Notes on Intuitionistic Fuzzy Sets Print ISSN 1310–4926, Online ISSN 2367–8283 Vol. 25, 2019, No. 4, 21–29 DOI: 10.7546/nifs.2019.25.4.21-29

Some remarks on *n*-uninorms in IF-sets

Martin Kalina

Department of Mathematics and Descriptive Geometry Faculty of Civil Engineering, Slovak University of Technology Radlinského 11, SK-810 05 Bratislava, Slovakia e-mail: martin.kalina@stuba.sk

Received: 11 October 2019 Revised: 9 November 2019 Accepted: 11 November 2019

Abstract: Uninorms and nullnorms are well-known monoidal and monotone operations on the unit interval. Akella [2007] proposed their genaralization to *n*-uninorms. Really, we get both, proper uninorms as well as proper nullnorms as special cases of 2-uninorms. Moreover, proper uninorms as well as proper nullnorms can be characterized as 2-uninorms with some special types of 2-neutral elements. In the present paper, we discuss a classification of 2-uninorms from another point of view as it was done by Akella in 2007 and 2009. Then, we look at 2-uninorms in IF-sets and point out some differences between 2-uninorms on the unit interval and 2-uninorms in IF-sets.

Keywords: IF-sets, Nullnorm, Uninorm, *n*-Uninorm. **2010 Mathematics Subject Classification:** 03E72, 08A72.

1 Introduction

Uninorms were introduced by Yager and Rybalov [21] as a generalization of both t-norms and t-conorms (for details on t-norms and their duals, t-conorms, see, e.g., [13, 17]). Since that time, researchers study properties of several distinguished families of uninorms. In [16], Karaçal and Mesiar introduced uninorms in bounded lattices. In [5], Bodjanova and Kalina constructed uninorms in bounded lattices with arbitrarily given underlying t-norm and t-conorm.

Another generalization of t-norms and t-conorms, called t-operators, was introduced by Mas et al. In [18, 19], Mas et al. studied t-operators on finite chains. In 2001, Calvo et al. [6] introduced nullnorms when trying to solve Frank's functional equation [11] where one of the operations in the equation was a uninorm. Afterwards, Mas et al. [20] showed that nullnorms

and *t*-operators coincide in the unit interval. Karaçal et al. [15] introduced nullnorms in bounded lattices.

Akella [1, 2] introduced 2- and *n*-uninorms in the unit interval and gave a characterization of these operations. In this paper, we characterize 2-uninorms (or more general on *n*-uninorms) from the point of view of their two-neutral elements. Particularly, we split the system of all 2-uninorms into 9 (not necessarily disjoint) subclasses. Afterwards, we point out some differences in the structure of 2- (and *n*-) uninorms in IF sets.

Intuitionistic fuzzy sets (also, IF-sets), introduced by Atanassov, are a special type of latticevalued fuzzy sets, introduced by Goguen [12]. Important milestones in the theory of IF-sets, besides the monograph by Atanassov [3], are the papers by Deschrijver [7, 8], and Deschrijver and Kerre [9]. In [7] Deschrijver has shown that there exist t-norms which are not representable as a pair of a t-norm and a t-conorm. In [8] the author has shown that there exist uninorms in IF-sets which are neither conjunctive nor disjunctive. In [9], Deschrijver and Kerre have shown that the theory of IF-sets is equivalent to the theory of interval-valued sets.

A further development of uninorms in IF-sets (or, equivalently, in interval-valued sets) is the paper by Kalina and Král' [14], where the authors have shown that for arbitrary pair (a, e) of incomparable elements of interval-valued sets there exists a uninorm having a as the annihilator and e as the neutral element.

2 Basic definitions and some known facts

An IF-set [3] can be represented as a special case of L-fuzzy set [12], where L is a bounded lattice. Membership grades of an IF-set are elements $(x_1, x_2) \in [0, 1]^2$ such that $x_1 + x_2 \leq 1$. The set of all IF-membership grades will be denoted by L^* . For arbitrary $(x_1, x_2), (y_1, y_2) \in L^*$ the following holds

 $(x_1, x_2) \leq_{L^*} (y_1, y_2) \iff x_1 \leq x_2 \& y_1 \geq y_2.$

Thus, the least and the greatest elements of L^* are $\mathbf{0} = (0, 1)$, $\mathbf{1} = (1, 0)$, respectively. We will write these values in bold letters to distinguish them from the real numbers 0 and 1.

Following the notation introduced in [4], we will write $x \parallel y$ if $x, y \in L^*$ are incomparable. For $x \in L^*$ we denote $\parallel_x = \{z \in L^*; z \parallel x\}$.

Definition 1 ([21]). An associative, commutative and monotone operation $U : [0, 1]^2 \rightarrow [0, 1]$ is said to be a uninorm if it has a neutral element $e \in [0, 1]$

A uninorm U has an annihilator a = U(0, 1), where $a \in \{0, 1\}$.

Definition 2 ([10]). A uninorm U is said to be conjunctive if U(0,1) = 0, and U is called disjunctive if U(0,1) = 1.

Lemma 1 ([10]). A uninorm U is a t-norm whenever its neutral element is e = 1. In that case the annihilator of U is a = 0.

U is a t-conorm whenever its neutral element is e = 0. In that case the annihilator of U is a = 1.

Lemma 2 ([10]). Let U be a uninorm, $e \in [0, 1]$ be its neutral element. Then

$$T_U(x,y) = \frac{U(ex,ey)}{e}, \quad S_U(x,y) = \frac{U(e+(1-e)x,e+(1-e)y)-e}{1-e},$$

are a t-norm and a t-conorm, respectively.

The operations T_U and S_U from Lemma 2 are called *the underlying t-norm* and the *underlying t-conorm*, respectively.

Definition 3 ([6]). An associative, commutative and monotone operation $V : [0,1]^2 \rightarrow [0,1]$ is said to be a nullnorm if there exists an element $a \in [0,1]$ such that

- (1b) V(0, x) = x for all $x \in [0, a]$,
- (2b) V(1, x) = x for all $x \in [a, 1]$.

Lemma 3 ([6]). Let V be a nullnorm and $a \in [0, 1]$ be such that

- (1b) V(0, x) = x for all $x \in [0, a]$,
- (2b) V(1, x) = x for all $x \in [a, 1]$.

Then a is the annihilator of V.

Similarly like for uninorm U, also for nullnorm V there exist its undriving t-norm V_T and t-conorm S_T given by, respectively,

$$V_T(x,y) = \frac{V(a+(1-a)x, a+(1-a)y) - a}{1-a}, \quad V_S(x,y) = \frac{V(ax,ay)}{a}$$

for $a \in [0, 1[$.

Definition 4 ([1]). Let $F : [0,1]^2 \rightarrow [0,1]$ be a commutative operation. Then $\{e_1, e_2\}_z$ is called a 2-neutral element of F if $F(e_1, x) = x$ for all $x \in [0, z]$ and $V(e_2, x) = x$ for all $x \in [z, 1]$, where 0 < z < 1 and $e_1 \in [0, z]$, $e_2 \in [z, 1]$.

Definition 5 ([1]). Let $F : [0,1]^2 \to [0,1]$ be a monotone, commutative and associative operation that has a 2-neutral element $\{e_1, e_2\}_z$.

Lemma 4 ([1]). Let F be a 2-uninorm whose 2-neutral element is $\{e_1, e_2\}_z$. Then

$$U_1(x,y) = \frac{F(zx,zy)}{z}, \quad U_2(x,y) = \frac{F(z+(1-z)x,z+(1-z)y)-z}{1-z}$$
(1)

are uninorms whose neutral elements are $\tilde{e}_1 = \frac{e_1}{z}$ and $\tilde{e}_2 = \frac{e_2-z}{1-z}$, respectively.

Definition 6 ([1]). Let $F : [0, 1]^2 \to [0, 1]$ be a commutative operation and $0 = z_0 < z_1 < z_2 < \cdots < z_{n-1} < z_n = 1$. Then $\{e_1, e_2, \dots, e_n\}_{(z_1, z_2, \dots, z_{n-1})}$ is called an *n*-neutral element of *F* if for all $i \in \{1, 2, \dots, n\}$ we have $e_i \in [z_{i-1}, z_i]$.

Definition 7 ([1]). An associative, commutative and monotone operation $F : [0, 1]^2 \rightarrow [0, 1]$ will be called *n*-uninorm if it has an *n*-neutral element $\{e_1, e_2, \ldots, e_n\}_{(z_1, z_2, \ldots, z_{n-1})}$.

3 Characterization and classes of 2-uninorms and a generalization to *n*-uninorms

Let us consider proper uninorms and proper nullnorms as 1-uninorms. Then we adopt the the following definition:

Definition 8. Let F_n be an *n*-uninorm for n > 1. We say that F_n is a proper *n*-uninorm if F_n is not an (n - 1)-uninorm.

For a proper 2-uninorm F, the operations U_1 and U_2 given by equality (1), will be called *the lower and the upper underlying uninorm*, respectively.

Let us a look at 2-neutral elements. For a given 0 < z < 1, there are 9 possibilities how to set a 2-neutral element $\{e_1, e_2\}_z$. Namely,

$$e_1 \begin{cases} = 0, \\ \in]0, z[, \\ z, \end{cases} e_2 \begin{cases} = z, \\ \in]z, 1[, \\ 1. \end{cases}$$

As a corollary to Lemma 1 we get the following

Corollary 1. Let F be a 2-uninorm whose 2-neutral element is $\{e_1, e_2\}_z$ for $z \in [0, 1[$. Set $U_1(x, y) = \frac{F(zx, zy)}{z}$ and $U_2(x, y) = \frac{F(z+(1-z)x, z+(1-z)y)-z}{1-z}$ Then

- (a) U_1 is a t-norm if $e_1 = z$, U_2 is a t-norm if $e_2 = 1$;
- (b) U_1 is a proper uninorm if $e_1 \in [0, z]$, U_2 is a proper uninorm if $e_2 \in [z, 1]$;
- (c) U_1 is a t-conorm if $e_1 = 0$, U_2 is a t-conorm if $e_2 = z$.

Let us check all 9 possibilities of setting a 2-neutral element.

Lemma 5. Let F be a 2-uninorm whose 2-neutral element is $\{z, 1\}_z$ ($\{0, z\}_z$) for 0 < z < 1. Then F is a t-norm (t-conorm) that is the ordinal sum of two t-norms $F = (\langle T_1, 0, z \rangle, \langle T_2, z, 1 \rangle)$ (of two t-conorms $F = (\langle S_1, 0, z \rangle, \langle S_2, z, 1 \rangle)$).

Proof. We will prove only the *t*-norm case.

As the first step, let us prove that F(0,1) = 0. Since $\{z,1\}_z$ is the 2-neutral element of F, we have by associativity

$$F(0,1) = F(F(0,z),1) = F(0,F(z,1)) = F(0,z) = 0.$$

Monotonicity of F implies that 0 is the annihilator of F.

As the second step, we prove that 1 is the neutral element of F. Since we know that 1 is the partial neutral element of F in the interval [z, 1]. Let $x \in [0, z]$.

$$F(x,1) = F(F(x,z),1) = F(x,F(z,1)) = F(x,z) = x.$$

The proof is completed.

Lemma 6. Let F be a 2-uninorm whose 2-neutral element is $\{z\}_z$ ($\{e_1, z\}_z$, $\{z, e_2\}_z$) for 0 < z < 1 and $0 < e_1 < z$, $z < e_2 < 1$. Then F is a uninorm whose neutral element is z (e_1 and the underlying t-conorm S is the ordinal sum of two t-conorms $S = (\langle S_1, e_1, z \rangle, \langle S_2, z, 1 \rangle)$), e_2 and the underlying t-norm T is the ordinal sum of two t-norms $T = (\langle T_1, 0, z \rangle, \langle T_2, z, e_2 \rangle)$).

Proof. In the case that $\{z\}_z$, we have that z is a partial neutral element in the interval [0, z] as well as in the interval [z, 1], i.e., z is the neutral element of F. Hence, directly by Definition 1 we get that F is a uninorm with the neutral element z.

In the case that $\{e_1, z\}_z$ is the 2-neutral element of F, we get applying Lemma 5 to the interval $[e_1, 1]$ that $S = (\langle S_1, e_1, z \rangle, \langle S_2, z, 1 \rangle)$ is a *t*-conorm which is the underlying operation of F. The rest of the proof is due to Definition 1.

Dually we could prove the case when $\{z, e_2\}_z$ is the 2-neutral element of F.

Lemma 7. Let F be a 2-uninorm whose 2-neutral element is $\{0,1\}_z$ for 0 < z < 1. Then, F is a nullnorm and z is its annihilator.

Proof. The fact that F is a nullnorm with the annihilator z is directly due to Definition 3. \Box

The remaining three cases lead to proper 2-uninorms.

Lemma 8. Let F be a 2-uninorm whose 2-neutral element is $\{e_1, e_2\}_z$ for $0 < e_1 < z < e_2 < 1$. Then F is a proper 2-uninorm.

We omit the proof of this lemma since the assertion is obvious.

Lemma 9. Let F be a 2-uninorm whose 2-neutral element is $\{e, 1\}_z$ for 0 < e < z < 1. Then F is a proper 2-uninorm whose upper underlying uninorm is reduced to a t-norm.

Proof. The fact that the upper underlying uninorm is reduced to a t-norm is due to Lemma 5. The rest of the proof is obvious.

Lemma 10. Let F be a 2-uninorm whose 2-neutral element is $\{0, e\}_z$ for 0 < z < e < 1. Then F is a proper 2-uninorm whose lower underlying uninorm is reduced to a t-conorm.

The assertion of Lemma 10 is a dual case of Lemma 9. That is why the proof is omitted. Generalizing Lemma 6, we get the following

Proposition 1. For $n \ge 2$, let F be a proper n-uninorm where $\{e_1, e_2, \ldots, e_n\}_{(z_1, z_2, \ldots, z_{n-1})}$ is its n-neutral element. Then there exists $1 \le i \le n$ such that $z_{i-1} < e_i < z_i$ and moreover, F is an (n+1)-uninorm whose (n+1)-neutral element is $\{e_1, e_2, \ldots, e_n\}_{(z_1, z_2, \ldots, e_i, z_i, \ldots, z_{n-1})}$.

Proof. We have to prove two items for $n \ge 2$:

- 1) There exists *i* such that $z_{i-1} < e_i < z_i$,
- 2) $\{e_1, e_2, \dots, e_n\}_{(z_1, z_2, \dots, e_i, z_i, \dots, z_{n-1})}$ is an (n+1)-neutral element of *F*.

To prove item 1), it is enough to realize that, for $n \ge 2$, if there were no *i* such that $z_{i-1} < e_i < z_i$, the operation *F* would have diagonal blocks either $(T_1, S_1, T_2, S_2, ...)$ or $(S_1, T_1, S_2, T_2, ...)$, where T_1 , T_2 are *t*-norms, and S_1 , S_2 are *t*-conorms. In each of these two cases the *n*-neutral element could be reduced to the (n - 1)-neutral element, since in the first case $e_1 = e_2$ and in the second case $e_2 = e_3$ either $\{e_2, \ldots, e_n\}_{(z_2, \ldots, e_i, z_i, \ldots, z_{n-1})}$ or $\{e_1, \ldots, e_n\}_{(z_1, \ldots, e_i, z_i, \ldots, z_{n-1})}$, respectively. This proves the item 1) for $n \ge 3$. For n = 2 the statement is due to Lemmas 8, 9 and 10.

Item 2) is a direct consequence of item 1).

4 2-uninorms on IF-sets

 (L^*, \leq_{L^*}) is a bounded lattice with incomparable elements. The incomparability of some elements will be crucial in our considerations.

Example 1. On the bounded lattice $(L^*, \land, \lor, \mathbf{0}, \mathbf{1})$, $T_{\land}(z_1, z_2) = z_1 \land z_2$ is the greatest *t*-norm. When we choose an arbitrary element $x \notin \{\mathbf{0}, \mathbf{1}\}$, T_{\land} can be considered as the ordinal sum *t*-norm $(\langle T_{\land}, \mathbf{0}, x \rangle, \langle T_{\land}, x, \mathbf{1} \rangle)$.

On the other hand, since $||_x \neq \emptyset$, we can define

$$\tilde{T}_{\wedge}(z_1, z_2) = \begin{cases} z_1 \wedge z_2 & \text{for } (z_1, z_2) \in ([\mathbf{0}, x] \cup [x, \mathbf{1}])^2, \\ z_2 & \text{for } z_1 \in \|_x, z_2 \in [\mathbf{0}, x] \\ z_1 & \text{for } z_1 \in [\mathbf{0}, x], z_1 \in \|_x, \\ x & \text{otherwise.} \end{cases}$$

$$(2)$$

Hence, \tilde{T}_{\wedge} is not a *t*-norm, but $\{x, \mathbf{1}\}_x$ is a 2-neutral element of \tilde{T}_{\wedge} . This means that \tilde{T}_{\wedge} is a proper 2-uninorm.

Example 2. Let $x \notin \{0, 1\}$ be an element in L^* .

$$\tilde{U}(z_1, z_2) = \begin{cases} z_1 \wedge z_2 & \text{for } (z_1, z_2) \in [\mathbf{0}, x]^2, \\ z_1 & \text{for } z_1 \in [\mathbf{0}, x] \text{ and } z_2 \notin [\mathbf{0}, x], \\ & \text{and for } z_1 \in [x, \mathbf{1}] \text{ and } z_2 \in \|_x, \\ z_2 & \text{for } z_2 \in [\mathbf{0}, x] \text{ and } z_1 \notin [\mathbf{0}, x], \\ & \text{and for } z_2 \in [x, \mathbf{1}] \text{ and } z_1 \in \|_x, \\ z_1 \vee z_2 & \text{for } (z_1, z_2) \in [x, \mathbf{1}]^2, \\ x & \text{otherwise.} \end{cases}$$
(3)

The operation \tilde{U} is restricted to $[0, x] \cup [x, 1]$, if \tilde{U} has no neutral element on the whole L^* , i.e., it is not a uninorm. On the other hand, $\{x\}_x$ is a 2-neutral element, hence \tilde{U} is a proper 2-uninorm.

Example 3. Let $x \notin \{0, 1\}$ be an element in L^* .

$$V(z_1, z_2) = \begin{cases} z_1 \lor z_2 & \text{for } (z_1, z_2) \in [\mathbf{0}, x]^2, \\ z_1 \land z_2 & \text{for } (z_1, z_2) \in [x, \mathbf{1}]^2, \\ x & \text{otherwise.} \end{cases}$$
(4)

V is a nullnorm whose annihilator is x. In this case, if we are looking for a modification \tilde{V} of V in such a way that \tilde{V} is reduced to $[0, x] \cup [x, 1]$, but \tilde{V} is not a nullnorm, we will not succeed. Really, we have that V(1, 0) = x and hence also $\tilde{V}(1, 0) = x$ and this implies that x is the annihilator of \tilde{V} .

Remark 1. Dually to the operation \tilde{T}_{\wedge} introduced by (2), we can define on L^* an operation \tilde{S}_{\vee} starting from the *t*-conorm $S_{\vee}(z_1, z_2) = z_1 \vee z_2$ and an element $x \notin \{0, 1\}$. This means that, unlike the situation with the operations in the unit interval, an arbitrary form of the 2-neutral element, except of the case when $\{0, 1\}_x$ is the 2-neutral element, may lead to proper 2-uninorms.

As a corollary to the above considerations in Examples 1-3, we get the following proposition.

Proposition 2. For arbitrary $n \ge 2$ there exists a proper n-uninorm $F : L^* \times L^* \to L^*$ such that F has no (n + 1)-neutral element, i.e., F is not an (n + 1)-uninorm.

Proof. It is enough to modify the construction in Example 1. For arbitrary $n \ge 2$, let us choose $\mathbf{0} = \zeta_0 < \zeta_1 < \zeta_2 < \cdots < \zeta_{n-1} < \zeta_n = \mathbf{1}$ and we define an operation \tilde{T} by

$$\tilde{T}(z_1, z_2) = \begin{cases} z_1 & \text{for } z_1 \in [\zeta_{i-1}, \zeta_i], i \in \{1, 2, \dots, n-1\} \text{ and } z_2 \ge \zeta_i, \\ z_2 & \text{for } z_2 \in [\zeta_{i-1}, \zeta_i], i \in \{1, 2, \dots, n-1\} \text{ and } z_1 \ge \zeta_i, \\ \zeta_{i-1} & \text{for } i \in \{1, 2, \dots, n\} \text{ and } (z_1, z_2) \in [\zeta_{i-1}, \zeta_i]^2, \\ & \text{or } (z_1, z_2) \in [\zeta_{i-1}, 1]^2 \text{ and } z_1 \parallel_{\zeta_i} \text{ or } z_2 \parallel_{\zeta_i}. \end{cases}$$

We get that $\{\zeta_1, \zeta_2, \ldots, \zeta_n\}_{(\zeta_1, \zeta_2, \ldots, \zeta_{n-1})}$ is the *n*-neutral element of \tilde{T} and there exists no (n+1)-neutral element of \tilde{T} .

5 Conclusions

In this paper, we have discussed 2-uninorms in the unit interval and in the L^* lattice of IF-membership grades. We have shown that there are substantial differences between 2-uninorms in the unit interval and 2-uninorms in the L^* lattice. The results on 2-uninorms we have generalized to *n*-uninorms.

Acknowledgements

The work on this paper was supported from the VEGA grant agency, grant No. 1/0006/19, and from the APVV grant agency, grant No. 18-0052.

References

- [1] Akella, P. (2007). Structure of *n*-uninorms, *Fuzzy Sets and Systems*, 158, 1631–1651.
- [2] Akella, P. (2009). C-sets of *n*-uninorms, *Fuzzy Sets and Systems*, 160, 1–21.
- [3] Atanasov, K.T. (1999). *Intuitionistic Fuzzy Sets*. Springer, Heidelberg.
- [4] Birkhoff, G. (1967). *Lattice Theory*. American Mathematical Society Colloquium Publishers, Providence, RI.
- [5] Bodjanova, S. & Kalina, M. (2014). Construction of uninorms on bounded lattices. *In: IEEE 12th International Symposium on Intelligent Systems and Informatics, SISY 2014*, Subotica, 61–66.
- [6] Calvo, T., De Baets, B. & Fodor, J. (2001). The functional equations of Frank and Alsina for uninorms and nullnorms, *Fuzzy Sets and Systems*, 120, 385–394.
- [7] Deschrijver, G. (2008). A representation of *t*-norms in interval valued L-fuzzy set theory, *Fuzzy Sets and Systems*, 159, 1597–1618.
- [8] Deschrijver, G. (2013). Uninorms which are neither conjunctive nor disjunctive in intervalvalued fuzzy set theory, *Information Sciences*, 244, 48–59.
- [9] Deschrijver, G. & Kerre, E.E. (2003). On the relationship between some extensions of fuzzy set theory, *Fuzzy Sets and Systems*, 133(2), 227–235.
- [10] Fodor, J., Yager, R.R. & Rybalov, A. (1997). Structure of uninorms. *Int. J uncertainty, Fuzziness and Knowledge-Based Systems*, 5, 411–427.
- [11] Frank, M. (1979). On the simultaneous associativity of F(x; y) and x + y F(x; y), Aeq. Math., 19, 194–226.
- [12] Goguen, J. A. (1967). *L*-fuzzy sets. *Journal of Mathematical Analysis and Applications*, 18(1), 145–174.
- [13] Grabisch, M., Marichal, J.L., Mesiar, R., & Pap, E. (2009). Aggregation Functions, Cambridge University Press, Cambridge.
- [14] Kalina, M., & Král', P. (2016). Uninorms on interval-valued fuzzy sets, In: Carvalho J., Lesot MJ., Kaymak U., Vieira S., Bouchon-Meunier B., Yager R. (eds) Information Processing and Management of Uncertainty in Knowledge-Based Systems. IPMU 2016, Communications in Computer and Information Science, vol 611. Springer, Cham, 522–531.
- [15] Karaçal, F., Ince, M. A., & Mesiar, R. (2015). Nullnorms on bounded lattices. *Information Sciences*, 325, 227–236
- [16] Karaçal, F., & Mesiar, R. (2015). Uninorms on bounded lattices. *Fuzzy Sets and Systems*, 261, 33–43.

- [17] Klement, E. P., Mesiar, R., & Pap, E. (2000). *Triangular Norms*. Springer, Berlin, Heidelberg.
- [18] Mas, M., Mayor, G., & Torrens, J. (1999). *t*-operators. *Journal of Uncertainty, Fuzziness and Knowledge-Based Systems* 7, 31–50.
- [19] Mas, M., Mayor, G., & Torrens, J. (1999). t-operators and uninorms in a finite totally ordered set. Internat. J. Intell. Systems, 14 (9), 909–922.
- [20] Mas, M., Mayor, G., & Torrens, J. (2002). The distributivity condition for uninorms and *t*-operators. *Fuzzy Sets and Systems* 128, 209–225.
- [21] Yager, R. R., & Rybalov, A. (1996). Uninorm aggregation operators, Fuzzy Sets and Systems, 80, 111–120.