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Abstract: Uninorms and nullnorms are well-known monoidal and monotone operations on the
unit interval. Akella [2007] proposed their genaralization to n-uninorms. Really, we get both,
proper uninorms as well as proper nullnorms as special cases of 2-uninorms. Moreover, proper
uninorms as well as proper nullnorms can be characterized as 2-uninorms with some special types
of 2-neutral elements. In the present paper, we discuss a classification of 2-uninorms from an-
other point of view as it was done by Akella in 2007 and 2009. Then, we look at 2-uninorms in
IF-sets and point out some differences between 2-uninorms on the unit interval and 2-uninorms in
IF-sets.
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1 Introduction

Uninorms were introduced by Yager and Rybalov [21] as a generalization of both t-norms and
t-conorms (for details on t-norms and their duals, t-conorms, see, e.g., [13, 17]). Since that
time, researchers study properties of several distinguished families of uninorms. In [16], Karaçal
and Mesiar introduced uninorms in bounded lattices. In [5], Bodjanova and Kalina constructed
uninorms in bounded lattices with arbitrarily given underlying t-norm and t-conorm.

Another generalization of t-norms and t-conorms, called t-operators, was introduced by
Mas et al. In [18, 19], Mas et al. studied t-operators on finite chains. In 2001, Calvo et al. [6]
introduced nullnorms when trying to solve Frank’s functional equation [11] where one of the
operations in the equation was a uninorm. Afterwards, Mas et al. [20] showed that nullnorms

21



and t-operators coincide in the unit interval. Karaçal et al. [15] introduced nullnorms in bounded
lattices.

Akella [1, 2] introduced 2- and n-uninorms in the unit interval and gave a characterization
of these operations. In this paper, we characterize 2-uninorms (or more general on n-uninorms)
from the point of view of their two-neutral elements. Particularly, we split the system of all
2-uninorms into 9 (not necessarily disjoint) subclasses. Afterwards, we point out some differences
in the structure of 2- (and n-) uninorms in IF sets.

Intuitionistic fuzzy sets (also, IF-sets), introduced by Atanassov, are a special type of lattice-
valued fuzzy sets, introduced by Goguen [12]. Important milestones in the theory of IF-sets,
besides the monograph by Atanassov [3], are the papers by Deschrijver [7, 8], and Deschrijver
and Kerre [9]. In [7] Deschrijver has shown that there exist t-norms which are not representable
as a pair of a t-norm and a t-conorm. In [8] the author has shown that there exist uninorms in
IF-sets which are neither conjunctive nor disjunctive. In [9], Deschrijver and Kerre have shown
that the theory of IF-sets is equivalent to the theory of interval-valued sets.

A further development of uninorms in IF-sets (or, equivalently, in interval-valued sets) is the
paper by Kalina and Král’ [14], where the authors have shown that for arbitrary pair (a, e) of
incomparable elements of interval-valued sets there exists a uninorm having a as the annihilator
and e as the neutral element.

2 Basic definitions and some known facts

An IF-set [3] can be represented as a special case of L-fuzzy set [12], where L is a bounded
lattice. Membership grades of an IF-set are elements (x1, x2) ∈ [0, 1]2 such that x1 + x2 ≤ 1.
The set of all IF-membership grades will be denoted by L∗. For arbitrary (x1, x2), (y1, y2) ∈ L∗

the following holds
(x1, x2) ≤L∗ (y1, y2) ⇔ x1 ≤ x2 & y1 ≥ y2.

Thus, the least and the greatest elements of L∗ are 0 = (0, 1), 1 = (1, 0), respectively. We will
write these values in bold letters to distinguish them from the real numbers 0 and 1.

Following the notation introduced in [4], we will write x ‖ y if x, y ∈ L∗ are incomparable.
For x ∈ L∗ we denote ‖x= {z ∈ L∗; z ‖ x}.

Definition 1 ([21]). An associative, commutative and monotone operation U : [0, 1]2 → [0, 1] is
said to be a uninorm if it has a neutral element e ∈ [0, 1]

A uninorm U has an annihilator a = U(0, 1), where a ∈ {0, 1}.

Definition 2 ([10]). A uninorm U is said to be conjunctive if U(0, 1) = 0, and U is called
disjunctive if U(0, 1) = 1.

Lemma 1 ([10]). A uninorm U is a t-norm whenever its neutral element is e = 1. In that case
the annihilator of U is a = 0.

U is a t-conorm whenever its neutral element is e = 0. In that case the annihilator of U is
a = 1.
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Lemma 2 ([10]). Let U be a uninorm, e ∈ ]0, 1[ be its neutral element. Then

TU(x, y) =
U(ex, ey)

e
, SU(x, y) =

U(e+ (1− e)x, e+ (1− e)y)− e
1− e

,

are a t-norm and a t-conorm, respectively.

The operations TU and SU from Lemma 2 are called the underlying t-norm and the underlying
t-conorm, respectively.

Definition 3 ([6]). An associative, commutative and monotone operation V : [0, 1]2 → [0, 1] is
said to be a nullnorm if there exists an element a ∈ [0, 1] such that

(1b) V (0, x) = x for all x ∈ [0, a],

(2b) V (1, x) = x for all x ∈ [a, 1].

Lemma 3 ([6]). Let V be a nullnorm and a ∈ [0, 1] be such that

(1b) V (0, x) = x for all x ∈ [0, a],

(2b) V (1, x) = x for all x ∈ [a, 1].

Then a is the annihilator of V .

Similarly like for uninorm U , also for nullnorm V there exist its undrlying t-norm VT and
t-conorm ST given by, respectively,

VT (x, y) =
V (a+ (1− a)x, a+ (1− a)y)− a

1− a
, VS(x, y) =

V (ax, ay)

a

for a ∈ ]0, 1[.

Definition 4 ([1]). Let F : [0, 1]2 → [0, 1] be a commutative operation. Then {e1, e2}z is called
a 2-neutral element of F if F (e1, x) = x for all x ∈ [0, z] and V (e2, x) = x for all x ∈ [z, 1],
where 0 < z < 1 and e1 ∈ [0, z], e2 ∈ [z, 1].

Definition 5 ([1]). Let F : [0, 1]2 → [0, 1] be a monotone, commutative and associative operation
that has a 2-neutral element {e1, e2}z.

Lemma 4 ([1]). Let F be a 2-uninorm whose 2-neutral element is {e1, e2}z. Then

U1(x, y) =
F (zx, zy)

z
, U2(x, y) =

F (z + (1− z)x, z + (1− z)y)− z
1− z

(1)

are uninorms whose neutral elements are ẽ1 = e1
z

and ẽ2 = e2−z
1−z , respectively.

Definition 6 ([1]). Let F : [0, 1]2 → [0, 1] be a commutative operation and 0 = z0 < z1 < z2 <

· · · < zn−1 < zn = 1. Then {e1, e2, . . . , en}(z1,z2,...,zn−1) is called an n-neutral element of F if for
all i ∈ {1, 2, . . . , n} we have ei ∈ [zi−1, zi].

Definition 7 ([1]). An associative, commutative and monotone operation F : [0, 1]2 → [0, 1] will
be called n-uninorm if it has an n-neutral element {e1, e2, . . . , en}(z1,z2,...,zn−1).
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3 Characterization and classes of 2-uninorms
and a generalization to n-uninorms

Let us consider proper uninorms and proper nullnorms as 1-uninorms. Then we adopt the the
following definition:

Definition 8. Let Fn be an n-uninorm for n > 1. We say that Fn is a proper n-uninorm if Fn is
not an (n− 1)-uninorm.

For a proper 2-uninorm F , the operations U1 and U2 given by equality (1), will be called the
lower and the upper underlying uninorm, respectively.

Let us a look at 2-neutral elements. For a given 0 < z < 1, there are 9 possibilities how to set
a 2-neutral element {e1, e2}z. Namely,

e1


= 0,

∈ ]0, z[ ,

z,

e2


= z,

∈ ]z, 1[ ,

1.

As a corollary to Lemma 1 we get the following

Corollary 1. Let F be a 2-uninorm whose 2-neutral element is {e1, e2}z for z ∈ ]0, 1[. Set
U1(x, y) =

F (zx,zy)
z

and U2(x, y) =
F (z+(1−z)x,z+(1−z)y)−z

1−z Then

(a) U1 is a t-norm if e1 = z, U2 is a t-norm if e2 = 1;

(b) U1 is a proper uninorm if e1 ∈ ]0, z[, U2 is a proper uninorm if e2 ∈ ]z, 1[;

(c) U1 is a t-conorm if e1 = 0, U2 is a t-conorm if e2 = z.

Let us check all 9 possibilities of setting a 2-neutral element.

Lemma 5. Let F be a 2-uninorm whose 2-neutral element is {z, 1}z ({0, z}z) for 0 < z < 1.
Then F is a t-norm (t-conorm) that is the ordinal sum of two t-norms F = (〈T1, 0, z〉, 〈T2, z, 1〉)
(of two t-conorms F = (〈S1, 0, z〉, 〈S2, z, 1〉)).

Proof. We will prove only the t-norm case.
As the first step, let us prove that F (0, 1) = 0. Since {z, 1}z is the 2-neutral element of F , we
have by associativity

F (0, 1) = F (F (0, z), 1) = F (0, F (z, 1)) = F (0, z) = 0.

Monotonicity of F implies that 0 is the annihilator of F .
As the second step, we prove that 1 is the neutral element of F . Since we know that 1 is the partial
neutral element of F in the interval [z, 1]. Let x ∈ [0, z].

F (x, 1) = F (F (x, z), 1) = F (x, F (z, 1)) = F (x, z) = x.

The proof is completed.
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Lemma 6. Let F be a 2-uninorm whose 2-neutral element is {z}z ({e1, z}z, {z, e2}z) for
0 < z < 1 and 0 < e1 < z, z < e2 < 1. Then F is a uninorm whose neutral element is z
(e1 and the underlying t-conorm S is the ordinal sum of two t-conorms S = (〈S1, e1, z〉, 〈S2, z, 1〉),
e2 and the underlying t-norm T is the ordinal sum of two t-norms T = (〈T1, 0, z〉, 〈T2, z, e2〉)).

Proof. In the case that {z}z, we have that z is a partial neutral element in the interval [0, z] as
well as in the interval [z, 1], i.e., z is the neutral element of F . Hence, directly by Definition 1 we
get that F is a uninorm with the neutral element z.

In the case that {e1, z}z is the 2-neutral element of F , we get applying Lemma 5 to the interval
[e1, 1] that S = (〈S1, e1, z〉, 〈S2, z, 1〉) is a t-conorm which is the underlying operation of F . The
rest of the proof is due to Definition 1.

Dually we could prove the case when {z, e2}z is the 2-neutral element of F .

Lemma 7. Let F be a 2-uninorm whose 2-neutral element is {0, 1}z for 0 < z < 1. Then, F is a
nullnorm and z is its annihilator.

Proof. The fact that F is a nullnorm with the annihilator z is directly due to Definition 3.

The remaining three cases lead to proper 2-uninorms.

Lemma 8. Let F be a 2-uninorm whose 2-neutral element is {e1, e2}z for 0 < e1 < z < e2 < 1.
Then F is a proper 2-uninorm.

We omit the proof of this lemma since the assertion is obvious.

Lemma 9. Let F be a 2-uninorm whose 2-neutral element is {e, 1}z for 0 < e < z < 1. Then F
is a proper 2-uninorm whose upper underlying uninorm is reduced to a t-norm.

Proof. The fact that the upper underlying uninorm is reduced to a t-norm is due to Lemma 5. The
rest of the proof is obvious.

Lemma 10. Let F be a 2-uninorm whose 2-neutral element is {0, e}z for 0 < z < e < 1. Then
F is a proper 2-uninorm whose lower underlying uninorm is reduced to a t-conorm.

The assertion of Lemma 10 is a dual case of Lemma 9. That is why the proof is omitted.
Generalizing Lemma 6, we get the following

Proposition 1. For n ≥ 2, let F be a proper n-uninorm where {e1, e2, . . . , en}(z1,z2,...,zn−1) is its
n-neutral element. Then there exists 1 ≤ i ≤ n such that zi−1 < ei < zi and moreover, F is an
(n+ 1)-uninorm whose (n+ 1)-neutral element is {e1, e2, . . . , en}(z1,z2,...,ei,zi,...,zn−1).

Proof. We have to prove two items for n ≥ 2:

1) There exists i such that zi−1 < ei < zi,

2) {e1, e2, . . . , en}(z1,z2,...,ei,zi,...,zn−1) is an (n+ 1)-neutral element of F .
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To prove item 1), it is enough to realize that, for n ≥ 2, if there were no i such that zi−1 < ei < zi,
the operation F would have diagonal blocks either (T1, S1, T2, S2, . . . ) or (S1, T1, S2, T2, . . . ),
where T1, T2 are t-norms, and S1, S2 are t-conorms. In each of these two cases the n-neutral
element could be reduced to the (n − 1)-neutral element, since in the first case e1 = e2 and
in the second case e2 = e3 either {e2, . . . , en}(z2,...,ei,zi,...,zn−1) or {e1, . . . , en}(z1,...,ei,zi,...,zn−1),
respectively. This proves the item 1) for n ≥ 3. For n = 2 the statement is due to Lemmas 8, 9
and 10.

Item 2) is a direct consequence of item 1).

4 2-uninorms on IF-sets

(L∗,≤L∗) is a bounded lattice with incomparable elements. The incomparability of some ele-
ments will be crucial in our considerations.

Example 1. On the bounded lattice (L∗,∧,∨,0,1), T∧(z1, z2) = z1 ∧ z2 is the greatest t-norm.
When we choose an arbitrary element x /∈ {0,1}, T∧ can be considered as the ordinal sum t-norm
(〈T∧,0, x〉, 〈T∧, x,1〉).

On the other hand, since ‖x 6= ∅, we can define

T̃∧(z1, z2) =


z1 ∧ z2 for (z1, z2) ∈ ([0, x] ∪ [x,1])2,

z2 for z1 ∈‖x, z2 ∈ [0, x]

z1 for z1 ∈ [0, x], z1 ∈‖x,

x otherwise.

(2)

Hence, T̃∧ is not a t-norm, but {x,1}x is a 2-neutral element of T̃∧. This means that T̃∧ is a
proper 2-uninorm.

Example 2. Let x /∈ {0,1} be an element in L∗.

Ũ(z1, z2) =



z1 ∧ z2 for (z1, z2) ∈ [0, x]2,

z1 for z1 ∈ [0, x] and z2 /∈ [0, x],

and for z1 ∈ [x,1] and z2 ∈‖x,

z2 for z2 ∈ [0, x] and z1 /∈ [0, x],

and for z2 ∈ [x,1] and z1 ∈‖x,

z1 ∨ z2 for (z1, z2) ∈ [x,1]2,

x otherwise.

(3)

The operation Ũ is restricted to [0, x]∪ [x,1], if Ũ has no neutral element on the whole L∗, i.e., it
is not a uninorm. On the other hand, {x}x is a 2-neutral element, hence Ũ is a proper 2-uninorm.
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Example 3. Let x /∈ {0,1} be an element in L∗.

V (z1, z2) =


z1 ∨ z2 for (z1, z2) ∈ [0, x]2,

z1 ∧ z2 for (z1, z2) ∈ [x,1]2,

x otherwise.

(4)

V is a nullnorm whose annihilator is x. In this case, if we are looking for a modification Ṽ of V
in such a way that Ṽ is reduced to [0, x] ∪ [x,1], but Ṽ is not a nullnorm, we will not succeed.
Really, we have that V (1,0) = x and hence also Ṽ (1,0) = x and this implies that x is the
annihilator of Ṽ .

Remark 1. Dually to the operation T̃∧ introduced by (2), we can define on L∗ an operation
S̃∨ starting from the t-conorm S∨(z1, z2) = z1 ∨ z2 and an element x /∈ {0,1}. This means
that, unlike the situation with the operations in the unit interval, an arbitrary form of the 2-neutral
element, except of the case when {0,1}x is the 2-neutral element, may lead to proper 2-uninorms.

As a corollary to the above considerations in Examples 1 – 3, we get the following proposition.

Proposition 2. For arbitrary n ≥ 2 there exists a proper n-uninorm F : L∗×L∗ → L∗ such that
F has no (n+ 1)-neutral element, i.e., F is not an (n+ 1)-uninorm.

Proof. It is enough to modify the construction in Example 1. For arbitrary n ≥ 2, let us choose
0 = ζ0 < ζ1 < ζ2 < · · · < ζn−1 < ζn = 1 and we define an operation T̃ by

T̃ (z1, z2) =


z1 for z1 ∈ [ζi−1, ζi], i ∈ {1, 2, . . . n− 1} and z2 ≥ ζi,

z2 for z2 ∈ [ζi−1, ζi], i ∈ {1, 2, . . . n− 1} and z1 ≥ ζi,

ζi−1 for i ∈ {1, 2, . . . , n} and (z1, z2) ∈ [ζi−1, ζi[
2,

or (z1, z2) ∈ [ζi−1,1]
2 and z1 ‖ζi or z2 ‖ζi .

We get that {ζ1, ζ2, . . . , ζn}(ζ1,ζ2,...,ζn−1) is the n-neutral element of T̃ and there exists no (n+ 1)-
neutral element of T̃ .

5 Conclusions

In this paper, we have discussed 2-uninorms in the unit interval and in the L∗ lattice of
IF-membership grades. We have shown that there are substantial differences between 2-uninorms
in the unit interval and 2-uninorms in the L∗ lattice. The results on 2-uninorms we have general-
ized to n-uninorms.
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