposition 5.2. Since C is an IF-generator,

there are B1, ..., Bn ∈
∞⋃
i=0

τ i(C) such that for all i, j ∈ {1, 2, ..., n}

m(Ai M Bj) < λ.

Evidently there exists k ∈ N such that B1, ..., Bn ∈
k⋃
i=0

τ i(C) = Ck. Put B = {g1, ..., gn}.

By Proposition 5.2 there is a partition D = {D1, ..., Dn} ⊂ s(B) ⊂ s(Ck) such that for all
i, j ∈ {1, 2, ..., n}

m(Ai M Dj) < δ

hence
Hα(A|D) < ε

by Proposition 5.3. By Theorem 4.2

hα(A, τ) ≤ hα(D, τ) +Hα(A|D) < hα(D, τ) + ε.

Of course
hα(D, τ) ≤ hα(Ck, τ) = hα(C, τ).

Since
hα(A, τ) ≤ hα(C, τ) + ε

for every ε and C does not depend on ε, we obtain

hα(A, τ) ≤ hα(C, τ)

for every IF-partition A. So we have

hα(τ) = hα(C, τ).
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[6] Ďurica, M. (2008) Maličký-Riečan entropy on IF-dynamical systems, Proceedings of
12th International Conference Information Processing and Management of Uncertainty
in Knowledge-Based Systems IPMU 2008, 1654–1661.
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