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Abstract

This paper is a continuation of our previous works on similarity measures of
Atanassov’s intuitionistic fuzzy sets (to be called A-IFSs, for short). The similar-
ity measures we considered used all three functions (membership, non-membership
and hesitation) to represent A-IFSs, and examined two kinds of distances – one to an
object to be compared, and one to its complement. In this paper we propose some new
distances between A-IFSs, and new similarity measures preserving all the advantages
of the previously proposed similarity measures and using the new distance functions.

1 Introduction

Similarity measures play a fundamental role in inference and approximate reasoning, and
in virtually all applications of fuzzy logic. For different purposes different measures of
similarity are to be used. The importance of those measures has motivates researchers to
compare and examine the effectiveness and properties of different measures of similarity for
fuzzy sets (e.g. Zwick at al. [27], Pappis and Karacapilidis [7], Chen at al. [4], Wang at al.
[25], Bouchon-Meunier et al. [3], Cross and Sudkamp [5]).

The analysis of similarity is also a fundamental issue while employing A-IFSs (Atanassov
[1], [2]) which are a generalization of conventional fuzzy sets.

Like in our previous works (Szmidt and Kacprzyk [17], [18], [21]) we propose here a
similarity measure which is not a standard similarity measure in the sense that it is not
only a dual concept to a (general) distance measure (cf. Tversky [23]). In commonly used
similarity measures, the dissimilarity behaves like a distance function. Such a standard
approach, formulated for objects meant as crisp values, was later extended and used to
evaluate the similarity of fuzzy sets (Cross and Sudkamp [5]). Distances were also proposed
to measure the similarity between intuitionistic fuzzy sets (cf. Dengfeng and Chuntian [6],
and Szmidt and Kacprzyk [17], [18], [21]).

The measure we propose here is a different kind of a similarity measure as it does not
measure just a distance between individual intuitionistic fuzzy preferences being compared.
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The new measure answers the question if the compared preferences are more similar or more
dissimilar to each other.

The second feature (besides taking into account the complements of the element/object
we compare to) that makes our measure distinct is the representation of A-IFSs as we
take into account all three functions i.e., the membership, non-membership, and hesitation
margin. We have already discussed the reasons of such an represenation of A-IFSs (e.g.,
Szmidt and Kacprzyk [11], [13], [20]).

Should similarity measures between A-IFSs be just a straightforward generalization of
measures between fuzzy sets? The results obtained show that, just as in the case of dis-
tances (Szmidt and Kacprzyk [20]), straightforward approaches may not work (Szmidt and
Kacprzyk [21]).

In this paper we propose some new distances between A-IFSs, and new similarity mea-
sures preserving all the advantages of the previously proposed similarity measures and using
the new distance functions.

The basic definitions and properties of Atanassov’s intuitionistic fuzzy sets are given in
[1], [2].

2 Distances between A-IFSs

In Szmidt and Kacprzyk [11], Szmidt and Baldwin [8, 9], and especially in Szmidt and
Kacprzyk [20] it is shown why when calculating distances between IFSs we should take into
account all three functions describing A-IFSs. In [20] not only the reasons why we should
take into account all three functions are given but also some possible serious problems that
can occur while taking into account two functions only.

Here we will consider the folowing distances between A-IFSs A, B in X = {x1,, . . . , xn}:
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For (1) we have: 0<lIFS(A, B)<1 (cf. Szmidt and Kacprzyk [11], [20], Szmidt and Bald-
win [8, 9]), the values of the distances (2)–(5) are from interval [0, 1).
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In our further considerations we will use distances between fuzzy sets A, B in X =
{xi/i ∈ N}

l
′

IFS(A, B) =
6

π2

∞∑

k=1

1

k2
(

1

2k

k∑

i=1

(|µA(xi) − µB(xi)| + |νA(xi) − νB(xi)| + |πA(xi) − πB(xi)|)) (6)

l
′′′

IFS(A, B) =
6

π2

∞∑

k=1

1

k2
(

1

2k

k∑

i=1

(|µA(xi) − µB(xi)| + |νA(xi) − νB(xi)|)) (7)

l
′′

IFS(A, B) =
∞∑

k=1

1

2k
(

1

2k

k∑

i=1

(|µA(xi) − µB(xi)| + |νA(xi) − νB(xi)| + |πA(xi) − πB(xi)|)) (8)

l
′′′′

IFS(A, B) =
∞∑

k=1

1

2k
(

1

2k

k∑

i=1

(|µA(xi) − µB(xi)| + |νA(xi) − νB(xi)|)) (9)

Proposition 1 Q is an A-IFS on X = {xi/i ∈ N}. We will prove that < Q, l
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3 Similarity measures

In this section we construct the similarity measures between A-IFSs in the sense of Szmidt
and Kacprzyk [20], [21], i.e., in the proposed measures we take into account as well the
hesitation margins (besides membership and non-membership values). And more so, the
measures we propose take into account not only a pure distance between compared elements
but also answers the questions if the considered elements/objects are more similar or more
dissimilar to each other (the measure takes into account and compares two types of distances
– to the element/object, and to its complement). We have already shown (Szmidt and
Kacprzyk [18]) that even if a distance between the objects compared is small, it can happen
that the objects are completely dissimilar.

In this spirit, when constructing the new similarity measures we use here the same
two kinds of distances as in Szmidt and Kacprzyk [20], [21] (i.e., lIFS(X, F ), lIFS(X, FC))
but now we look for a function with values from [0, 1] (cf. Szmidt and Kacprzyk [21]).
Specifically, given by

f(lIFS(X, F ), lIFS(X, FC)) =
lIFS(X, F )

lIFS(X, F ) + lIFS(X, FC)
(10)
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′′n
IFS(X, FC)

(12)

The above functions are constructed under the condition that we exclude from our
considerations the case when X = F = F C which is, by obvious reasons, not interesting
in practice. The assumption X = F = F C means that we try to compare an element
(represented by) X about which we know nothing, to another element about which we know
nothing F = F C So we exclude from our considerations the cases for which lIFS(X, F ) =
lIFS(X, FC) = 0. Other cases are presented in Table 1.

In this way we have constructed a function which takes into account the same two
distances like the previous measure (cf. Szmidt and Kacprzyk [17], [18], [21]) but now the
new measure is normalized (its values are in [0, 1]). It is obvious (see Table 1) that (10) is
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Table 1: Possible values of (10) c, d ∈ (0, 1)
lIFS(X, F ) lIFS(X, FC) f

0 1 0
1 0 1
1 1 0.5
c less than d c/(c+d)<0.5
c bigger than d d/(c+d)>0.5
c equal to d 0.5

a dual concept to a similarity measure (if (10) is equal to zero then similarity is equal to 1;
if (10) is equal to 1 then similarity is equal to zero, and so on). In other words, we may use
(10) to construct a similarity measure.

As
0<f(lIFS(X, F ), lIFS(X, FC))<1 (13)

we would like to find such a monotone decreasing function g that:

g(1)<g(f(lIFS(X, F ), lIFS(X, FC)))<g(0) (14)

which means that

0<g(f(lIFS(X, F ), lIFS(X, FC))) − g(1)<g(0) − g(1) (15)

0<
g(f(lIFS(X, F ), lIFS(X, FC))) − g(1)

g(0) − g(1)
<1 (16)

In this way we obtain a function having the properties of a similarity measure in a sense
that it is monotone decreasing function of (10).

Definition 1

Sim(lIFS(X, F ), lIFS(X, FC)) =
g(f(lIFS(X, F ), lIFS(X, FC))) − g(1)

g(0) − g(1)
(17)

Sim(l
′n
IFS(X, F ), l

′n
IFS(X, FC)) =

g(f(l
′n
IFS(X, F ), l

′n
IFS(X, FC))) − g(1)

g(0) − g(1)
(18)

Sim(l
′′n
IFS(X, F ), l

′′n
IFS(X, FC)) =

g(f(l
′′n
IFS(X, F ), l

′′n
IFS(X, FC))) − g(1)

g(0) − g(1)
(19)

where (f(lIFS(X, F ), lIFS(X, FC)) is given by (10), (f(l
′n
IFS(X, F ), l

′n
IFS(X, FC)) is given by

(11), (f(l
′′n
IFS(X, F ), l

′′n
IFS(X, FC)) is given by (12)

The simplest function g which may be applied is

g(x) = 1 − x (20)

which gives from (17), for two A-IFSs A and B with n elements:

Sim(lIFS(A, B), lIFS(A, BC)) = 1 −
1

n

n∑

i=1

lIFS((A(xi), B(xi))

lIFS((A(xi), B(xi)) + lIFS((A(xi), B(xi)C)
(21)
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4 Conclusions

We have proposed the new similarity measures for A-IFSs. The new measures are an effect of
our previous considerations on possible representations of A-IFSs (Szmidt and Kacprzyk [11],
Tasseva at al. [22]) and distances between A-IFSs (Szmidt and Kacprzyk [11], [20])).

The new similarity measures take into account all three functions (membership, non-
membership and hesitation) in the description of A-IFSs, and take into account the com-
plement of the element/object we compare to.
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