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Abstract: In the paper we study the notion of the entropy of dynamical systems based on IF-
events (Kolmogorov—Sinaj type). We define the notion of the IF-generator and we study some
relationships between this notions. We show some possibility how to calculate this entropy.
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1 Introduction

We start with classical dynamical systems (2, S, P,T), where ({2, S, P) is a probability space
and T : Q — Q is a measure preserving map, i.e. T'(A) € S and P(T"'(A)) = P(A) for
any A € S. The entropy of the dynamical system is defined as follows (see [11]). Consider
k
measurable partition A = {A;, ..., Ay}, where 4; € S;i=1,..,k,AiNA; =0;i#5,J A =

=1
). Its entropy is the number

H(A) = >~ o(P(A).

where p(z) = —zlogx, if x > 0, and ¢(0) = 0. If A = {A;,..., Ay} and B = {By, ..., B;} are
two measurable partitions, then 771 (A) = {T'(A;),....,T ' (A;)} and AV B = {ANB; A €
A, B € B} are measurable partitions, too. It can be proved that there exists

h(A,T)= lim H (71\_/ T%A)) :

n—r00
i=0
The entropy h(T') of (2, S, P, T) is defined as the supremum
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h(T) = sup{h(A,T); A is a measurable partition}.

The aim of the Kolmogorov—Sinaj entropy was to distinguish non-isomorphic dynamical sys-
tems. Two dynamical systems with different entropies cannot be isomorphic.

The notion of the entropy has been extended using fuzzy partitions instead of set partitions
(see [7, 11]). Let 7 be a tribe of fuzzy sets on (). Fuzzy partition is a set of functions A =

k
{f1, .-, fe} € T suchthat > f; = 1. Then we define its entropy
=1

1

H(A) = Zso(m(ﬁ)) (1)

and the conditional entropy
~ m(f: - g;)
HUAB) = 30 Y mlg ) ("0, @
i=1 j=1 9

where A = {f1,..., fe}, B = {91, ..., i} are fuzzy partitions. Further

h(A,7) = lim 1y (71\_/ ri(A)) :

n—oo N, 0
and, if G C T is an arbitrary non-empty set, then
ha(1) = sup{h(A,7); A is a fuzzy partition, A C G}.

We extend the notion of the entropy to dynamical systems based on IF-events (see [1, 2, 3, 4,
12]). An IF-event is a pair A = (4, v4) of S-measurable function pi4, 4 : Q — [0, 1] such that

pa+va <1

If fa:Q — [0,1] is a fuzzy set, then the pair (f4,1 — f4) is an IF-event, of course IF-events
present a larger family. Denote by F the family of all IF-events. On F we define a partial binary
operation + and a binary operation - by the formulas

A® B = (ua,va) ® (up,vp) = (Ha + pp,va +vp — 1),
whenever g +pup < land 0 <wvy+vp—1<1,

and
AGB= (/LA,I/A) © (/LBJ/B) = (,LLA,UB7VA +Vvp — VAVB)-

Also, on F we define partial a unary operation * by the formula
A= (pa,va) = (1 —pa, 1 —va),
whenever (1 — p4) + (1 — v4) < 1. Further
A< B < uy < up,va > vp,

where A = (ua,va), B = (g, vg) € F. So, the smallest element in family F is (0, 1) and the
biggest one is element (1, 0).
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2 IF-dynamical system

Definition 2.1. By a state on the family F of all IF-events we mean a mapping m : F — [0,1]

satisfying following conditions
(i) m((1,0)) = 1,
(ii) If A, B,C € F and A® B = C, then m(A) + m(B) = m(C);
(i) If A, € F(n=1,2,...), Ay, ** A, then m(A,) 7 m(A).

Definition 2.2. Let m : F — [0, 1] be a state on the family of all IF-events F and 7 : F — F be
a mapping satisfying following conditions

(I) If A € F, then 7(A) € F and m(A) = m(1(A)).
(Il) If A, B € F and there exists A @ B, then T(A+ B) = 7(A) + 7(B).
Then a triplet (F,m,T) is an IF-dynamical system.

To any state on F there exists a € [0, 1] such that

ma(A) = m(A) = m((a,va)) = (1 — o) /

piadP + / (1 —v,)dP. 3)
Q

Q

See [8]. Following this result it is reasonable to consider the family F and a mapping (state)
me : F — [0,1] defined by (3). Finally, let a mapping 7 : F — F be defined by 7(A) =
T((a,va)) = (paoT,vgoT) = AoT. Then (F, my, 7) is an IF-dynamical system (see [5]).

3 Entropy of IF-partition

We want to define the entropy of the dynamical system (F,m,, 7). The crucial point in the
definition is the notion of an IF-partition. We shall consider a family of all couples of fuzzy sets

M={(f,g9): Q—[0,1]% f, g are S-measurable}.
On M we define a partial binary operation + and a binary operation - by the formulas
(f,9) + (h,k)=(f +h,g+k—1), whenever f +h<land0<g+k—1<1,

and
(fi9) - (hk) = (fh,g+k — gk).

See [9]. Of course, these partial binary operations are extensions of partial binary operations &
and ©® from the family F of all IF-events to the family M. Recall that operations + and - fulfill
the commutative, associative and distributive law, and a couple (M, -) is an MV-algebra with
product (see [10]).
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Definition 3.1. An IF-partition is any set A = {(pa,,va,), ..., (fa,, va,)} C M such that
(ILLA17 VAl) 52 (/’LA27 Vay) D ... (:U'Ak? VAk) = (170)'

If A={(na,,va,),., (ta,,va,)} and B = {(up,,v5,), ..., (45, v5,) } are two IF-partitions,
then 7(A) = {7((pa,,va,)), -, 7((a,,va,))} and AV B = {(pa,,va,) © (1s,,vB,); t =
1,...,k,j=1,...,1} are IF-partitions, too.

The definition of the entropy of the fuzzy partition in the definition of the of the IF-partition
is used [5], [6]. If A = {(pa,,v4,), -, (ia,,va,)} is an IF-partition, then A = {yi4,, ..., i, }
and A* = {1 — va,, ..., 1 — vy, } are fuzzy partitions.

Definition 3.2. If A = {(pa,,v4,); -, (ta,, Va, )} is an IF-partition, then we define its entropy
(with respect to a given state m,,)

Ho(A) = (1 — a)H(A) + aH (A,
where H is the entropy of the fuzzy partition (see equation (1)).

Definition 3.3. If A and B are two IF-partitions, then we define the conditional entropy (with
respect to a given state m,,)

Ho(A|IB) = (1 — a)H(A’|B’) + aH(A*|B),
where H is the conditional entropy of fuzzy partitions (see equation (2)).
Proposition 3.4. If A, B, C are IF-partitions, then the following properties are satisfied.:
(i) If B <C, then H,(A|C) < H,(A|B);
(ii) H,(BV C|A) = H,(B|A) + H,(C|BV A).

Proof. See [6]. L]

4 Entropy on IF-dynamical system

Definition 4.1. For every IF-partition A we define

ho(A,7) = lim lﬂa (n\_/ T’(A))

n—oo M
=0
and, if G C M is an arbitrary set, then the entropy of IF-dynamical system (F,mq, T) is
cho(T) = sup{ha(A, 7); Ais an IF-partition, A C G'}.

Theorem 4.2.
ho(A,7) < ha(C,7) + Ho(A[C)

for any IF-partitions A, C.
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Proof. By Proposition 3.4 we obtain that

H, <n\/ TZ(A)) < H,

=0

j=0 i=0 j=0
and
n—1 n—1 n—1 n—1
(Vo o) < (#en Vo) <
=0 j=0 =0 j=0
n—1
<Y H, (T"(A)T'(C)) = nHa(AIC)
=0
Therefore » B
lim %Ha (\/ #(A)) < lim %Ha (\/ TJ'(C)) + HA(AC).
i=0 =0
Finally we have
ho(A, 7) < ho(C,7) + Ho(A[C). O]

Theorem 4.3. Let C = {C},...,C;} be a measurable partition of ) being a generator, i.e.
o(U 7(C)) = S. Then for every IF-partition A = {(pa,,va,), -, (fta,,Va, )} there holds

=0

ho(A,7) < ho(C,T) +/

Q

(Z(l —a)p(pa,) +ap(l — yAi)) dP.

i=1

Proof. See [9]. [l

Of course the notion of the [F-entropy has the following defect. If

G={(u,1—p);pel0,1]},

then ¢ho(7) = oo ([5]). To eleminate this defect Malicky—Rie¢an modification [6] and also
Hudetz modification [5] was used.

S5 IF-generators

In the previous section we mention Theorem 4.3 about the set generators C = {C1, ..., C;}. We
shall now prove a theorem about an IF-generator. We shall take as a measure of proximity the
operation

ANB=AOGB"+Bo A"

Definition 5.1. An [F-partition C is called an IF-generator, if to every A > 0 and every A € F

there is an element B € | ) 7°(C) such that
i=0

m(A A B) <\
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For a set B C M denote by s(3) D B the minimal set of elements of M closed under the
complement A*, Lukasiewicz sum A @ B and the maximum A V B.

Proposition 5.2. To a given IF-partition A = {Aq, ..., A, } and every § > 0 there exists X > 0
such that for every B = {By, ..., B,} with m(A; A B;) < X (i,j = 1,2,...,n) there is an
IF-partition {C4, ..., C,} C s(B) such that m(A; A C;) <6 (i,j =1,2,...,n).

Proof. Put Cy = By, C; = B; A (E Ck) and C,, = (Z Ck> Evidently {CY, ...,C,} is an
IF-partition included in s(B). Leti = j € {1,2,...,n—1}. If C; = B;, then A; A C; = A; A B;.
Conversely, if C; = (Z C’k) < B,, then

Ci0A <B, oA <A A B,

Ai@(J::Ai@(Z ) ZA @ck<ZAk@ck<ZAkAck

So that
i1

AiAC’igAZ-ABHLZAkACk,
k=1

which implies
i1

m(A; & C;) <m(A; A By) + Y m(Ag & Cy).

k=1
n—1 *
Now leti = j = n. Then C,, = (Z C’k> and
k=
n—1 n—1 n—1
A, OCE=4,06 (ch) =) 400G <> AOCKSY A Gy,
k=1 k=1 k=1
n—1 n—1 n—1
Co© A =Cp 0 (ZAk) =Y CLOA<Y CioA <Y Cib Ay
k=1 k=1 k=1
Hence .
AnACn§2ZAk:ACk
k=1
and
~1
m(A, a C,) Z (A A Cy).
k=1
Now let i, € {1 2,. —1}i # j. If C; = By, then A; A C; = A; A Bj. Conversely, if

(Z C’) < Bj, then

A:©Cj < AP © B < A; A B,
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j—1 j—1 j—1 j—1
A0C =40 (ch> =Y AOC <) AOC <) A AC
k=1 k=1 k=1 k=1

Thus
j—1

m(A; & Cj) <m(A; & By)+ Y m(4 & Cy).

k=1

n—1 *
Now leti € {1,2,...,n — 1} and j = n. Then C,, = (Z C’k> and
k=1

n—1 n—1 n—1 n—1
A e0C = A@(ZCk)ZZAiQC ZAZQCk<ZAkACk>
k=1 k=1 k=1 k=1

3

Cn@A::cn@< i Ak>: Co © Ay < i Cr o Ay < i Cr & Ay
i

k=1;k#i 1;k#i k=1;k#1 k=1;k#i
So that

i
L

n

m(A; & Cp) Y m(Ar A Cr)+ > m(Cr & Ay).

1 k=1;k4i
Finally, leti =nand j € {1,2,...,n—1}. If C; = B;, then A,, A C; = A,, A B;. Conversely, if

<Z C’k> < Bj, then

B
Il

AT ®C; < AN ©B; < A, A B,

j—1
4,00 = 4,0 (ch) ZA ©C < ZA*@Ck <2Ak A Cy,
k=1

Hence

j—1

m(A, & C;) <m(Ay & By)+ > m(Ay & Cy)

k=1

Since m(A; A B;) < A (i,7 =1,2,...,n), we obtain
m(AZ A Cj) < 2min{i,j}fl)\

forall 7,5 € {1,2,...,n}. Therefore we can put A = §/2" 1. ]

Proposition 5.3. For every € > 0 there exists § > 0 such that H,(A|D) < ¢ for any IF-partitions
A={A, ..., A}, D ={Dx, ..., D,} satisfying the condition

m(AZ A Dj> <0
foralli,je{1,2,..,n}

Proof. First choose 0, € (0,1) such that ¢(t) < /n for every t ¢ (Jp, 1 — do) and put

5= /\{%m(Ai);m(Ai) > o}.
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Then

m(A;) < m(A; & D;) +m(D;) < 6 +m(D;) < do

m(QAz) <m(4;) — 50m(£4i) < m(D;),

If we consider an 7 such that m(D;) > 0, then

m(D;) ’
hence
m(Az @ D]) 19
"\ "oy ) n
m(Dy) n
Therefore

n n n n n c
"4 - T~~~ —_ =
D)= S e (MRS <Y mp)E =3t e O
i=1 j=1 i=1 =1 7j=1
Theorem 5.4. If C is an IF-generator, then
ho(T) = ho(C, 7).

n

Proof. Let A = {A, ..., A, } be IF-partition, C, = |J 7°(C). Let £ > 0 be given. Choose § > 0
i=0
according to Proposition 5.3 and A > 0 according to Proposition 5.2. Since C is an [F-generator,

there are By, ..., B, € |J 7%(C) such that forall ¢, j € {1,2,....,n}
i=0

m(Al A Bj) <A
k
Evidently there exists k € N such that By,...,B, € |J 7(C) = Cx. Put B = {g1,...,gn}-

=0
By Proposition 5.2 there is a partition D = {Dy,...,D,} C s(B) C s(Cx) such that for all

i,7€{1,2,..,n}
m(AZ A D]) <0

hence
H,(A|D) < e
by Proposition 5.3. By Theorem 4.2
ha(A,7) < ha(D, 7) + Ho(A|D) < ha(D, 7) +&.
Of course
ho(D,7) < ho(Cr, 7) = ho(C, 7).
Since
h/OC(A’ 7—) S hOé(C’ 7_) + €
for every ¢ and C does not depend on &, we obtain
ho(A,7) < ho(C,T)

for every IF-partition .4. So we have
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