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1 Introduction and Preliminaries

Following the introduction of fuzzy set theory by Zadeh [1] there has been extensive research to
find applications and fuzzy analogues of the classical theories. The theory of intuitionistic fuzzy
sets was introduced by Atanassov [2] it has been extensively used in decision-making problems
[3]. The concept of an intuitionistic fuzzy metric space was introduced by Park [4]. Further,
Saadati and Park [5] gave the notion of an intuitionistic fuzzy normed space. Some works related
to the convergence of sequences in several normed linear spaces in a fuzzy setting can be found
in ([6, 7, 8]). Using the concepts of n-normed linear spaces and fuzzy normed linear spaces; in
[9] fuzzy n-normed linear space and in [10] intuitionistic fuzzy n-normed linear space have been
defined. Also in [11] the notions of lacunary statistical convergence and lacunary statistical
Cauchy sequence have been introduced.

The notion of statistical convergence is a very useful functional tool for studying the
convergence problems of numerical sequences/matrices (double sequences) through the concept
of density. It was first introduced by Fast [12], and Schoenberg [13], independently for the real
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sequences. Later on it was further investigated from sequence point of view and linked with the
summability theory by Fridy [14], Salat [15] and many others. The idea is based on the notion
of natural density of subsets of N, the set of positive integers, which is defined as follows: The

natural density of a subset K of N is denoted by &(K )and is defined by

5(K)=1iml\{ke1<:ks;1}, )

n—>x0 n

where the vertical bar denotes the cardinality of the respective set.

Recently, Mursaleen [16] studied the concept of statistical convergence of sequences in
random 2-normed space. Quite recently, Savas [17] introduced A -statistical convergence
theorem in random 2-normed space and in [18] Savas proved some theorems in intuitionistic
fuzzy 2-normed space using A -statistical convergence.

The concepts of [-statistical convergence, [-lacunary statistical convergence, and
I;-statistical convergence have been introduced by using ideals and have been investigated their
properties in [19, 20]. Savas and Giirdal [21] also studied the concept of I;-statistical
convergence with respect to the intuitionistic fuzzy normed space (x, v). Also Savas [25]
introduced [V, A](/)-summability and [I;-statistical convergence of order «,0<a <1, with
respect to the intuitionistic fuzzy n-norm (z, v)» and investigated some properties of these
classes.

In this paper, we introduce [V, A](I)-summability and L-statistical convergence of order

a,0 < a <1, in the setting of intuitionistic fuzzy normed space.

Firstly, we recall some notations and definitions which we need them in the sequel.
Definition 1.1 [22] A binary operation *:[0,1]x[0,1]—>[0,1] is a continuous t-norm if it

satisfies the following conditions:

(1) * is associate and commutative,
(i)  * is continuous,

(ii1)) ax*1=a forall ae[O,l],

(iv) a=*b<c*dwhenever a < cand b < d foreach a, b, c, de[O,l].

Definition 1.2. [22] A binary operation ¢:[0,1]x[0,1]—[0,1]] is said to be a continuous t-

conorm if it satisfies the following conditions:
(1) ¢ 1s associate and commutative,

(i1)) O is continuous,

(i) a®0=a forall a e [O,l] ,

(iv) a¥0b<cOdwhenever a < cand b < dforeach a, b, ¢, d e[O,l].
For example, we can give a*b =ab, a*b=min {a, b} , a0b=min{a+b,1}

and a0b =max{a, b} forall a, be [O, 1].
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Definition 1.3. [10] An intuitionistic fuzzy n-normed space (or) in short IFnNS is an object of
the form A={X,,u(x,t),v(x,t):x=(x1,x2,...,xn)eX”}, where X is a vector space, * is a
continuous t-norm, ¢ is a continuous t-co-norm and g, v are fuzzy sets on X" x(O,oo);

i denotes the degree of membership and v denotes the degree of non-membership of
(xl,xz,...,xn,t) e X" X(0,00) XX(0,00) satisfying the following conditions:

1. Y7, (x, t) + v(x, t) <1,
1i. ,u(x, t)>0,
. u (xl,xz,...,xn,t) =1 ifand only if x,x,,...,x, are linearly dependent,

iv.  pu (x,%,..,x,,¢) is invariant under any permutation of x,,x,,...,x,.

Voo u(x,%,.. t)=,u[x],x2,...,xn,i} for each ¢ #0,

c
Vi. ,u(xl,xz, ) ,u(xl,xz,...,xn ',S)S,u (xl,xz,...,xn+xn ', t+s),
vil.  p(x, .): ( ) — [0, 1] is continuous,

viil. (x, )
iX. v(x Xyyeres X, t) 0 if and only if x,,x,,...,x, are linearly dependent,

X.  v(x,%,..,x,,) is invariant under any permutation of x,x,,...,X,.

. t
xi.  v(x,x,,.,cx,, t)=v(xl,x2,...,xn,—|J for each ¢ #0,
C

)Ov(xl,xz, o X, S)ZV (xl,xz,...,xn+xn', t+s)

(
xii.  v(x,
(

X,,
xiii. v(x, .): ( )—)[0 1] is continuous.

For convenience we denote the intuitionistic fuzzy n-normed space (or) in short IFnNS by
(X , UV, *,0) and also intuitionistic fuzzy n-norm by (&, V)».. As a standard example, we give

the following.

Example 1.4. [11] Let (X,
a*b=min{a,b} and a0b=max{a, b} for all a,be[0,1],forall x =(x,x,,...,x,)€ X and
every ¢ > 0;

[ ] °
geeey

|) be an n-normed space, where X =R. Define

e W

,u(xl,xz,...,xn,t)=e t , V(xl,xz,...,xn,t)=1—e t

Then (X, ,v,*,9) is an intuitionistic fuzzy n-normed space.

Definition 1.5. [10] Let (X, x, v,*,0) be an IFnNS. A sequence x =(x, )& (X, v,*,0) is

said to be convergentto L € X with respect to the intuitionistic fuzzy n-norm (x, v)» if, for every

g >0 and ¢ >0, there exists a positive integer no such that u (xl,xz,...,x -L, t) >l-¢

n— 1’
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and v(xl,xz,...,x x, —L, t)<g for all k>n,. It is denoted by (u,v) —limx, =L or

n—=1>"n;

(uv),
x, —> Lask—oo.

Definition 1.6. [10] Let (X, x, v,*,0) be an IFnNS. A sequence x:(xnk ) e (X, 1,v,*,0) is
said to be a Cauchy sequence with respect to the intuitionistic fuzzy n-norm (g, V). if, for each

e >0 and t >0, there exists a positive integer  m, such  that

H (xl,xz,...,xnfl,xnp X, t)>1—8 and v(xl,xz,...,xH,xnp =X, t)<8 whenever p,q2>m,.

Before proceeding further, we should recall some notation on the ideal.
A family 7 < 2" of subsets of a nonempty set Y is said to be an ideal in Y if
1. Del;
il. A,Bel imply AUBel;
11l. Ael, Bc Aimply Bel.
A proper ideal [ is said to be admissible if {n} el foreach neN.
1. Delf;
il. A,BeF imply A n BeF,
. AeF, Ac BimplyBeF.
If I is a proper ideal of N (ie, Ng/l), then the family of sets F(I)

= {M cN:JAel: M =N\ A} is a filter of N. It is called the filter associated with the ideal.

2 I;-statistical convergence in IFnNS

Definition 2.1. Let (X, x, v,*0) be an IFnNS. A sequence x:(xnk) is said to be I -

statistically convergent of order & to L € X with respect to (&, v)», where 0 < <1, if for every
e>0,0>0and r>0;

{keN:kLa‘{pSk:y(xl,xz,...,xnl,xnp—L;t)Sl—gorv(xl,xz,.. X X —L;t)zg}

©2 7 n=1>"n,

25}61

which denotes as x, —)L(S“ (I)(#’V)”) or §° (I)(”’V)” —limx, =L.

Remark 2.2. For =1, ={4AcN:4is finite},S” (I)(# )y —convergence coincides with

statistically convergence of order & with respect to (u, V)». For an arbitrary ideal / and for o =1

it coincides with /-statistical convergence with respect to (4, V)», [23]. When /=1, and a=1

it becomes only statistically convergence with respect to (s, V)a, [21].
Let A= {l

" }neN be a non-decreasing sequence of positive numbers tending to o such that

A A4, +1, 4, =1. The collection of such sequences A will be denoted by A.
We define the generalized de la Vallee-Pousin mean of order « by
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t, (x)zia Z X

n kel,
where I, =[n—2, +1,n].
Definition 2.3. Let (X, x, v,*,0) be an IFnNS. A sequence x = (x ) is said to be [V, 4](1)
-statistically convergent of order & to L e X with respect to (&, V)n, where 0 <« <1, if for
every £>0 and ¢#>0;

g

n=1°"n;

{keN:,u(xl,xz,...,x t(x)—L;t)Sl—gorV(xl,xz,...,xnfl,tnk(x)—L;t)Zg}eI,

which is denoted as [V, 1]" (1)(”)" —limx=L.

Definition 2.4. Let (X, z, v,%0) be an IFnNS. A sequence x:(xnk) is said to be /-

statistically convergent of order & or S} (I)(#’V)” -convergent to L € X with respect to (z, V)n

where 0 < <1, if forevery £>0 and t>0;

{keN:i
/1(1

k

> n-1°>"n

{pelk :,u(xl,xz,...,xn_l,xnp —L;Z)Sl—g or v(xl,xz,... X5 %, —L;t)zg}

25}61,

which is denoted as S¢ (I)(”’V)" ~limx=L or x, — L(Sf (I)(”’V)” ) :

Remark 2.5. For [ =1,,87 (I)(# Y convergence with respect to (,v) = coincides with 1 —
statistically convergence of order & with respect to ( y,v)n. For an arbitrary ideal / and for
a =1 it coincides with I, -statistical convergence with respect to ( ,u,v)n , [21]. Finally

I=1,, and a=1 it becomes A -statistically convergence with respect to (,v) , [24].

Theorem 2.6. Let (X, v,x0) be an IFnNS. Let A=(4)eA. Then
5, L[V (1) )= x, > L(sr)").

Proof. Forevery >0 and >0, let x, — L([¥,4]" (1) ]. We have
Z,u(xl,xz,...,xnfl,tnk (x)—L;t) or v(xl,xz,...,xnfl,tnk (x)—L;t)

Pely

> Z ,u(xl,xz,...,xn_l,tnk (x)—L;t) or v(xl,xz,...,xn_],tnk (x)—L;t)
pel; &y(xl 3X3 e Xy Loy (x)—L;t)<1—€
or v(xl IR CT. (x)—L;t)>£

Zé“{p eN:u(xl,xz,...,xn_l,tnk (x)—L;t)Sl—g or v(xl,xz,...,xn_l,tnk (x)—L;t)Zg}‘.

Then for a given 6 >0,
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>0

1
v {p el, :y(xl,xz,...,xn_l,xnp —L;t)sl—e or v(xl,xz,...,xn_l,xnp —L;t)Ze}
k

ﬂaZu(xl,xz, Xt (x)=Lit)<(1-£)0 or _z (550 y oty ()~ Lit) 2 £,

k% pel; k pel;

which implies that

1
{keN:l—: {pelk :,u(xl,xz,...,xn_l,xnp —L;t)Sl—gor v(xl,xz,...,xn_l,xnp —L;t)Ze} 25}
c{keN:
/la{z;z(xl,xz, SX, ot (X)- Lt) (I-&) or Zv(xl,xz,...,xn_l,tnk(x)—L;t)25}255}
pel; pel;

Since x, — L ([V, A" (1 )(”’V)” ) , we see that x, — L(SZ‘ (I)(”’V)” ) , so this completes the proof.
U

To show that (S/‘{‘ (I)(”’V)" ) o ([V,/l]a (1)(;1,1/)” ) , take a fixed 4 €/. Define x=(x;) by

ku, forn—[\/l,‘f}+l£k£n,n¢A

X, =3ku, forn—-A +1<k<nneAd

60, otherwise.

where u € X is a fixed element with ||u|| =1, and @ is the null element of X . Then x ¢ m(X )

and for every £>0(0<e<1) since

%ﬂa{keN:\

X5 Xy 5o X, 5 X, —9”>5}‘

n—1°
as n—oo0 and n¢ A4, so for every 0 >0,

{neN:%‘{keN:‘

X1 X0 e00s X5 Xy —HH > g}‘ > 5} c AU{I,Z,...,m}

for some m € N. Since / is admissible so it follows that x, — H(Sj‘ (I)(# ) ) . Obviously
Ly |
ﬂ’r? kel,

ie x, - 9([1/, A% ( 1)<u,v),1) . Note that if A</ is infinite then x, %e(sgu,v)ﬂ)  This

X5 X 5ees Xy Xy —6’” — o0(n— )

example also shows that [ —Sgﬂ’v)" -statistical convergence of « is more general than

S _statistical convergence of order .
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Theorem 2.7. Let (X, £, v,*,0) be an IFnNS. If lim 2nf2—"a >0, then S* (I)(”’V)" c S (I)(”’V)" )

Proof. For fixed £ >0 and ¢ >0, we have

! {pﬁk:,u(xl,xz,...,xnfl,xnp—L;t)ﬁl—gorv(xl,xz,...,x X —L;t)zg}

k_a n=1>""n,
>1 : 1) < =
_k—a{pelk.,u(xl,xz,...,xnl,xnp—L,t)_l—gorv(xl,xz,...,xnl,xnp—L,t)_g}
& . . :
:k_“ﬂ_“ pe]k.,u(xl,xz,...,xn_l,xnp—L,t)Sl—gorv(xl,xz,...,xn_l,xnp—L,I)Zg .
k

o

If limi—’; = a , then from the definition the set {k eN: 2—'; < %} is finite. For every 6 >0,

k~>ook
1

{keN:— 25}
A

1
c{keN:k—a‘{p el, :,u(xl,xz,...,xnfl,xnp —L;t)sl—g or V(xl,xz,...,x,H,xnp —L;t)zg}

n=1°>"n

{pe]k :y(xl,xz,...,xn_l,xnp —L;t)sl—g or v(xl,xz,...,x X, —L;t)zg}

A«
UskeN: - <=L,
{ k* 2

This completes the proof, as / is admissible the set on the right-hand side belongs to /. U

Theorem 2.8. Let (X, s, v,%0) be an IFnNS. If A€A be such that for a particular

0, then S7 (1) < 57 (1)

ka

a,0<a<l,lim
k

k=4 =0, we can choose m €N such that k=4 <§

b

Proof. Let 6 >0 be given. Since li£n

for all £ >m . Now observe that, for £ >0

38



1
ka

{p Sk:,u(xl,xz,...,xnfl,xn —L;t)sl—g or v(xl,xz,...,xnfl,xn —L;t)zg}
14 73

! {p <k-4, 3#(X1,x2,---,xn71=x,,p —L;t)sl—g or V(xl,xz,...,x X, —L;t)zg}

_ka n—1>""n
1
+k_‘7‘ {pEIk:#(xlﬁxb"-oxnflﬂxn _L;t)gl—gOI'V(XI,XZ,...,X,FI,Xn _L’t)zg}
14 ’
k=4, 1
< +_{p61k:/u(xlﬂxzﬁ""xn—l’xn —L;t)Sl—gorv(xl,xz,...,x,H,xn —L;t)zg}
ke ke ' p
o 1
£—+—{p€1kI,U(xpxzs-~-axn-1=xn —L;t)Sl—gorv(xl,xz,...,xn_l,xn —L;t)zg},
2 A ’ p

for all k> m . Hence

{keN:kLa‘{p Sk:,u(xl,xz,...,xn_l,xnp —L;t)Sl—g or V(xl,xz,...,xn_l,xnp —L;I)Zg}

c{keN:L
A(Z

k

{p el, :,u(xl,xz,...,xnfl,xnp —L;t)sl—g or v(xl,xz,...,xnfl,xnp —L;t)zg}

U{L2,...,m}.

If S (I )(”’V)” —1lim x = L, then the set on the right-hand side belongs / and so the set on the left-

hand side also belongs to /. This shows that x = (x ) is [ -statistically convergent of order o

Ny

to L with respect to intuitionistic fuzzy n-normed space (£, V)n. [

Theorem 2.9. Let (X, #, v,%0) be an IFnNS such that %O%"<%" and

1—5—" * l—g—" > l—g—". If X is a Banach space then S (I)(W)” ﬂl(”’v)” is a closed subset
4 4 2 g ?

of """ where I stands for the space of all bounded sequences of intuitionistic fuzzy
n-norm (,v) .
Proof. We first assume that (xf ) cSi (1 )(”’V)” NI¥“" 0<a <1, is a convergent sequence and

it converges to xel“". We need to show that xeS;(1 )(”’V)"ﬂli" ). Suppose that

x’/ —>L, (Sj’ (I )(W)”) for all j e N. Take a sequence {gj}jeN of strictly decreasing positive

. E.
numbers converging to zero. We can find a j € N such that supv(xl,xz,...,xn_l,x—xk't) < ?’
k

n?

for all m> jm. Choose 0<6 < % Now let
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A(W)n (6‘1,6‘2,...,8”/;t) =

1
peN:—
{ 4,

belongs to F (/) and

{kej,,:#(xl,xz,...,xnl, x, —L;; t)<1—%orv(xl,x2,...,xnl, L t) %}

s

) c.

1 kEIP :’u(xl’x2""=xn—1axj+l_Lj+1;t)gl_?]0r

B(/“/) (815527-.-,€n,;t): pEN —la <5
), ; )

]+l
V(xl’xz’ Xy 15X _L;+1> )

belongs to F(I). Since A (81,82,...,8nj;t)ﬂB(ﬂ’v) (31,52, nE s )eF( ) and D¢ F(1),

we can choose peA(ﬂ’v)n (6‘1,82, £, )ﬂB (6‘1,82,. € ) Then

, & ,
. J J .
kel, .,u(xl,xz,...,xn_l,xk Lt ) l—Torv(xl,xz, o X, 05X, —L; t)z

L
A

)

J

4

: £, ‘
J+ . J J+ .
,u(xl,xz,...,xnfl,xnk —Lﬂl,t)Sl— 4 orv(xl,xz,...,xnfl,xnk —Ljﬂ,t)z

Since 4, > and 4, (6‘1,6‘2, &, )ﬂB (61,82,. 0Ey s )eF(I) is finite, we can

actually choose the above p sothat 1, >5. Hence there must exists a k € /,, for which we have

simultaneously, ,u(xl,xz,...,xnl, L t)>1—7 v(xl,xz,...,xnl, w —L; t)<? and

oL ) s1-2 W Lt) <L F i 0
J7] EE G S A 7Y (X X st ;- Foragiven ¢;>

£, £, €. g €. .
choose 7’ such that (1 —?"j*[l —?’j >1-¢&, and ?/o?/ <¢&;. Then it follows that

j+1 - n

J.
V(xl,xz,...,xnfl,Lj —xnk,t)Ov(xl,xz,...,xnfl,L

and

J J+l. [ A . .
v(xl,xz,...,xn_l,xnk xnk t)<supv£xl,x2, xn_l,x xnk,—z Osupv xl,xz,...,xn_l,x xnk ,_2
J J

€j<>6‘j <

< oL
4 4

o |

Hence we have
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; ; t
J . J+ .
v(xl,xz,. X, L =Lt )<{v(xl,x2,...,xn_l,Lj—xnk,EJOV(xl,xz,...,xn_l,xnk _Lf“’Eﬂ

A ot
J J+L.
Ov(xl,xz,...,xn 1 Xy =X ,—J

E . E .
LoL<e.,

< oL
2 2 !

and similarly ,u(xl,xz,...,x,H,Lj —Lm;t) >1-¢,. This implies that {Lj }jeN is a Cauchy
sequencein X andlet L; - L e X as j—> . We shall prove that x — L(ij (I )(”’V)” ) . For any

>0 and >0, choose jeN such thate; <%,

£
SUPV | X;, Xy 5oy X, X — xn,t X5 Xy peees X, ,L —Lit)>1-—or v(x,X,....X,_ ,L —L;t)<
jp(12 1 )4/1(12 -1 ) 4 (12 -1 )

Now since

_‘ke] V(xl,xz, X5y, Lt) }‘

1 ot _ ¢
Sﬂ—f{kelj:v(xl,xz,...,xnl,xnk —xjk;gJO[v(xl,xz,...,xnl,x,jk —Lj;§]<>v(x1,x2, w X, oL L3ﬂ }

~Lif)<1- g}‘>/1_“

1 .
{kelj:,u(xl,xz,...,xn_l,xljk—L 3] 1—5}

J

o | M

1 t
Sﬂ;’ {ke] v(xl Xygees Xy 1%, —Lj;ng

and similarly

;a {ke] ,u(xl,xz, 2 X15 X,

it follows that

{j € N:T;Hk el; :y(xl,xz,...,xn_l,xnk —L;t) <l-¢gor v(xl,xz,...,xn_],xnk —L;t) > 8}‘ > é}

] 1 : t £ ; t_¢
c{] EN:E {kelj :y(xl,xz,...,xn_l,x,{k —L;gjﬁl—a or v(x],xz,...,xn_l,x,jk —L;gjza}

for any given & >0. Hence we have x — L(ij (1 )(”’V)” ) . So we obtain the proof. O
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