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1 Introduction

During the last ten years a lot of operations were defined over Intuitionistic Fuzzy Sets
(IFSs; see [3]). Here, we will discuss three operations, generated by Zadeh’s implication,
introduced in fuzzy set theory (see, e.g., [8]). Its IFS-analogous was introduced in [5, 6]
and here, on its basis, we will construct Zadeh’s conjunction and disjunction.

In [8] 10 different fuzzy implications are discussed. Having in mind that in the classical
logic the equality

x ∨ y = ¬x→ y, (1)

where x and y are logical variables, ∨ - disjunction, → - implication and ¬ - negation,
we see that for any implication we can construct a disjunction and after this, using De
Morgan’s laws - a conjunction (or opposite).

2 Definition and algebraic properties of Zadeh’s

intuitionistic fuzzy disjunction and conjunction

The intuitionistic fuzzy propositional calculus has been introduced more than 20 years ago
(see, e.g., [1, 3]). In it, if x is a variable then its truth-value is represented by the ordered
couple

V (x) = 〈a, b〉,

so that a, b, a + b ∈ [0, 1], where a and b are the degrees of validity and of non-validity of
x and there the following definitions are given.

Below we shall assume that for the two variables x and y the equalities: V (x) =
〈a, b〉, V (y) = 〈c, d〉 (a, b, c, d, a+ b, c+ d ∈ [0, 1]) hold.
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For two variables x and y operations “conjunction” (&), “disjunction” (∨), “implica-
tion” (→), and “(standard) negation” (¬) are defined by:

V (x&y) = 〈min(a, c),max(b, d)〉,

V (x ∨ y) = 〈max(a, c),min(b, d)〉,

V (x→ y) = 〈max(b, c),min(a, d)〉,

V (¬x) = 〈b, a〉.

In [4] the following two operations, which are analogues to operations “conjunction”
and “disjunction”, are defined

V (x+ y) = 〈a, b〉+ 〈c, d〉 = 〈a+ c− ac, bd〉,

V (x.y) = 〈a, b〉.〈c, d〉 = 〈ac, b+ d− bd〉.

The two standard modal operators (see [7]) have the following intuitionistic fuzzy esti-
mations (see [2]).

V ( p) = V (p) = 〈µ(p), 1− µ(p)〉,

V (♦p) = ♦V (p) = 〈1− ν(p), ν(p)〉.

Now, using (1) and intuitionistic fuzzy form of Zadeh’s implicarion, introduced by the
author in [5, 6] with the form

V (x→Z y) = 〈max(b,min(a, c)),min(a, d)〉,

we will introduce a disjunction with the following form of its estimation

V (x ∨Z y) = 〈a, b〉 ∨Z 〈c, d〉 = 〈max(a,min(b, c)),min(b, d)〉.

We will call the new disjunction “Zadeh’s intuitionistic fuzzy disjunction”.
We see also, that

V (x→′
Z y) = ¬〈a, b〉 ∨Z 〈c, d〉

= 〈b, a〉 ∨Z 〈c, d〉 = 〈max(b,min(a, c)),min(a, d)〉 = V (x→Z y),

i.e., the implication generates a disjunction that generates the initial implication.
Let us suppose below that De Morgan’s laws are valid, i.e.,

x&y = ¬(¬x ∨ ¬y). (2)

We must note immediately, that in IFS theory there are a lot of examples in which (2)
is not valid, but this will be object of discussions in future research.

Therefore, using (2) and definition of ∨Z , we can construct

V (x ∧Z y) = 〈a, b〉 ∧Z 〈c, d〉 = 〈min(a, c),max(b,min(a, d))〉.

We will call the new conjunction “Zadeh’s intuitionistic fuzzy conjunction”.
For both new operations, having in mind that ∧Z is obtained from ∨Z by (2), we will

check fistly that
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V (¬(¬x ∧Z ¬y)) = ¬(¬〈a, b〉 ∧Z ¬〈c, d〉))
= ¬(〈b, a〉 ∧Z 〈d, c〉)) = ¬〈min(b, d),max(a,min(b, c))〉

= 〈max(a,min(b, c)),min(b, d)〉 = V (x ∨Z y).

Therefore, both operations are correctly defined one about the other.
We can check immediately the validity of equalities

V (x ∧Z x) = V (x),

V (x ∨Z x) = V (x),

i.e. the Idempotent Laws hold, but equalities

V (x ∧Z y) = V (y ∧Z x),

V (x ∨Z y) = V (y ∨Z x),

V ((x ∧Z y) ∧Z z) = x ∧Z (y ∧Z z)),

V ((x ∨Z y) ∨Z z) = x ∨Z (y ∨Z z)),

V ((x ∧Z y) ∨Z z) = (x ∨Z z) ∧Z (y ∨Z z),

V ((x ∨Z y) ∧Z z) = (x ∧Z z) ∨Z (y ∧Z z)

are not valid. For example, if V (x) = 〈0.0, 0.5〉, V (y) = 〈0.0, 1.0〉, then

V (x ∧Z y) = 〈0.0, 0.5〉 6= 〈0.0, 1.0〉 = V (y ∧Z x).

Therefore, both operations are not commutative and associative ones and none is dis-
tributive with respect to the other.

In [1] the following relation is introduced for every a, b, c, d ∈ [0, 1] so that a+ b, c+ d ∈
[0, 1]:

〈a, b〉 ≤ 〈c, d〉 if and only if a ≤ c and d ≥ b,

〈a, b〉 ≥ 〈c, d〉 if and only if 〈c, d〉 ≤ 〈a, b〉.
The following inequalities are valid:

V (x.y) ≤ V (x&y) ≤ V (x ∧Z y),

V (x ∨Z y) ≤ V (x ∨ y) ≤ V (x+ y).

Theorem The following inequalities are valid

(a) V ( (x ∨Z y)) ≤ V ( x ∨Z y),

(b) V (♦(x ∧Z y)) ≥ V (♦x ∧Z ♦y).

Proof. (a) Let x and y are two variables. Then

V ( (x ∨Z y)) = (〈a, b〉 ∨Z 〈c, d〉)
= 〈max(a,min(b, c)),min(b, d)〉

= 〈max(a,min(b, c)), 1−max(a,min(b, c))〉
≤ 〈max(a,min(1− a, c)), 1−max(a, c)〉

= 〈max(a,min(1− a, c)),min(1− a, 1− c)〉
= 〈a, 1− a〉 ∨Z 〈c, 1− c〉

= V ( x ∨Z y).
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3 Conclusion

In a next research we will study the relations between Zadeh’s implications, conjunctions
and disjunctions from one side, and the other intuitionistic fuzzy operations and operators
from another.
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